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CHAPTER 1 

I N T R O D U C T O R Y  A N D  H I S T O R I C A L  

1.1. Introduction: Pytheas, Bacon, Newton and Laplace 

The large-scale oscillations of the atmosphere, the subject of  this review, are those 

produced (in two very different ways) by (a) the gravitational forces of  the moon 
and sun, and (b) the thermal action of the sun. Tide here signifies oscillations excited 
gravitationally or thermally; thermal tide signifies the part  excited thermally. 

The sea tides, with rise and fall of the water twice daily on most open ocean coasts, 
have been known from time immemorial. But in the Mediterranean Sea, which may 
be regarded as a large lake, the tide is inconspicuous. The connection of the tides 
with the moon seems to have been first recognized and recorded, as far as available 
records go, by a famous explorer-mariner of Marseilles, Pytheas. Not  long before 
320 B.C. he made the first extensive voyage - of  order 7000 miles or 11000 km - 
westward out of  the Mediterranean Sea and northward to Britain and beyond. He 
visited the Cornish tin mines and circumnavigated Britain. Thus he had occasion 
to observe the considerable tides on its coasts, and the daily regression of the times 
of high water, parallel to that of  the time of the moon's  transit. His writings have 
been lost, and are known only through quotations and allusions by later authors. 
Some of these were incredulous about his geographical discoveries, and scoffed at 
them; they found it hard to believe that lands in the latitudes of  Britain could be 
habitable - knowing nothing of the Gulf Stream and its effect on the climate of  
western Europe. But for centuries geographers depended on Pytheas' data for 
information about northern countries (Hyde, 1947; Casson, 1959). 

The occurrence, at many places, of high tide at about the time of the moon 's  
passage across the meridian early prompted the idea that the moon exerts an attraction 

on the water.* But the occurrence of a second high tide when the moon is on or 
near the opposite meridian was a great puzzle to the few philosophers who thought 

about it. However, already about 1250 A.D. a rational (though wholly false) solution 
of this problem was attempted by the Franciscan friar Roger Bacon of Oxford. It  

was based on the Ptolemaic conception of the universe. 

* Neckam, a learned English monk (1157-1217), who for a time was a professor at the University 
of Paris, wrote a book of general knowledge, De Naturis Rerum, in Latin, about 1190 A.D., which 
was published and edited, with copious comment, by Wright (1863). It is notable for containing the 
first known European reference to the mariner's compass. Mentioning the tides, he remarked that 
he was unable to resolve the vexed question as to their cause, but that the common belief was that 
they are due to the moon (Wright, 1863, p. xxvii). 
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This pictured the stars as lying on the inner surface of a crystal sphere (the primum 
mobile), centered on and daily revolving around the earth. The sun, moon and 
planets were thought to move in the space between this sphere and the earth. Bacon 
suggested that the moon emits rays of attraction; those that fall on the hemisphere 
facing the moon draw the water upward to create the tide there; those that miss 
the earth travel on to meet the crystal sphere, which reflects some of them to the 
opposite terrestrial hemisphere, raising the waters there and producing the opposite 
tide! 

The true explanation of the tides was first indicated by Newton (1687a) in his 
Principia Mathematica. They are a consequence of the lunar and solar gravitational 
forces acting in accordance with his three laws of mechanics. His theory showed 
that the sun also produces a tide, which modulates the lunar tide, so that at full 
and new moon the tidal range is higher (the spring tides) and at the intervening 
epochs of half moon it is lower (the neap tides) than the average. 

The solar sea tide can be explained in an approximate way as follows, treating the 
sun as an immovable mass S, with center O, round which the earth, of mass E and 
center C at distance rs, revolves with angular velocity 0). The total centrifugal force 
E0)Zrs on the earth is balanced by the total gravitational attraction GSE/r 2, where G 
denotes the constant of gravitation. Hence 0)2= GS/r~. 

But over the earth's hemisphere nearer to the sun the gravitational attraction is 
greater than at C and the centrifugal acceleration is less, so that over this hemisphere 
there is a distribution of unbalanced upward force directed sunwards (at most 
points obliquely to the vertical), acting against the earth's own gravitational force. 
Over the opposite hemisphere the gravitational force of the sun is less and the cen- 
trifugal force is greater than at C, so that there is a distribution of unbalanced force 
obliquely upward there also. Particles free to move, like those of the sea and air, 
will do so under the action of these unbalanced forces; the water surface tends to 
become spheroidal, with the long axis along the line OC. 

If the earth did not rotate, such a steady distribution of level could be attained; 
it is called the solar equilibrium tide, and is proportional to the gradient, at C, of the 
acceleration 0)2r-GS/r2:  that is, to 0) 2 + 2GS/r 3 or 3GS/r 3. 

Less simply, it can be shown that the moon's tidal force is similarly proportional 
to 3GM/r 3, where M denotes the mass of the moon and rM its distance from C. 
Thus the ratio of the tidal force of the moon to that of the sun is (M/r3)/(S/r3). 

4 3 4 3 Because M = x ~ a  ~ and S=x~Osas, where 0M, ~s denote the mean densities, 
and a~, a s the radii, of  the moon and sun respectively, the ratio may be expressed 
as {(aM/rM)3/(as/rs)3}(OM/~s). Here the first factor is very nearly equal to 1, because 
(as seen at total solar eclipses) the sun and moon subtend almost equal angles at the 
earth. Hence the lunar/solar tidal ratio (2.15 for the principal terms) is very nearly 
equal to 0M/0s, i.e. (3.34/1.41), or 2.37. Thus 'the moon rules the tides'. A more 
detailed discussion of tidal forcing is given in Section 3.4A. 

The 'equilibrium tide', however, is only a theoretical conception (Lamb, 1932, 
p. 358), which has some value as a standard of comparison with the real tides. Owing 
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to the rotation of the earth, the tidal force at any point in the sea or air continually 
changes; thus the tide is a dynamical phenomenon. 

During the 18th century and later, Newton's successors developed his dynamical 
astronomy of the solar system, and succeeded in explaining the planetary motions 
in almost every detail. They began also to develop the theory of the tides, a task in 
which Laplace (1799-1830) took a leading part. His MOcanique COleste includes an 
account of both the planetary theories and the tides. For the most part he restricted 
his tidal theory to the ideal case of an ocean of uniform depth on a rotating spherical 
earth. He showed that for such an ocean the tides could be direct or inverse, that is, 
either high or low tide could occur 'under' the tide-producing body, depending on 
the ocean depth. Such an ocean has an infinity of modes of f ree  oscillation, and 
resonance might occur between certain of them and the forced tidal oscillations. 
Owing to the irregular boundaries and non-uniform depth of the actual oceans, 
Laplace's tidal theory has very limited application to them. 

Newton (1687b) realized that the tidal forces must affect the atmosphere as well 
as the oceans, but thought that the atmospheric tides would be too small to be de- 
tected. The lack of lateral boundaries renders the atmosphere more appropriate 
than the seas for Laplace's ideal tidal theory, but the compressibility of the air must 
be taken into account. 

Let p, 0, T, 9 denote the pressure, density and temperature (Kelvin) of the air, 
and the acceleration of gravity, at height z above the ground. Let the suffix zero added 
to these and other symbols distinguish the values for z = 0, that is, the ground values. 
The equation of static equilibrium of the air is 

d ( l n p ) / d z  = - I /H  H = P/go, 

where In denotes the natural logarithm. The name scale height is used for H, which in 
general is a function of z. It is the height of the column of overlying air of uniform 

density 0 needed to give the pressure p at the height z, if the variation of 9 with height 
is ignored (though at 100 k m g  is reduced by 3~o). 

In a perfect gas 

p = k n T =  RoOT/M = R o T ,  

where k denotes Boltzmann's constant (1.38 x 10 -16 ergs per ~ n the number 
density of molecules (per cm3), m the mean molecular mass, and Ro = k N ,  where N 
denotes the number 6.02 x 1023 called after Loschmidt (or, less appropriately, after 
Avogadro). Hence Ro--8.31 • 107; it is the gas constant per mole, and R (=  R o / M  ) is 
the gas constant; M ( = Nm)  is the mean (chemical) molecular weight of the air (about 29). 

Hence 
H = k T / m  9 = R o T / M 9 .  

Laplace (1799a) considered an atmosphere in which T, m and 9, hence also H, are 
the same at all heights. Then 

P/Po = ~/~o = e-~m.  
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He showed that in such an atmosphere the tidal oscillations could be inferred from 
those for a liquid ocean of uniform depth H (ignoring the mutual gravitation of the 
water); hence H in this case is called the (tidally) equivalent depth of the atmosphere. 
In his calculations he took the changes of pressure and density to be isothermal, as 
Newton had done in his calculation of the speed c of sound waves in air. This led 
Newton to an erroneous value, c2=p/~=gH. Laplace corrected this to c2=7p/~, 
where y denotes the ratio of the specific heat of air at constant pressure to that at 
constant volume; this factor allowed for the adiabatic changes of air temperature 
in such rapid pressure and density changes. Newton's assumption that the airtidal 
pressure changes are isothermal was natural for such slow changes (but see Section 
2L.14). 

Laplace's theoretical calculation indicated a 'direct' lunar atmospheric tide with a 
barometric pressure range in the tropics of � 89  of mercury. He considered that 
such a change, though small, should be determinable from a considerable number 
of hourly readings, but in 1823, when his interest in the lunar air tide was active, 
no long series of tropical barometric readings was available to him. Instead he used 
an 8-year series (1815-23) of barometric readings supplied by Bouvard, of the Paris 
observatory, made there four times daily, at 9, 12, 15 and 21 hours. He used only part 
of the three daytime readings, 4752 in all; from these, by a well-designed method, 
using differences between successive readings, he sought to compute the lunar semi- 
diurnal tide. His result for its range was 0.054 mm, with maxima at 3h19m after 
upper and lower lunar transit. Actually both this and his theoretical estimate were 
at least four times too big. 

Laplace (1825), like De Moivre before him, was a pioneer in error theory, and he 
stressed the need, in deriving results from observations, to determine also the 
probability of their being correct within calculated limits; without doing this, he 
remarked, one risks presenting the effects of irregular causes as laws of nature, 'as 
has often happened in meteorology'. Having calculated the probability that his 
result for the Paris air tide was not due merely to chance, that is, to the continual 
irregular 'weather' changes, he attached limited significance to his determination, 
saying that at least 40000 observations would be needed to determine so small a 
barometric variation with adequate certainty. 

Laplace knew that there is a solar daily barometric variation, with a pronounced 
semidiurnal component, and that this is much larger than his estimate of the lunar 
semidiurnal air tide. Hence he supposed that it is due mainly to the sun's thermal 
action. He seems to have thought that there was little hope of constructing a theory 
of such a thermally excited atmospheric oscillation. 

