Forecasting Overview

ATMO 325 Jason P. Criscio 24 Oct 2006

Forecasting Fundamentals

- What is forecasting really???
- I. to predict (a future condition or occurrence); to calculate in advance
- 2. to estimate or calculate in advance, <u>especially to predict</u> (weather conditions) by analysis of meteorological data
- So...What data do we use?

Weather Data

- Surface Station Data (left)
- 500mb/Upper Air Data (right)
- What are we really looking at?
- Surface...That's easy! What about 500mb?

500mb/Upper Air Map

500mb/Upper Air Map

Forecasting Techniques

- Four Ways (In This Class) To Predict The Future
 - I. Extrapolation
 - 2. Warm/Cold Advection
 - 3. Upper Level Lows ("The Wind Rule")
 - 4. Steering

- Easiest of the 4 methods
- "Where was it?" + "Where is it?" = "Where it's going"

- Works for anything!
 - Lows, Highs
 - Fronts
 - UA Football Team (ok, bad, worse... ugh)
- In this class, we use extrapolation <u>only</u> for 500mb troughs and ridges
- Tells you where the troughs and ridges are going
- So now we know where the troughs and ridges go, but do we know how they'll look?

• Determines if a trough/ridge gets stronger or weaker

- What the...?
- Advection occurs where height and temperature contours cross

neights	Million Jac Troge	min ger jouer		1. fed
	1 Jine		extrap	on of
ex	trough -	5	Frough	line
	NITT I	-20	A-+	///
-30 ×	HEI	15	X	
25	CHAP-	1.5	RVIE	Jut
-20	-11	- contours	J TINGW	Thomas
-115	1 ion of	with ug	Contoppen	ing
	regi air	deepen /	(ar I	
	Cold	0-1		
	adveci			

• This Picture = Extrapolation + Cold Advection

- Warm/cold advection can occur anywhere in the atmosphere
- For this class, we only care about advection in the upper levels (i.e., 500mb) and how it affects height contours
- Advection tells you how the shape of the height contours will change (stronger, weaker, flatter, etc.)

Upper Level Lows

example:
" Low mill more towards the southwest with a speed
given by <u>60-20</u> = 20 mph

- This Picture = Exactly What It Says
- What the...?

Upper Level Lows

- Ingredients
 - Upper level low (seriously...)
 - Fastest wind and slowest wind <u>on the same contour</u>
 - Approx. the same distance from the low center
 - (Fastest Slowest) / 2 = How Fast
 - Fastest Wind Direction = Where

Upper Level Lows

- "The Wind Rule" works <u>only</u> for closed upper level lows
- Don't use surface winds
- Don't use surface lows
- The surface has nothing to do with this rule
- "The Wind Rule" tells you where the *low center* will move to in the forecast period

- Most Confusing Rule
- Involves <u>both</u> the surface and the upper levels

- I. To guide by means of a device
- 2. To direct the course of
- 3. To guide a vessel or vehicle
- 4. To follow or move in a set course
- What's going on???
- Essentially, the upper level flow is directing traffic
- The wind at 500mb is the "device" that is "guiding" surface features "in a set course"
- The "set course" is the 500mb height pattern

- Near the ground, there's a lot to impede airflow
 - Mountains
 - Buildings
 - UA Football Team
- There is friction near the ground, so the wind should be slower
- There isn't friction 15,000+ ft. above the ground, so the wind should be faster
- So we need to slow down the winds above us in order to steer properly
- We are accounting for friction near the ground

- Most surface features move at half (50%) the upper level windspeed
- Notable Exception: Warm Fronts, they move at one quarter (25%) of the upper level windspeed
- <u>All</u> features move parallel to/along the upper level flow (i.e., height contours)
- Procedure
 - 1. Transcribe surface feature onto 500mb map (draw a dot)
 - 2. Determine a windspeed for that feature (guesstimate)
 - 3. Divide by 2 (or 4) = How Fast
 - 4. Along The Height Contours = Where

- Remember: You are moving something on the ground
- 500mb map only tells you where and how fast