1.2. The Barometric and Other Daily Variations 

The sea tides are measured by means of tide gauges, that record the changing height 
of the water surface. Obviously the air tides cannot be measured in this way, as the 
atmosphere has no such boundary surface. The alternative is to use a pressure gauge 
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on the bed of the aerial ocean, namely the barometer (the same principle is the only 
practicable one for the sea tides in mid-ocean). The vertical accelerations of  the air 
are so small that the barometer effeetively measures the weight of the overlying air; 
thus an above-normal barometric height implies a heaping up of air above the 
station, similar to the heaping up of water at high sea tide. By analogy with the sea 
tides, the lunar atmospheric tide must cause a rise and fall of  the barometer, of 
lunar semidiurnal period. In the tropics the barometer does show a marked semidiur- 
nal variation, but its period is half a solar, not lunar, day; this is illustrated by 
Figure 1.1 for five days of  November 1919, at Batavia (now Djakarta) in Indonesia, 

at 6 ~ latitude, and also at the temperate-zone station Potsdam (52.4~ where the 
barometer undergoes large irregular variations, associated with weather changes. 
At Potsdam the semidiurnal variation is not evident, though present. 

5 6 7 8 9 

\ 
\ 

J')j P r 
,4 V ~ V 

BATAVIA 

I 
POTS~,~ '/" 

_/ 

760 mm 

756 

750 

740 

Fig. 1.1. Barometric variations (on twofold different scales) at Batavia (6~ and Potsdam (52~ 
during November 1919. After Bartels (1928). 

It  is convenient to denote a solar daily variation, for example of  barometric 
pressure p or atmospheric temperature T (Kelvin), by S - or by S(p), S(T) when 
the element concerned is to be indicated. Similarly a lunar daily variation is denoted 
by L. Such daily variations can be analyzed into their harmonic components, with 

amplitudes S., l., phases an, 2., and harmonic coefficients Am, Bn, an, b. 

s=Zs.,  L=ZL., 
n n 

where 
S. = s. sin(nt + a.) = A. cosnt  + B. s innt ,  

L. = l. sin (nr + 2.) = a. cos nv + b. sin n'c. 

An=s. sina., B . = s n c o s o - . ,  a . = l .  s in2. ,  b .= l , , cos2 , , .  

Here t and z denote respectively mean solar time and mean lunar time, reckoned in 
angle at the rate 360 ~ per mean solar or lunar day, from lower transit (that is, in the 
solar case, midnight). 
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In the series for S, n is taken to be an integer, and usually S is reasonably well 

represented by the first four terms n = l, 2, 3, 4. In the lunar case the main harmonic 

component  is the semidiurnal one, n=2 ,  and ~the other harmonic components in 
general have non-integral values of  n (cf. Section 2L.4A). 

In the case of  S(p) and L(p), the unit in which s,, 1,,, A,, B,, an and b, are expressed 
is usually either the millibar (rob), microbar (#b) or 1 mm of mercury; 1 m b =  1000 #b; 
and 1 rob=0.750 ram. In this review these units are generally used from this point 
onwards, also in quotations where originally other units were used. 

1 . 2 A .  T R U E  OR APPARENT TIME, AND MEAN TIME 

The true or apparent local solar time t '  at any station P can be expressed in angular 

measure, at the rate 15 ~ per hour or 360 ~ per day, or in hours; in angle it is measured 
eastward f rom the true midnight meridian (opposite to the noon meridian, or meridian 
half-plane bounded by the earth's rotation axis, in which the sun lies) to the meridian 
of P. For stations on the meridian of Greenwich (G) the time is called Greenwich 

apparent time t ' .  I f  ~b is the longitude of P east of  Greenwich, then in angular measure 

Owing to the varying rate of orbital motion of the earth, the solar day, or interval 
between two meridian passages of  the sun, varies in duration in the course of  the 
year. Hence the hours of  apparent solar time are not constant. Mean solar time re- 

places this variable reckoning by a uniform one, with the same zero-point at the 
vernal equinox (the epoch when the sun is crossing the plane of the earth's equator 
f rom south to north), and the same total measure in the course of  a year. The differ- 
ence between Greenwich or local mean time, denoted by tu and t, and the correspond- 
ing apparent times, t~ and t', is called the equation of time, e, so that 

t--tu+c~, tu=t'u+e, t=t '  +e. 

The values of  e for the mean epoch in each calendar month are as follows: 

Jan. + 2~ ' Apr. + 0 ~ 4' July + l~ ' Oct. - 3~ ' 
Feb. + 3029 ' May - 0~ ' Aug. + 0~ ' Nov. - 3~ ' 

Mar. + 2~ ' June + 0 ~ 4' Sept. - l~ ' Dec. - 1 ~ 6'. 

I f  it is wished to express the series for S relative to apparent solar time t', the 
phase angles a,  must be changed to a~, where 

r 
0- n ~ O- n qt_ h e ,  

and A,, B, are changed to A~ and B', given by A'=s, sincr,', B'=s, cos#,. 
The interval of  24 hours of  mean solar time succeeding each epoch of midnight 

at Greenwich is called a Greenwich mean day, or day of universal time (UT). At 
any station P the local mean day extends from its local mean midnight. 

Mean solar time may be associated with a fictitious mean sun that rotates uniformly 
round the earth; likewise mean lunar time is introduced, associated with the motion 
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of a fictitious mean moon that rotates uniformly round the earth, at the same average 
rate as the actual moon (cf. Section 2L.4). 

1.2B. THE HARMONIC DIAL 

A solar daily harmonic component  S, can be illustrated on a 24-hour time base by 
the graph o f s  n sin(nt +a , ) ;  its range is 2s, and its n maxima and n intervening minima 

are spaced at 24/2n hour intervals; the time of f~rst maximum is the hour t, = (90 ~  ~,,)/ 
15~ +24 r/n, where r is the least integer that makes t n positive and less than 24/n. 
This is illustrated by the part  (a) of Figure 1.2 (Bartels, 1932a) for $2 (p) at Washington, 

8z 

' 0 . 4  
n l m  

0 . 2  

6 12 18 ' ' ~ .t i LOCAL MiAN HOURS I 
/ t~2 TWELVE -HOURLY ~ "  

I \ 

A2 

Fig. 1.2. The solar semidiurnal variation of barometric pressure, S2(p), at Washington, D.C., 
represented (above) by a daygraph, and (below) by a harmonic dial. After Bartels (1932a). 

D.C. An alternative way of specifying S, graphically is to show its amplitude s. and 
phase a,, also its coefficients A,, B,, by a harmonic dial. In its full form, as shown for 
S2(p) in Figure 1.2(b), the dial has the face of  a 24/n hour clock, round which the 
hour hand makes n circuits per day; thus for n=2 ,  as in Figure 1.2(b), it shows the 
usual 12 hours; for n = 1 it has a 24-hour clock face, and so on. The upward vertical 
and rightward horizontal directions are marked as A, and B, axes, and the point P 
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with coordinates A,, B, (on a scale indicated) is marked and joined to the center 

O of the dial. The vector OP has the length s, on the same scale, and it makes the 

angle a,, measured anticlockwise, with the axis OB,; it also shows the time t, of  first 
maximum of the graph of S,. I f  OP is made to rotate anticlockwise n times daily, 
its projection on the OA, axis after time t is s, sin(nt +o',). 

Lunar daily harmonic components L, can be similarly represented by a graph or 
specified graphically by a dial. For them the time base of  the graph is one mean 
lunar day, which may be divided into 24 lunar hours ; and the dial hour hand makes 

n circuits in a lunar day. 
The part S t of  the daily variation S is called the diurnal component or variation. 

Diurnal is here used always to mean a harmonic variation with period one day, we 

do not use it merely as a synonym of daily, as is often done. Likewise the terms S z, 
$3, $4 are respectively called the semidiurnal, terdiurnal and quaterdiurnal com- 
ponents or variations. We adopt a similar usage in the case of  the lunar daily variation 
L and its harmonic components L1, L2 ..... which we call respectively lunar diurnal, 
semidiurnal,.., components or variations, even though in this case some values of n 
may only approximate to an integer. 

It  is often convenient and adequate to use the dial representation of the amplitude 
and phase of a harmonic component, but to omit much of the dial background and 
notation; also it suffices to show only the end point P of  the vector. But the scale 
and the A,, B, (or a,, b,) axes must be drawn. This is illustrated by Figure 1.3 (Bartels, 
1927), which shows 40 dial points for L2(p) at Batavia. Each indicates the deter- 

' 

/ 
0mOm~ �9 0 o r 1 4 9  

" e  / 

0 3 h 

Fig. 1.3. Harmonic dial for the lunar semidiurnal variation of barometric pressure, L2(p), at 
Batavia, for each of the years 1866-1905; C, the centroid of the 40 annual dial points, indicates the 
40-year mean L2(p). The circle centered on C is the probable error circle for any one of the annual 

dial points. After Bartels (1927). 
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ruination for one calendar year of the period 1866 to 1905, so that all the points are 
of equal weight. The centroid C, the mean position of  the 40 points, likewise indicates 
the mean L2 (p) for the whole 40 years. Bartels (1932b) applied the theory of errors 
in a plane, on the  assumption that the distribution is Gaussian, to assess the un- 
certainty of such individual results and that of their mean. He showed how to deter- 
mine the probable error ellipse, which should include half of the points (see also 
Chapman and Bartels, 1940, Section 19.2). Where, as in Figure 1.3, the individual 
points are approximately symmetrically distributed around C, the ellipse becomes the 
probable error circle, there shown. The radius r of the circle is the probable error of 
any one of the yearly determinations; it is 0.989d, where d denotes the mean distance 
of the points from C. The probable error r o of the mean of n such determinations, all, 
as here, of equal weight, is r / (n -  1) 1/2. 

A mean determination may be considered reasonably good if l 2 is at least equal to 
three times its probable error r o (the determination has significance though less 
accuracy even if 12/r o is only 2). In Figure 1.3, l 2 =0.062 ram, and r for the yearly 
points is 0.011 mm; thus ro=0.0016, and 12/ro is 39, indicating a high accuracy for 
the 40-year result. 

The uncertainty of the mean phase may be regarded as corresponding to the angle 
sin- ~ (ro/lz), half the angle subtended at O by the circle of radius r o centered on C. 
Thus in Figure 1.3 the phase uncertainty for the mean determination is + 1.5 ~ or 
_+ 6 min of time. This does not represent a probable error, and somewhat exag- 
gerates the uncertainty of the phase. This is because within the angle subtended at 
the origin by the probable error circle there are points outside the circle, on the near 
and further sides of the circle. Neither the amplitude nor the phase has a Gaussian 
distribution. 

The variation S2(p) (shown for Batavia in Figure 1.1 and for Washington, D.C. 
in Figure 1.2) is one of the most regular of all meteorological phenomena. It is 
readily detectable by harmonic analysis also at stations like Potsdam, where it is 
overlaid by much larger irregular variations (Figure 1.1), whose range within a week 
or less may be 20 mm of mercury. Tropical barographs, on the other hand, show a 
decidedly regular semidiurnal variation with a daily range of about 2 ram, and a 
weekly range not much greater, except during hurricanes. Humboldt carried a 
barometer with him on his famous South American journeys of 1799-1804. In his 
book Cosmos he remarked that the two daily maxima at about 10 a.m. and 10 p.m. 
were so regular that his barometer could serve somewhat as a clock. 

This regularity is well illustrated by Figure' 1.4 (Bartels, 1932a), which shows dial 
vectors for the annual mean S 2 (p) for many places in North America. The vectors 
relate to the map points at the thick end of each vector. The phases are all similar, 
and the amplitudes decrease rather regularly from south to north. However, as was 
noted by the Austrian meteorologist Harm, who gave much attention to the distribu- 
tion and seasonal variations of S 2 (p) over the globe, the amplitude s2 is reduced near 
the Pacific coast. Hann found likewise that s 2 is less on the east Adriatic coast than 
in Italy, and in the West Indies compared with the East Indies (now Indonesia). 
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Fig. 1.4. The distribution of the harmonic dial vectors for S2(p) at many stations over the U.S.A. 
Each dial vector indicates S2(p), on the scale shown by the inset, for the point at the thick end of 

the vector. After Bartels (1932a). 

1.3. Thermal Tides and Kelvin's Resonance Theory 

T h o m s o n  (later  k n o w n  as Lo rd  Kelvin) ,  in  a pres ident ia l  address  to the Roya l  Society  

o f  E d i n b u r g h  in  1882, discussed the h a r m o n i c  c o m p o n e n t s  o f  the solar  dai ly  va r i a t ions  

o f  a tmosphe r i c  pressure  a n d  t emp e ra t u r e  as follows,  in  c o n n e c t i o n  wi th  a table  o f  

values  he quoted ,  tha t  gave $1 (p), $2 (p) a n d  $3 (p) for  th i r ty  different  p laces :  

The cause of the semi-diurnal variation of barometric pressure cannot be the gravitational tide- 
generating influence of the sun, because if it were there would be a much larger lunar influence of 
the same kind, while in reality the lunar barometric tide is insensible, or nearly so. It seems, therefore, 
certain that the semi-diurnal variation of the barometer is due to temperature. Now, the diurnal 
term, in the harmonic analysis of the variation of temperature, is undoubtedly much larger in all, 
or nearly all, places than the semi-diurnal. It is then very remarkable that the semi-diurnal term of 
the barometric effect of the variation of temperature should be greater, and so much greater as it is, 
than the diurnal. The explanation probably is to be found by considering the oscillations of the 
atmosphere, as a whole, in the light of the very formulas which Laplace gave in his Mdcanique cdleste 
for the ocean, and which he showed to be also applicable to the atmosphere. When thermal influence 
is substituted for gravitational, in the tide-generating force reckoned for, and when the modes of 
oscillation corresponding respectively to the diurnal and semi-diurnal terms of the thermal influence 
are investigated, it will probably be found that the period of free oscillation of the former agrees 
much less nearly with 24 hours than does that of the latter with 12 hours; and that, therefore, with 
comparatively small magnitude of the tide-generating force, the resulting tide is greater in the semi- 
diurnal term than in the diurnal. 

I n  1890 the 3rd  L o r d  Rayle igh,  a u t h o r  of  the f a m o u s  treatise on  sound ,  discussed 

$2 (p) a n d  S~ (p) in  a s imi lar  vein, w i t h o u t  m e n t i o n i n g  Kelv in ,  as fo l lows:  

Beforehand the diurnal variation of the barometer would have been expected to be much more 
conspicuous than the semi-diurnal. The relative magnitude of the latter, as observed at most parts 
of the earth's surface, is still a mystery, all the attempted explanations being illusory. It is difficult 
to see how the operative forces can be mainly semi-diurnal in character; and if the effect is so, the 
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readiest explanation would be in a near coincidence between the natural period and 12 hours. 
According to this view the semi-diurnal barometric movement should be the same at the sea-level 
all round the earth, varying (at the equinoxes) merely as the square of the cosine of the 
latitude, except in consequence of local disturbances due to want of uniformity in the condition of 
the earth's surface. 

In the same paper Rayleigh estimated the free periods of oscillation of the atmosphere, 
of diurnal and semidiurnal type, to be respectively 23.8 and 13.7 hours. These cer- 
tainly did not support Kelvin's resonance suggestion, but they were not regarded by 
Rayleigh as likely to be correct, because he ignored the earth's rotation, and treated 
the atmosphere as being at uniform temperature, and the pressure and density 
changes associated with the waves as taking place isothermally. Regarding the latter, 

he remarked as follows: 

In a more elaborate treatment a difficult question would present itself as to whether the heat and 
cold developed during atmospheric vibrations could be supposed to remain undissipated. It is 
evidently one thing to make this supposition for sonorous vibrations, and another for vibrations of 
about 24 hours period. If the dissipation were neither very rapid nor very slow in comparison with 
diurnal changes - and the latter alternative at least seems improbable - the vibrations would be subject 
to the damping action discussed by Stokes. 

This question was later considered by Chapman (1932a, b), theoretically and obser- 
rationally (see Section 2L.14). 

The lonely ill-fated Austrian meteorologist Margules (1890, 1892, 1893) (Platzman, 
1967) studied the free and thermally excited forced oscillations of  the atmosphere 
in much detail, on the basis of  Laplace's theory, and with the explicit purpose of 
testing Kelvin's resonance hypothesis. He concluded that there would be close 
resonance for $2 (p). But all his calculations were based on atmospheric models now 
known to differ much from reality. In the most realistic of  his calculations of  thermally 
excited oscillations, he took the amplitude of S2(T ) as decreasing exponentially 
upward, as would be the case for a periodic variation conducted upward from the 
ground with uniform conductivity. But he did not include the accompanying variation 
of the phase of  S2(T ) with height, as was later pointed out by Chapman (1924a), who 
incorporated this feature of  $2 (T) in his own calculations. 

1.4. More Realistic Atmospheric Models 

Lamb (1910) made an important extension of  Laplace's theory. His work related to 
an atmosphere on a plane base, thus abstracting from the problem the sphericity and 
rotation of the earth; but later, in the 4th (1916) edition of his Hydrodynamics, he 
removed these last two restrictions, though only for an atmosphere in convective 
equilibrium. His main discussion referred to an atmosphere in which H varies uni- 
formly with the height ( H =  Ho being a special case). He showed that the propagation 
of long waves in such an atmosphere is similar to that of long waves in a liquid ocean 
of depth H o in two special cases, namely, (1) Laplace's case, in which H = H o  (or 
Tim = To~too) at all heights, and the density variations occur isothermally ; and (2) for 
an atmosphere in adiabatic equilibrium, and in which the density variations occur 
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adiaba t ica l ly .  The height  o f  such an a tmosphere  is 7 H o / ( 7 - 1 ) ;  the t empera ture  T 

decreases un i formly  upwards  to zero at  the rate ( 7 - l ) T o / T H o .  (Laplace ' s  case can 

be cons idered  as cor responding  to 7 = 1.) 

The ac tua l  a tmosphere  is not  in ad iabat ic  equi l ibr ium, so that  it  cannot  be supposed,  

at  least  wi thout  fur ther  proof ,  tha t  the t idal ly equivalent  ( l iquid ocean) depth  for  the 

a tmosphere  is Ho. Lamb  in fact showed that  when H varies l inearly with height, but  

not  adiabat ica l ly ,  there is an infinite series o f  speeds for  long waves, with the im- 

p l ica t ion  that  there is a s imilar  series o f  values o f  the equivalent  depth  h. However ,  

the impress ion  persis ted widely for  over twenty years that  for  any type o f  a tmosphere  

there is jus t  one value of  h. 

L a m b  briefly discussed the resonance hypothesis  o f  $2 in his 1910 pape r  and in 

subsequent  edi t ions of  his Hydrodynamics. He es t imated f rom the improved  fo rm 

of  Lap lace ' s  theory  given by H o u g h  (1897, 1898), in terms o f  spherical  ha rmon ic  

functions,  that  i f  the a tmosphere  is resonant  with a free osci l lat ion similar  to S 2 in its 

geographical  d is t r ibut ion,  the equivalent  ocean depth  must  be abou t  8 kin;  whereas 

for  the actual  a tmosphere  H o varies f rom abou t  7.3 k m  at the poles  to 8.7 k m  at the 

equator .  He cont inued:  

Without pressing too far conclusions based on the hypothesis of an atmosphere uniform over the 
earth, and approximately in convective equilibrium, we may, I think, at least assert the existence of 
a free oscillation of the earth's atmosphere, of 'semi-diurnal' type, with a period not very different 
from, but probably somewhat less than, 12 mean solar hours. 

He cont inued  fur ther :  

At the same time, the reason for rejecting the explanation of the semi-diurnal barometric variation 
as due to a gravitational solar tide seems to call for a little further examination. The amplitude of this 
variation at places on the equator is given by Kelvin as 1.08 rob. The amplitude given by the 'equilib- 
rium' theory of the tides is about 0.016 nab. Some numerical results given by Hough in illustration of 
the kinetic theory of oceanic tides indicate that in order that this amplitude should be increased by 
dynamical action some seventy-fold, the free period must differ from the imposed period of 12 solar 
hours by not more than 2 or 3 minutes. Since the difference between the lunar and solar semi-diurnal 
periods amounts to 26 minutes, it is quite conceivable that the solar influence might in this way be 
rendered much more effective than the lunar. The real difficulty, so far as this point is concerned, 
is the apriori improbability of so very close an agreement between the two periods. The most decisive 
evidence, however, appears to be furnished by the phase of the observed semi-diurnal inequality, 
which is accelerated instead of retarded (as it would be by tidal friction) relatively to the sun's transit. 

1.5. The Phase of $2 (p) 

C h a p m a n  (1924a) stressed the a rgument  for  s t rong resonance o f  $2, based on the 

regular i ty  o f  its geographical  d is t r ibut ion,  as c o m p a r e d  with the considerable  non-  

uni formi ty  of  the solar  semidiurnal  var ia t ion  of  air  t empera ture  (especially as between 

land  and sea areas), which according  to L a m b ' s  l as t -quoted  r emark  must  be at  least  

an  impor t an t  pa r t  of  the cause of  $2. This a rgument  he s t rengthened by  contras t ing  

the regular i ty  o f  the geographical  d i s t r ibu t ion  of  $2, due par t ly  to an  i r regular  cause, 

with the degree o f  i r regular i ty  shown by L 2 (p), whose cause is cer ta inly d is t r ibuted  

very regularly.  



] 8 RICHARD S. LINDZEN AND SYDNEY CHAPMAN 

Chapman also extended Margules' calculation of the oscillations produced by the 
semidiurnal component of the daily variation of air temperature Sz(T), taking 
account of the variation of phase, later discussed, in this connection, by Bjerknes 
(1948), as well as of amplitude, with height. He concluded that the phase of the part 
of S2(p) that is of thermal origin must be about 135 ~ in advance of the phase of 
S2(T), which he tried to estimate from the temperature data collected by Harm 
(1906), Brooks (1917) and others, also using the Taylor (1917) estimate of the thermal 
conductivity due to eddy motion. 

Chapman also compared the magnitudes of the thermal and tidal contributions to 
S2(p), which is possible according to his assumption that (substantially) both are 
affected by the same resonance magnification. He inferred that they are of roughly 
equal order of magnitude (the inadequacy of the data regarding $2 (T) precluded a 
more accurate statement). On this basis he could explain the observed phase of 
$2 (p) from the phase of the thermal part, inferred from $2 (T), and on the assumption 
that the tidal part is in phase with the sun. This further enabled him to estimate the 
factor of resonance magnification as about I00. He was unable to prove that the 
atmosphere has a free period of oscillation (of the right geographical distribution) 
which would give this magnification. As the resonance magnification (when consider- 
able) would be proportional to 1/(t~-tf), where t~ denotes the imposed period and 
tf the free period, he concluded that despite the a priori improbability, t i - tf cannot 
exceed 2 or 3 rain, and is positive. 

1.6. Doubts as to the Resonance Theory 

Whipple (1918, also in 1924, in the discussion on Chapman's paper), found great 
difficulty in accepting the resonance theory, on account of the possibility that such 
accurate 'tuning' of the forced to the free oscillation might be upset by the large 
changes in air pressure and temperature associated with weather and annual varia- 
tions, and also on account of the difficulty the $2 wave would have in twice daily 
surmounting the heights of Central Asia and the Rocky Mountains without losing 
a material fraction of its energy. These irregularities, however, are on a relatively 
small scale. The possibility that the variations of mean temperature from year to 
year might affect the tuning was examined by Bartels (1927), but no such effect was 
found. 

Taylor (1932) also was led to doubt the validity of the resonance hypothesis, 
despite the strength of the general arguments in its favour. Lamb had assumed, on 
the basis of the work already mentioned, that free oscillations of the atmosphere 
can exist which are identical, in distribution and period, with those of an ocean of 
such depth that long waves are propagated in it with the speed that he calculated 
for plane atmospheric waves. This assumption was used by Taylor (1929, 1930) to 
estimate the period of the oscillation of S2-type to be expected in an atmosphere in 
which the speed of propagation of long waves was that of the waves produced by the 
Krakatoa volcanic eruption of 1883. This great atmospheric pulse was propagated 
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more than once round the entire earth, with a speed of 319 m sec-J, which corresponds 
to an equivalent depth h = 10.4 kin, a value markedly too great to give a free period 
(for an oscillation of S2-type) nearly equal to 12 hours. 

Lamb's assumption may be regarded as an extension of Laplace's theory of waves 
in an isothermal atmosphere. As realized later by Taylor, it involves the possibility 
that the atmosphere may have many equivalent depths, a contingency not possible in 
the atmospheres of the special type considered by Laplace and Lamb, for which 
h=Ho. Lamb's assumption is not obviously true, but later Taylor (1936) proved its 
validity, and further developed Lamb's investigation of oscillations that are distributed 
in a similar way geographically (that is, as functions of longitude q5 and colatitude 0), 
but have different height distributions of motion. In this work he was the first to take 
account of the cessation, at the tropopause, of the upward decrease of temperature. 

1.7. Renewed Hope in the Resonance Theory 

Pekeris (1937) applied Taylor's methods to determine the free periods of an at- 
mosphere in which the stratospheric temperature increases upwards above a certain 
height. This temperature distribution had been inferred from studies of the abnormal 
propagation of sound to great distances (beyond a zone of silence surrounding the 
source of sound), as well as from the heights of appearance and disappearance of 
meteors. Pekeris showed that, subject to a certain condition, the atmosphere could 
oscillate in ways corresponding to two equivalent oceanic depths. One of these was 
about 10 km, associated with a speed of propagation equal to that of the Krakatoa 
wave; the other gave a period (for a geographical distribution of S2-type) of very 
nearly 12 hours, though the uncertainty of the upper atmospheric data precluded an 
exact calculation of the free period. The condition referred to was that the atmospheric 
temperature, after increasing upward above the stratosphere, should reach a maximum 
and thereafter decrease upwards to a low value. This was in agreement with the 
temperature distribution proposed by Martyn and Pulley (1936). 

An important conclusion reached by Pekeris on this basis was that at high levels 
the daily air motions may be reversed in phase and highly magnified. This fitted well 
with the dynamo theory of the lunar daily magnetic variation, the phase of which is 
about opposite to that inferred from a simple consideration of L2 (p) at the ground, 
and in the light of the present knowledge of the electrical conductivity of the iono- 
sphere. A large amplitude of the lunar daily air motions is also suggested by the lunar 
tidal change of height of the E layer of the ionosphere, found by Appleton and 
Weekes (1939), over London, England, although the phase of this variation does not 
show the expected reversal. 

Pekeris (1939) re-examined the barometric traces for the Krakatoa waves, and 
found evidence of a minor component wave propagated with the speed of 250 m 
sec -1, corresponding to an equivalent depth of 7.9 km, which would accord with a 
free oscillation (of S2-type ) with a period nearly equal to 12 hours. He showed that 
as the explosion occurred at a low level, most of the energy of the pulse should go 
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into the faster-travelling wave. (He estimated this energy as about 102* ergs, roughly 
1000 times that of the waves set up by the 1908 Siberian meteorite. Whipple (1930) 
had examined the waves set up by that meteorite.) 

1.8. Atmospheric Oscillations as Studied by Weekes and Wilkes 

Weekes and Wilkes (1947) used the methods given by Pekeris (1937) to study the 
atmospheric oscillations, especially those of semidiurnal type. They made many 
numerical calculations of the free period of oscillations of this type, for different 
tentative models of the height-distribution T(z) of temperature T with height z. For 
this purpose they used a then modern differential analyzer, which gave results much 
more speedily than had previously been possible. Their attitude was one of such 
confidence in the resonance theory that it was used to infer properties of the atmos- 
phere beyond the heights for which observations were then available. This was before 
rocket measures of T had been published. (For a more recent attempt to deduce T 
from tidal data, cf. Section 3.5.A). 

Wilkes (1949), in his monograph on atmospheric oscillations, reviewed the history 
of the subject since the time of Laplace, and gave the derivation of Laplace's tidal 
equation, the starting point for all such computations. Laplace obtained it while 
discussing the free oscillation, under gravity, of a uniform liquid ocean of uniform 
depth h on a spherical earth of radius a rotating with angular velocity co. The solution 
has naturally to satisfy certain boundary conditions. In order to describe the work 
of Weekes and Wilkes, we must first present a brief treatment of tidal theory. The 
subject is dealt with in detail in Chapter 3. 

The independent variables in the problem are the time t, and the coordinates of 
any point: 

0 the colatitude, q5 the east longitude, z the height above the ground. (l) 

The five equations of motion and of state determine five dependent variables, 
which may be chosen in more than one way, from among the following: the compo- 
nents of the velocity V, 

u southward, v eastward, w upward, (2) 

the departures of p, Q, T, 

~p, ~e, ~T (3) 

from their mean values at the point: the divergence X of the velocity, divV or G, thus 
defined: 

1 Dp 
G = (4) 

?Po Dt ' 

where D/Dt denotes the 'mobile operator' 3/Ot + (v-grad). 
Normal modes of free oscillation are sought, in which each dependent variable is 
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proportional to 

exp i(s4 + at), (5) 

where s denotes an integer; thus the free period is 

2z/a .  (6) 

The dependence on z and 0 is taken to be separable, the latter being expressed by 
a function O (0). Laplace's tidal equation is a differential equation to determine O, 
and has the form: 

(F + 4aZo2/gh) O (0) = 0,  (7) 

where F denotes a differential operator (given later, in Section 3.2), containing f ,  
given by 

f = ~/2co, (8) 

as a parameter. For eachf there  is a corresponding function O. 
Laplace's tidal equation is applicable to the .forced oscillations of an atmosphere, 

whatever its height distribution T(z) of temperature T (supposed uniform over the 
globe). In this case o- is known, as well as s, namely 27r/~r is the imposed period. The 
tidal equation in this case determines a series of values of O and of h, whose original 
oceanic definition has no application to an atmosphere without any upper bound. 

The height distribution of the five chosen dependent variables in this case has to be 
determined by a separate differential equation. This may be conveniently expressed 
in terms of the pressure at each height, as an independent variable, by taking 

x = - In {Po (z)/Po}. If we write 

div V = - DIn  (Po + @)~Dr = {(Po (z)/Po)}~-Y, (9) 

the equation is 

d2y + - + H + 0. (10) 
dx ~ 4 h dx )_] 

Here the height-distribution of the atmosphere (depending on the temperature T and 
the mean molecular mass m) is involved through the scale height H. In so far as y 
can be considered as of fairly constant order of magnitude (and this is a matter for 
examination by means of this equation), the above expression for divV indicates an 
upward increase of divV inversely proportional to p~/Z, that is, by 1000-fold at about 
the height of the E-layer. 

Weekes and Wilkes (1947) gave an interesting interpretation of this equation by 
analogy with the propagation of electromagnetic waves in a medium having a variable 
refractive index. In the atmospheric case the expression for the analogous 'equivalent' 
refractive index is 

/22=__1 1 ( ~ 1  a l l )  
4 + h H + dxx " (11) 
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I f  the height-distribution of H, for any value of h, makes #2 negative at a certain 
level, upward propagation of the energy, if mainly put into the atmosphere by tidal 
or thermal causes in the lower layers, is effectively blocked. The air at that height 
acts as a barrier, total or partial, trapping the energy, and building up the amplitude 

in the whole spherical shell between the ground and the barrier, giving rise to res- 
onance. I f  #2 is negative, not for all heights above the level at which it first becomes 

zero, but only for an interval of height, the barrier is partially transparent, and some 
of the oscillatory energy passes through it, either to a second (or third) barrier where 
there is a height interval of negative #2, or to the high levels at which thermal con- 
ductivity and dissipation of the energy into heat by viscosity become important.  
At these high levels the condition that @/p or 60/r is small, as assumed in the equation, 
may cease to hold, and the modified differential equations can become nonlinear. 

The conditions favouring negative # 2  a r e  that H should be small and that dH/dx 
should be either positive and small, or negative, corresponding to an upward decrease 
of temperature, because x increases upwards.* The number of barriers to energy 
flow depends on the number of such regions of  upward-decreasing temperature, but 
they alone are not sufficient to give a barrier, unless the value of h is appropriate, 
which in turn depends on the mode and period of the oscillation under consideration. 

The boundary conditions in the equation for y are that at high levels the energy 
flow is upwards, and that at the ground (z = 0 and x = 0) the vertical velocity is zero - 
unlesswe are taking into account the tidal motion of the seas at the base of the atmos- 
phere, or the varying level of the ground (cf. Section 3.6A). 

Weekes and Wilkes (1947) had only indirect information about T(z) for the earth's 
atmosphere, and made calculations of the free periods for a variety of distributions. 
Wilkes (1949), in his monograph, was able to quote the distribution of T(z) given 
by Best, Havens, and La Gow (1947), determined from one of the earliest rockets used 
for upper atmospheric research. It  agreed extremely well with what then seemed 
indicated by all the indirect evidence except that of meteor trails (whose interpretation 
was uncertain). Wilkes (1949, p. 64) concluded thus: 

The resonance theory may now be taken as well established; 

he also countered one of Whipple's criticisms thus: 

It is now realized that the large variations of atmospheric temperature and pressure associated with 
weather changes are very localized in nature, and affect only the first 15 km or so of the atmosphere, 
whereas the solar semi-diurnal oscillation is world-wide in extent and embraces the atmosphere up 
to the height of the E region. The vast scale of the oscillation also provides the answer to another 
question put by Whipple, namely how it is possible for the wave to surmount the height of the 
Rocky Mountains at each revolution, without losing an appreciable proportion of its energy. 

Eater, discussing thermally excited oscillations, Wilkes (1951) used the methods of 
Pekeris (1937) to calculate the oscillation excited by temperature variations due to 
heat conducted upward from the ground. He gave some numerical results, based on 

* In addition, it is possible, as is shown in Section 3.5, for h to be negative. 
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estimated values of S2(T ) over the globe; he "found them not to conflict with the 
hypothesis put forward by Chapman in 1924, that the thermal and gravitational 
contributions to this oscillation are of the same order of magnitude". In the same 
paper he briefly wrote on the dynamical effect of periodic heating and cooling in a 
layer not in contact with the ground, but said that: "Since this case is not of great 
practical interest, the expression of the equivalent gravitational oscillation" would 
not be given. 

In the following year, in a review lecture, Wilkes (1952) was more guarded as to 
the reliability of his calculation of the relative magnitudes of the thermal and gravi- 
tational shares in the excitation of S 2 (p); he said that owing to the uncertain value 
of $2 (T) as an average over the globe, it is not to be expected that estimates of the 
ratio will be very accurate; but that " i f  the balance had been overwhelmingly in favor 
of thermal action, the calculations should have revealed it. This they did not do, and 
the question must remain one for further speculation." 

Chapman (1951), in a review article*, described the studies of the resonance 
theory up to that time. Its status was indicated thus: 

The existing theory [namely, the resonance hypothesis] will need to be revised as our knowledge of 
the upper atmosphere advances through rocket investigations and in other ways ..., 

1.9. Rockets Exclude Resonance 

Jacchia and Kopal (1952) followed Wilkes' methods in calculating numerically the 
amplification of the sun's gravitational tide for several atmospheric models, with the 
objective "to account for the observed magnification of the surface pressure oscil- 
lations with periods of 12 and 10.5 hours". Among the height distributions of temper- 
ature (or profiles) T(z), they mentioned specially the NACA (National Advisory 
Committee for Aeronautics) standard atmosphere (Diehl, 1948), and one based 
on a smoothed mean of the temperatures derived from pressure gauges launched 
from White Sands, New Mexico, U.S.A., on V-2 rockets, and of the temperatures 
obtained from microbarographic records of the Heligoland explosion. Neither of 
these model atmospheres gave adequate magnification, thus, their conclusions on the 
basis of presumably the best temperature profiles then available were inimical to the 
resonance theory. But "in the search for the temperature profile which would yield 
the greatest amplification factor for the semidiurnal oscillations", they were successful 
in obtaining a profile that for a forced period of 11h58m gave a factor 81 (and 
another large factor for a period of 10h55m). They concluded: "This profile may 
therefore be regarded as satisfactory from the dynamical point of view, and its 
consequences are in sufficiently close agreement with the observational evidence..." 
(p. 22), and that this profile "agrees with the direct temperature measurements in the 
lower atmosphere, is consistent with the results pertaining to the upper atmosphere 

* Permission to quote here extensively from that review has been given by its publisher, the American 
Meteorological Society, and its sponsor, the Air Force Cambridge Research Center. 
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within the limits of their uncertainty, and, in addition, leads to sufficiently large 
pressure oscillations with periods of 12 and 10.8 hours" (p. 13). 

However, later rocket measurements of T (z) did not agree with the NACA atmos- 
phere, nor with the tentative Jacchia-Kopal profile, both of which, like the Martyn 
and Pulley profile discussed by Pekeris, and the one by Best et al. (1947) quoted by 
Wilkes (t949), gave too high a temperature (320 ~ to 350 ~ at the stratopause at about 
50 to 60 km height. Jacchia and Kopal found that the calculated surface magnification 
of the solar gravitational tide is very sensitive to the value of the temperature at this 
level. The later rocket determinations of T (z) have much reduced the estimate of T 
at 50 kin. One of the most recent authoritative Standard Atmospheres available 
(CIRA, 1965) gives the value as 271 K. The rocket results definitely exclude the 
possibility of notable magnification of Sz (p) by resonance; they give the deathblow 
to Kelvin's hypothesis.* Chapman's explanation of the phase of S2(p) likewise 
ceases to be admissible. The gravitational part of $2 (p) is likely to be similar to or 
less than L 2 (p), and consequently S 2 (p) must be produced almost entirely thermally. 

Another speculation by Kelvin that must be abandoned (Siebert, 1961, p. 177), 
and of course also its development by Holmberg (1952), is that the angular velocity 
of the earth may be regulated by the torque exerted by the gravitational attraction 
of the sun on the oblateness of the atmosphere, associated with S 2 (p). But as late as 
1955 Haurwitz and MOller concluded that: 

Holmberg's hypothesis combined with the observational evidence on atmospheric tides and with our 
knowledge of the stratification of the atmosphere make it highly probable that the resonance theory 
provides the correct explanation of the atmospheric tides. 

There are other worldwide atmospheric components of the daily variation S(p) of 
pressure, which have been studied by various writers, especially S3(p) by Hann 
(1918), and S4(p) by Pramanik (1926). More recently Siebert (1957) and Kertz 
(1959) used these oscillations, whose cause must be thermal, to study empirically 
the resonant properties of the atmosphere. No clear indication of resonance could 
be gained from them. 

1.10. Ozone Absorption of Radiation the Main Cause of S 2 (p) 

Thus the rational theory of S2(p) proposed by Kelvin has proved to be false, like 
that of Bacon for the sea tides. But the theory of atmospheric oscillations has been 
greatly advanced by the long series of studies undertaken to confirm or disprove 
Kelvin's hypothesis. He suggested it to explain the contrast between the predominance 
of S2(p)over $1 (p) at the surface, as against that of $1 (T) over S 2 (T) at the surface, 
assuming that the main cause of S(p) is thermal. His idea being no longer tenable, 
that the contrast arises from a selective magnification by resonance of S2(p), one 
may conclude as an alternative (Siebert, 1961, p. 114) that S 1 (p) is suppressed, at 

* A more careful inclusion of the effects of known sources of dissipation in the atmosphere would 
likewise have shown the impossibility of the resonance theory (cf. Section 3.6B). 
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least at ground level. This idea can be illustrated by the oscillation of a chain, one 
point of which is given a forced displacement with period T. Even though the first 
harmonic component of this displacement, with period T, has an amplitude much 
exceeding that of any of its higher harmonic components, the latter may have greater 
amplitudes near nodes of the T harmonic elsewhere along the chain. The effect need 
not be particularly profound, since the global average of S~ (p) at the ground is about 
half the amplitude of S2(p) (Haurwitz, 1965). First, however, one must account for 

s2 (p). 
Margules, Chapman, Pekeris and others, in considering the thermal excitation of 

S2(p), all took account only of the temperature changes caused by upward eddy 
conduction from the ground. The ground was tacitly supposed to be the only effective 
absorber of the solar radiation not intercepted and reflected outward by clouds. But 
some of the radiation does not get to the ground; it is absorbed during its passage 
through the air, and this affects the air at all levels, not only near the ground. The 
need to consider the effect of such heating at all levels was indicated by Siebert (1954) 
and by Sen and White (1955). Siebert (1954, 1956a) suggested that absorption by 
water vapor might explain or significantly contribute to the explanation of S z (p). 
In 1961 he gave the first numerical estimate (Siebert, 1961, Section 7); though the 
water vapor absorption makes only a small change, S(T),  this decreases upward 
more slowly than the part of S(T)  due to conduction from the ground. The result 
is that the water vapor absorption is about ten times as effective for $2 (p) as the 
upward conduction. However, the combined effect is only about a third of S z (p). 
Siebert (1961) examined ozone absorption, at a higher level, as one of the possible 
ways of accounting for the main part of $2 (p), but found its effect to be small. In 
his calculations, however, he assumed the atmosphere above the tropopause to be 
isothermal and very cold (160 K). As a result H was very small and /~2 was negative 
(see Equation (1.11)) above the tropopause; consequently a semidiurnal oscillation 
excited near 50 km could not effectively propagate to the ground. Butler and Small 
(1963), using a more realistic distribution of T, found that ozone heating could, 
indeed, account for about two thirds of the observed $2 (p) at the ground. Although 
Butler and Small showed that the atmospheric temperature distribution influenced 
Sz (p), Lindzen (1968a) showed that the surface pressure oscillation is quite insensitive 
to details of the atmospheric thermal structure - as long as the mean temperature is 
not too unrealistic. Thus, between water vapor and ozone absorption, S 2 (p) at the 
ground seems roughly accounted for. The present explanation of $2 (p) is a nonresonant 
explanation in the sense that it does not call for a highly tuned atmosphere. Butler and 
Small also showed that ozone absorption could substantially account for S3(p). 

Having accounted for S2(p), we are left, as Siebert (1961) suggested, with the 
problem of explaining why 5'1 (p) is suppressed at the ground. Butler and Small (1963) 
suggested that the main diurnal mode has a short vertical wavelength, while ozone 
heating is distributed over a great depth of the atmosphere. Hence diurnal disturb- 
ances would be reduced by destructive interference. As we shall see, this explanation 
is incomplete. 
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The whole question of St has become more important with the advent of upper 
air data from balloons, rockets, radar tracking of meteor trails, and, indirectly, from 
geomagnetic dynamo calculations. These data show that S 1 is comparable with, and 
often much larger than, $2 in the atmosphere above the ground. Clearly while $1 
may be suppressed at the ground, this is not the case in much of the atmosphere. 

1.11. Upper Air Data 

Given the relatively small amount of data available for upper atmospheric fields 
(most notably wind), it may be difficult to see how tidal and thermotidal components 
can be reliably isolated. However, as we see from measurements of S 2 (p) in the 
tropics, where the thermotidal oscillation is large and other sources of variation are 
small, then a short data series suffices for a meaningful determination of amplitude 
and phase. This is frequently the case in the upper atmosphere, where thermotidal 
oscillations are major components of the total meteorological variation. In part, this 
is because the amplitudes of atmospheric oscillations tend, under certain circumstan- 
ces, to grow as 0o ~/2 (see Section 1.8). A more detailed discussion of upper air data 
and the problems involved in its analysis is presented in Chapter 2. What follows 
is a brief sketch of the findings. 

Using several years of radiosonde data for stations between 30~ and 76~ 
Johnson (1955)3 Harris (1959) and Harris, Finger and Teweles (1962, 1966) have 
determined solar diurnal and semidiurnal contributions to temperature and horizontal 
wind fields between the ground and 30 km. Typical amplitudes for oscillations in 
the horizontal wind are 20 cm/sec in the first few kilometers of the atmosphere and 
45 cm/sec near 25 km. No pronounced disparity between the diurnal and semidiurnal 
contributions was found. Wallace and Hartranft (1969) found that at temperate and 
tropical latitudes, diurnal wind oscillations are significantly associated with local 
topographic features at the earth's surface. However, at higher altitudes (above 25 km) 
and at arctic latitudes the diurnal oscillations are global - following the sun. 

Over the last ten years the Meteorological Rocket Network has produced a sub- 
stantial body of data on winds between 40 and 60 kin, mostly at White Sands Missile 
Range (30~ Analysis of this material by Miers (1965), Beyers, Miers and Reed (1966), 
Reed, McKenzie and Vyverberg (1966a, 1966b) and Reed, Oard and Sieminski (1969) 
shows the existence of a strong diurnal wind oscillation with an amplitude of about 
8 m/s at 50 km. At these altitudes the diurnal oscillation appears to be the main 
component of the total north-south wind, and there appears to be little evidence of a 
comparable semidiurnal oscillation (Reed, 1967). 

In the altitude range 80-100 km an important source of wind information comes 
from the ionized trails left by the numerous meteors disintegrating there. These 
trails are carried by the neutral wind and may be tracked from the ground by the 
observation of reflected radio signals. Using such techniques, Greenhow and Neufeld 
(1961) analyzed the horizontal wind above Jodrell Bank (53.2~ 2.3 ~ averaged 
over the vertical range 80-100 km. They found a diurnal contribution with an ampli- 
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tude of about 5 m/s, and a semidiurnal contribution with an amplitude of about 
13 m/s. Elford (1959) analyzed similar data for the air above Adelaide (34.9~ 
138.6~ and found a diurnal contribution with an amplitude of about 25 m/s; the 
amplitude of the semidiurnal contribution was only about 10 m/s. The radio meteor 
data thus suggest that the diurnal oscillation may be bigger than the semidiurnal 
oscillation, but that it may also be confined to lower latitudes. 

Finally, some information about wind oscillations in the upper atmosphere is 
obtained from the analysis of daily variations in the geomagnetic field at the ground. 
It is thought that these geomagnetic variations (quiet day variations) are caused by 
wind-induced electric currents at heights in the neighborhood of 110-120 kin. If one 
makes various assumptions (often unrealistic) about the spatial structure of the wind, 
the temporal and spatial distributions of the electric conductivity, and other matters, 
one can estimate the winds causing the geomagnetic variations. This was attempted 
by Maeda (1955) and Kato (1956), whose calculated diurnal wind field was twice as 
intense as their semidiurnal wind field. However, in contrast to other observations, 
both of these inferred wind oscillations increased away from the equator. 

1.12. Theoretical Calculations of the Diurnal Thermal Tide 

Kato (1966), in order to explain the winds inferred from dynamo calculations, and 
Lindzen (1966a), in order to explain the large diurnal oscillations near the stratopause, 
closely re-examined the theory of the diurnal thermal tide. Both independently 
discovered that for the diurnal oscillations (where a=  co and s= 1), the solutions to 
Equation (7) consist in two sets of functions: one associated with negative values of 
h, the other associated with small positive values of h. From Equation (11) we see 
that negative h implies negative #z, and hence, energy trapping, while small positive 
h's are generally associated with positive #2 and energy propagation. Those modes 
associated with negative h have most of their amplitude confined to latitudes poleward 
of 30~ the modes with positive h have most of their amplitude confined to latitudes 
equatorwards of 30 ~ These results represent an extension to a spherical atmosphere 
of a well known result for internal gravity waves in a plane atmosphere rotating at 
rate co; namely, that internal gravity waves with frequency o- cannot propagate 
vertically if o-<2o); on a rotating sphere 2co cos0 (rather than 2o)) is the relevant 
quantity (Eckart, 1960). Lindzen (1967a) calculated the detailed atmospheric 
response to diurnal excitation by ozone and water vapor heating. These calculations 
accounted for over two thirds of 5:1 (p) observed at the ground, and also substantially 
accounted for many features of the observed diurnal wind oscillations below 100 kin. 
Lindzen found that most of the thermal excitation goes into the main trapped mode 
(mode with negative h). This mode is associated with a significant response in the 
region of excitation; however, it does not permit the propagation of a disturbance 
away from the region of excitation. This, therefore, explains why most of the diurnal 
oscillation excited by ozone heating does not reach the ground. A smaller, but still 
significant, part of the diurnal excitation goes into the main propagating mode 
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(mode with positive h). The vertical wavelength of this mode (approximately 25 kin) 
is short compared to the thickness of the region of ozone heating (approximately 
40 kin). Thus, the disturbance in this mode excited by ozone heating is, indeed, 
subject to some destructive interference. However, the same is not true for the 
disturbance excited by the thinner region of water vapor heating in the troposphere 
(Green, 1965). In fact, outside of regions of local thermotidal excitation, the diurnal 
thermotidal oscillation is primarily due to the main propagating mode excited by 
water vapor heating in the troposphere. This remains true at least until we reach the 
thermosphere, where viscosity, conductivity and electromagnetic damping may 
attenuate incoming waves. Details of all these calculations are given in Chapter 3. 

1.13. Other Features of Atmospheric Oscillations 

It seems that we now have a reliable general theory of S through most of the atmos- 
phere; the cause is almost wholly thermal. Seasonal variations are not yet fully 
explained, though Butler and Small have shown how that of S~ (p) is probably 
caused. Also, little theoretical work has been done on the problem of what becomes 
of thermal tides above about 100 kin, where the effects of viscosity, conductivity, 
hydromagnetic processes and nonlinearity are potentially important. 

The annual mean lunar atmospheric tide is about 4 times the equilibrium tide; 
the gravitational component of S2(p) is likely to be less than half the small lunar 
variation L 2 (p). The theory for the annual mean of L 2 now appears to be adequate, 
though it requires that account be taken of atmospheric dissipation (viz. Sections 
3.5C and 3.6B). But Lz(p) undergoes a remarkable annual variation, which still 
needs explanation. Another aspect of L 2 (p) not yet adequately studied is the influence 
of the rise and fall of the oceans on the lunar atmospheric tide. Sawada (1965) dis- 
cussed this for the case of an ocean that covers the whole earth. He concluded "In  
spite of this deviation from reality, the result suggests the possibility of a great effect 
of the ocean on the atmospheric lunar tide. The effects of oceans resembling closely 
those actually occurring on the earth remain to be discussed" (p. 636). 

The part of $2 that is not a westward travelling wave, following the sun, must 
depend on spatial inhomogeneities in heating - such as the difference of heating of the 
atmosphere over the land and seas - but its detailed cause has not been elucidated. 



CHAPTER 2S 

T H E  S O L A R  D A I L Y  A T M O S P H E R I C  O S C I L L A T I O N S  

AS R E V E A L E D  BY M E T E O R O L O G I C A L  D A T A  

2S.1. The Material Studied; Ground Level Data 

The main material for study of the actual atmospheric oscillations consists of series 
of readings of records of meteorological data - particularly of pressure, but also of 
wind and temperature - made at ground level at numerous observatories widely 
distributed over the globe. The readings are commonly taken at hourly intervals, 
generally at the hours of local mean time, true or standard (that is, of  a meridian, 
at a distance of some degrees of longitude, used for the standard time of the country 
or region). There is a vast body of such readings; the series for some stations goes 
back for more than a century. Much of this material is still unused for the purpose 
here considered. 

At most stations the record has long been a continuous one, photographic or by 
pen recording. But in some places, and especially in earlier times (as at Paris in 
Laplace's day), they were eye readings, made at longer than hourly intervals. Such 
series of data, when not at equal intervals throughout the day, need special treatment 
in the analysis to determine the local manifestation of the atmospheric oscillations; 
but where better material for a region is lacking, it may be worth while to use them, 
despite the extra effort involved (see pp. 68, 87). 

The first process to be applied to the data is grouping the days, to obtain group 
means of the series of (for example) hourly values for the days of the group. Published 
(also unpublished) meteorological tables of hourly values usually give monthly 
hourly means, and often also annual hourly means. Sometimes the monthly hourly 
sequences are combined into groups of four, to give mean sequences for the three 
'Lloyd' seasons (and the whole year) defined (and here denoted) as follows: 

Months included Name Symbol 
May to August June solstitial .,/ 
November to February December solstitial d 
March, April, September, October Equinoctial e 
All twelve Yearly y 

Such monthly, seasonal or annual sequences of mean hourly values may be combined 
for more than one year, giving better-based averages, less affected by the particular 
vagaries of the individual years. 

Such mean daily sequences of values form the material for the study of S. The 
first step in their use is harmonic analysis, to determine the harmonic components of 
S, namely S,; usually only values of n up to 4 are considered. 
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2S.2. Harmonic Analysis of S; the Non-Cyclic Variation 

For various reasons (such as weather and seasonal changes) the variations, for 
example of barometric pressure p or air temperature T, are not truly periodic from 
day to day. That is, the value is not the same at the same hour on successive days, 
or, for example, at the two midnights that begin and end a mean solar day. The 
change in the course of 24 hours (whatever the initial time) is called the non-cyclic 
variation (sometimes written, for brevity, ncv). 

Let y ( t )  denote the value at time t of the meteorological element considered, and 
let y~, for a = 0 ,  1, 2, ..., r denote the value o f y  (t~), where 

t~ = to + a T / r ,  (1)  

and T denotes the duration of one day. Here the units in which t and T are expressed 
will be hours. The non-cyclic variation d for this sequence is given by 

d = y ,  - Yo.  (2)  

When hourly values are used, r=24 ;  sometimes only alternate hourly values (or 
even every third value) are used, in which case r =  12 (or 8). 

Usually, following a procedure due to Lamont (1868), the change d is taken to 
proceed at a uniform rate throughout the day, and the periodic variation S is taken 
to be represented by y ' ( t ) ,  equal to y ( t )  with this uniform change removed. Thus 
y ' ( t )  and the modified sequence y'~ analyzed are given thus: 

y' (t) = y (t) - td /T ,  y'~ = y' (to). (3) 

Representing y'  (t) by a series of harmonic components, thus: 

2~nt 2~nt 
y' (t) = Ao + ~ S, ,  S, = A, cos - -  + B, sin - - ,  (4) 

. T T 

the values of A o, A, and B, are determined as follows. (The difference between (4), 
and S, as given on p. 10, is because here t and T are expressed in hour units, whereas 
there t was expressed in angle at the rate 2~ per day.) We first calculate numbers 
A'o, A ' ,  B', that would be the values of A o, A, and B, if t o were zero. Thus 

r - 1  

(r- 1)d 
= - y ~  ( 5 )  

r 2r 
o-= 0 

r - - 1  

2 ~ 27rno- d 
A', r y~cos  r + r (6) 

6 = 0  

r - - 1  

2 ~ 2~zna d nrc 
= - y~ s i n -  + - c o t - - .  (7) 

B', r r r r 
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Alternatively (Chapman, 1967) the summations may be from o-= 1 to o-=r ,  but 
then the last term in A~ and A" must be changed respectively to - ( r +  1) d / 2 r  and 
- d / r .  In this case Ao and Ao refer to an epoch T / r  later than when (5)-(7) are used. 

From these values of A,~, B,' we calculate successively s,, o-,, o-" and A,, B,, as follows: 

2 : An 2 + B,n 2 ' A n s n sin o-n, Bn s n cos O'n, (8) S n 

an = ~', + 2~rn to /T ,  A ,  = s ,  sin a , ,  B, = s, cos ~,. (9) 

The value of t o to be used here depends on the time reckoning to which (4) refers. 
If  it is the local mean time of the station, whose east longitude from Greenwich is qS, 
and if the meridian of time reckoning relative to which the values ofyr are measured 
is in east longitude ~b', and if h is the hour, on this time reckoning, of the value Yo, 

then 
t o = h + (0' - 0)/15 ~ (10t 

Sometimes we may wish to use Greenwich or universal time tu in (4): in that case 

t o = h + 0'/15 ~ . (10a) 

When the sequence analyzed is not a sequence of hou?ly values for one particular 
day, but a monthly mean sequence, for a month of m days, d will be (l/m) times the 
(algebraic) increase during the month, or, if many months are combined, the sum of 
these monthly increases, divided by the total number of days. 

If  the data are hourly means (cf. p. 85), each A,, B,, s,, must be multiplied by 
( m r / Z 4 ) / s i n ( m r / 2 4 ) ,  namely, for n=  1, 2, 3, 4 respectively, 1.003, 1.012, 1.026, 1.047. 

2S.3. The Seasonal Variation of S 

In general, if monthly mean daily sequences are analyzed for each calendar month 
of a single year, or from groups of the same calendar month averaged over several 
years, the values of Ao, A,, B,, s,, o-, will differ from one calendar month to another. 
The differences represent a seasonal (plus some accidental) variation. The change 
from month to month throughout the year may be shown by a polygon of monthly 
or seasonal points on a harmonic dial, for any S., as in Figure 2S. 1 for $2 (p). 

The seasonal variation can be expressed analytically in a standard way applicable 
to each S,, and to the Sn'S for different stations, by harmonic analysis of the sequences 
A,, B, for the twelve calendar months, in order. Though the calendar months differ 
slightly in length, it has hitherto been considered convenient and adequate (having 
regard to the accidental part of the changes) to ignore the differences in making the 
harmonic analysis, thus treating the intervals between the mean epochs in successive 
months as if they were all one-twelfth of a year. Greater accuracy can be gained if 
Bartels' seasonal day numbers (Section 2S.3A) are used. 

Letyo, where a =  1,2 ..... 12, denote the values of any chosen one of the harmonic 
constants of S, namely A o or A, or B,, for the respective months January to December. 
I f  we have such a sequence for each of several years, we can determine the non-cyclic 
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Fig. 2S.1. Harmonic dials showing the amplitude and phase of S~(p) for each calendar month for 
four widely spaced stations in middle latitudes, (a) Washington, D.C., (b) Kumamoto, (c) mean of 

Coimbra, Lisbon and San Fernando, (d) Montevideo (Uruguay). After Chapman (195l). 

variation D for each year, or for the average sequence for all the years (this requires 
analysis of  one extra month at the end). Then harmonic constants e0, ~m, /~ ,  ex- 
pressing the seasonal variation of the particular S, harmonic constant considered, 
can be thus calculated: 

1 12 13 

Yy ---O (l) 
"T 24 

1 12 n m a  D 

c~, = 6 ~ y,~ cos 6 12 (2) 

1 12 nrncr D m n  
fl~. = y~ sin ~ -  + 12 cot 12 (3) 

Results of such calculations (not considering D) were first given by Siebert 
(1956a). For $2 (T) for the mean of  8 European stations between latitudes 50 ~ and 60 ~ 
he obtained the polygon of monthly dial points shown in Figure 2S.2(a). From the 
12 values of A2 and B 2 he calculated harmonic constants Co, e,,, fi,, for A2 and for 
B2: he found the values for m = 3 or more to be negligible. His values of % for A2 
and B2 represent the annual mean $2 (T), shown by the vector in Figure 2S.2 (b). The 
additional calendar monthly vectors given by ~,, cos(rim a/6)+/?y sin(nm a/6) for 
A2 and for B2 lie on an ellipse: Figure 2S.2(b) shows these ellipses for m=  1 (the 
annual component variation of $2) and m = 2 (the semi-annual component variation); 
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Fig. 2S.2. Harmonic dials showing (above) the monthly mean dial vectors of S2(T) for the mean 
of  the latitude belt 50 ~ to 60~ and (below) the resolution of the month to month variation of 
S~ (T) into a variation of period 1 year (the full-line ellipse) and one of period l/2 year (the broken- 

line ellipse, described twice each year). After Siebert (1956a). 

the latter ellipse is described twice in each year, and the points on it marked I, I[ . . . .  
(for January, February .... ) correspond also to VII, VIII .... (for July, August .... ). 

Such harmonic studies of the seasonal variation of the components S, of S for  
meteorological and other geophysical elements have barely been begun. They should 
be undertaken for $2 (p) for comparison with the dynamical theory of its seasonal 
variation, which likewise has yet been little studied. 

2 S . 3 A .  DAILY SEASONAL INTEGERS (7 (SIGMA) OR SN (BARTELS, 1954) 

The varying incidence of sunlight upon the earth in the course of a year, depending 
on the declination of the sun, powerfully affects meteorological, geomagnetic, and 
ionospheric phenomena. The 12-monthly division of the year in the present Gregorian 
calendar is not well adapted to the study of  this varying solar influence; the months 
and quarters are unequal in length, and the solstices and equinoxes neither delimit 
the months, nor are central to them. Hence a new and more logical division of the 
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year is desirable for use in geophysical investigations. For this purpose a daily 
seasonal integer Sigma (o-) may be assigned to each calendar day (including February 

29 in Leap Years), the same for every year - a perpetual Sigma calendar, which can 

remain unaffected by any future general calendar reform, with the appropriate 
redefinition of the Sigmas. 

The Sigma integers a are 24 odd numbers ranging from 1 to 47 (the numbers 47, 

45 . . . .  might also be considered as equivalent to - 1 , - 3  .... ). Each a applies to all 

the days of a group of 15 or 16; the first date and number of days for each group are 
as follows: 

~r for Initial Daysin cr for Initial Daysin cr for Initial Daysin 
group date group group date group group date group 

01 Dec. 22 15 17 Apr. 22 15 33 Aug. 21 16 
03 Jan. 6 15 19 May 7 15 35 Sep. 6 15 
05 Jan. 21 15 21 May 22 15 37 Sep. 21 15 
07 Feb. 5 15 23 June 6 15 39 Oct. 6 16 
09 Feb. 20 15 or 16 25 June 21 15 41 Oct. 22 16 
11 Mar. 7 16 27 July 6 15 43 Nov. 7 15 
13 Mar. 23 15 29 July 21 16 45 Nov. 22 15 
15 Apr. 7 15 31 Aug. 6 15 47 Dec. 7 15 

These 24 groups are based on the longitude h of the mean sun; o- represents the odd 

integer nearest to 48(h~176 ~ The group 1 is chosen to begin at the winter 

solstice, so that the series 1 to 47 should closely approximate to a calendar year. The 
number of days in a calendar year, 365 or 366, precludes a strictly regular progression 

of o- throughout the year, but the progression chosen is as even as possible. 

The 24 groups can be combined into I2 pairs, beginning with the pair 47, I (or - I, 

1), forming a set of 30 days centered on December 21 midnight; this set may be 

numbered 0, and the later sets 4, 8, 12,..., 44. This division of the year is analogous 

to, but better than, the customary division of the calendar year into the 12 Gregorian 

months. 
The 24 groups can also be combined into 8 sets of 3 groups each, namely sets 

l, 3, 5; 7, 9, l l ;  .... This divides the year into octants, which may be numbered 

3, 9, 15, ..., 45. This division of the year may be appropriate when the data available 

do not justify the 12-fold division of the year, but more than justify a grosser sub- 
division, into only 6 or 4 sets of groups. The division into octants suffices to enable 
annual and semiannual variations to be determined, in any geophysical property 

evaluated for each octant, such as daily means, daily ranges, or Fourier coefficients 
of any component of a daily variation, whether solar, lunar or lunisolar. 

Grosser combinations of the 24 groups are possible into 6 sets of 4 groups each: 

or 4 sets of 6 groups: or 3 sets of 8 groups: or 2 sets of 12 groups. 
If  it is preferred to have 8 sets centered at the solstices, the equinoxes, and midway 

between those epochs, this may be done by taking the group with center 0 to consist 
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o f  t he  g r o u p s  - 1 a n d  1, t o g e t h e r  w i t h  t h e  g r o u p s  - 3 a n d  3 t a k e n  w i t h  h a l f  we igh t ,  

t he  c o m b i n a t i o n  b e i n g  d i v i d e d  b y  t h r e e ;  s imi la r ly ,  t he  g r o u p  w i t h  c e n t e r  6 w o u l d  

c o n s i s t  o f  ( +  3) /2  + ( +  5) + ( + 9) /2  d i v i d e d  b y  3; a n d  so on .  T h i s  use  o f  t he  i n t e r v e n i n g  

g r o u p s  3, 9, 15 . . . .  tw ice  over ,  w i t h  h a l f  w e i g h t  e a c h  t ime ,  p r o d u c e s  a s l igh t  s m o o t h i n g ;  

th i s  m a y  b e  w e l c o m e  w h e r e  r e l a t ive ly  f ew days  a re  ava i l ab l e .  T h e s e  8 sets  o f  g r o u p s  

c a n  b e  c o m b i n e d ,  i f  des i r ed ,  i n t o  4 sets  o f  g r o u p s ,  l ikewise  c e n t e r e d  a t  0, 12, 24, a n d  36. 

T h e  a l t e r n a t e  t h r e e f o l d  d i v i s i o n  o f  t he  yea r ,  i n t r o d u c e d  b y  L l o y d  a n d  m u c h  u s e d  

i n  t h e  p a s t  i n  g e o m a g n e t i s m ,  is i n t o  t h r e e  f o u r - m o n t h l y  g r o u p s ,  o f  w h i c h  two  a r e  

c e n t e r e d  n e a r  t h e  sols t ices ,  a n d  t h e  t h i r d  is m a d e  u p  o f  t w o  m o n t h s  n e a r  e a c h  o f  t he  

e q u i n o x e s ;  t h u s  t he  t h i r d  g r o u p  d o e s  n o t  c o n s i s t  o f  f o u r  c o n s e c u t i v e  m o n t h s .  T h e s e  

g r o u p s  h a v e  b e e n  c o m m o n l y  d e n o t e d  b y  j ( M a y - A u g u s t ) ,  t h e  J u n e  so l s t i t i a l  g r o u p ,  d 

( N o v e m b e r - F e b r u a r y ) ,  t h e  D e c e m b e r  so ls t i t ia l  g r o u p ,  a n d  e ( M a r c h ,  Apr i l ,  S e p t e m -  

ber ,  O c t o b e r ) ,  t h e  e q u i n o c t i a l  g r o u p .  W h e n  S i g m a  n u m b e r s  a re  used ,  t he  a p p r o p r i a t e  

TABLE 2S.1 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

1 01 1 05 1 09 1 13 1 17 1 21 1 25 1 29 1 33 1 37 1 41 1 45 
2 01 2 05 2 09 2 13 2 17 2 21 2 25 2 29 2 33 2 37 2 41 2 45 
3 01 3 05 3 09 3 13 3 17 3 21 3 25 3 29 3 33 3 37 3 41 3 45 
4 01 4 05 4 09 4 13 4 17 4 21 4 25 4 29 4 33 4 37 4 41 4 45 
5 01 5 07 5 09 5 13 5 17 5 21 5 25 5 29 5 33 5 37 5 41 5 45 
6 03 6 07 6 09 6 13 6 17 6 23 6 27 6 31 6 35 6 39 6 41 6 45 
7 03 7 07 7 11 7 15 7 19 7 23 7 27 7 31 7 35 7 39 7 43 7 47 
8 03 8 07 8 11 8 15 8 19 8 23 8 27 8 31 8 35 8 39 8 43 8 47 
9 03 9 07 9 11 9 15 9 19 9 23 9 27 9 31 9 35 9 39 9 43 9 47 

10 03 10 07 10 I1 10 15 10 19 10 23 10 27 10 31 10 35 10 39 10 43 10 47 
11 03 11 07 11 11 Jl  15 11 19 11 23 11 27 11 31 11 35 11 39 11 43 11 47 
12 03 12 07 12 11 12 15 12 19 12 23 12 27 12 31 12 35 12 39 12 43 12 47 
13 03 13 07 13 11 13 15 13 19 13 23 13 27 13 31 13 35 13 39 13 43 13 47 
14 03 14 07 14 11 14 15 14 19 14 23 14 27 14 31 14 35 14 39 14 43 14 47 
15 03 15 07 15 11 15 15 15 19 15 23 15 27 15 31 15 35 15 39 15 43 15 47 
16 03 16 07 16 11 16 15 16 19 16 23 16 27 16 31 16 35 16 39 16 43 16 47 
17 03 17 07 17 11 17 15 17 19 17 23 17 27 17 31 17 35 17 39 17 43 17 47 
18 03 18 07 18 11 18 15 18 19 18 23 18 27 18 31 18 35 18 39 18 43 18 47 
19 03 19 07 19 11 19 15 19 19 19 23 19 27 19 31 19 35 19 39 19 43 19 47 
20 03 20 09 20 11 20 15 20 19 20 23 20 27 20 31 20 35 20 39 20 43 20 47 
21 05 21 09 21 11 21 15 21 19 21 25 21 29 21 33 21 37 21 39 21 43 21 47 
22 05 22 09 22 11 22 17 22 21 22 25 22 29 22 33 22 37 22 41 22 45 22 01 
23 05 23 09 23 13 23 17 23 21 23 25 23 29 23 33 23 37 23 41 23 45 23 01 
24 05 24 09 24 13 24 17 24 21 24 25 24 29 24 33 24 37 24 41 24 45 24 01 
25 05 25 09 25 13 25 17 25 21 25 25 25 29 25 33 25 37 25 41 25 45 25 01 
26 05 26 09 26 13 26 17 26 21 26 25 26 29 26 33 26 37 26 41 26 45 26 01 
27 05 27 09 27 13 27 17 27 21 27 25 27 29 27 33 27 37 27 41 27 45 27 01 
28 05 28 09 28 13 28 17 28 21 28 25 28 29 28 33 28 37 28 41 28 45 28 01 
29 05 29 13 29 17 29 21 29 25 29 29 29 33 29 37 29 4l 29 45 29 01 
30 05 30 13 30 17 30 21 30 25 30 29 30 33 30 37 30 41 30 45 30 01 
31 05 31 13 31 21 31 29 31 33 31 41 31 01 
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grouping is as follows: 

d: (41) + (43) + (45) + (47) + (1) + (3) + (5) + (7) 

j :  ( 1 7 ) + ( 1 9 ) + . . . ( 3 1 )  

e: (9) + ( 1 1 ) + ( 1 3 ) + ( 1 5 ) + ( 3 3 ) + ( 3 5 ) + ( 3 7 ) + ( 3 9 ) .  

The entry of the Sigma integers on to punched cards requires 2 columns, as given in 
Table 2S.1. In a Leap Year all the numbers are as usual, and February 29 is an 
additional day in the o- group 09. One column on the cards, however, will suffice if 
the division of the year is not to exceed 12 sets; each set can then be characterized 
by the quotient of its initial Sigma integer by the number of groups in each set; e.g., 
for a 12-fold division the sets would be numbered 0, 1 ..... 9, 10(T), 11 (E). 

2S.4. The World-Wide Distribution of S, Particularly of S(p) 

The world-wide distribution of any harmonic component of a daily variation, e.g., 
that of $2 (p), can be represented graphically or analytically, in different ways. For 
example, Haurwitz (1956) has given Figures 2S.3a, b showing on one map equilines 
of s 2, and on the other, equilines of 0- 2; alternatively maps could be drawn showing 
equilines of A 2 and B2. From the latter, if the values are read at a regular network of 
points, where uniformly spaced meridians and latitude circles intersect, it is possible 
to use them to express the distribution of S 2(p) in terms of spherical harmonic 
functions. This was first done by Schuster (1889) for the components S n of the solar 
daily geomagnetic variation; for the method cf. Geomagnetism (Chapman and 
Bartels, 1940, Chapters 17, 20), or Siebert (1961, Section 2.2). The details are not 

given here. 

2S.4A. S2(p) 

The component daily meteorological variation that has aroused most interest is 

Se (p), which has been studied by Angot (1887), Harm (1889-1918b), Schmidt (1890, 
1921), Simpson (1918) and others. Simpson used data from 214 stations for the annual 
m e a n  S 2 ( p ) .  Following a suggestion by Schmidt (1890), he expressed it as follows, 
as the sum of a wave that travels daily round the earth (a sine function of local time t 
with coefficient and phase independent of the longitude qS) and a zonal oscillation 
that is a sine function of universal time t u (=  t -  qS), with coefficient and phase inde- 

pendent of longitude: 

S2(p) = S 2 sin(Zt + 0"2) = b sin(2t + fi) + c sin(2t, + 7). (l) 

Fig. 2S.3. World maps showing equilines of (below) the amplitude (s2, unit 10 -2 nab) and (above) 
the phase (a2) of S2(p), relative to local mean time. After Haurwitz (1956). 
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TABLE 2S.2 
Constants for the representation of Sz(p) at various latitudes (Simpson, 1918) 

Group Travelling wave Zonal wave 

Mean lat. No. of b(10 -~ rob) fl~ c(10 -2 rob) 7 ~ 
stations 

0 ~ 17 122.7 156.8 8.1 --4,0 
18 15 111.3 155.3 10,9 --23.2 
30 12 82.7 149.1 7,9 10.4 
40 46 51.6 153.9 5.7 91.1 
50 60 30,7 153,0 5.5 104.4 
60 18 12.8 158.0 8.3 108.4 
70 14 ) 9.6 98.6 
80 8 I 2.9 152.9 10,7 116,4 

Mean 154.1 

Simpson determined b,/~, c, y f rom S2(p) data for 190 stations for each of 8 sets 
divided according to latitude, as in Table 2S.2. 

The phase fl of  the travelling wave has a remarkably small range (9 ~ or +_ 9 rain 
of  time of maximum) in the eight zones. The amplitude b, decreasing steadily polewards 
from the equator, is well represented by the formula 

b = 0.937 sin 3 0 m m =  1.25 sin 3 0 m b ,  (2) 

where 0 denotes the colatitude. 

Up to about 50 ~ latitude the zonal wave, here denoted by S O (p), makes only a 
minor contribution to $2 (p), but in high latitudes it is predominant. Wilkes (1949) 
represented it approximately thus (in mb units): 

0.093 sin2t u + [cos0{( -  0.13 sin 2tu + 0.10 cos tu). (3) 

Here Icos01 denotes the positive magnitude of cos0. Haurwitz (1956, p. 25) has 
remarked that the first term here implies that the average p for the whole earth 
changes periodically, "which seems unlikely". 

A much more extensive study of S2(p) was made by Haurwitz (1956). Using data 
for 296 stations, he gave the (slightly smoothed) maps of equilines of the annual 

mean amplitude s2 and phase o- z (relative to local mean solar time) shown in Figures 
2S.3a, b. The singular points of  convergence of the phase equilines arise f rom the 
combination of the main travelling wave and the standing or zonal wave, and had 
previously appeared in a corresponding map given by Simpson. Besides these two 
main component  waves, however, the $2 (p) distribution includes many other waves; 
all but one of these is of decidedly smaller amplitude. 

Haurwitz discussed the local irregularities of $2 (p) as shown by Figure 2S.3, noting 
the region of small phase angle near the Gulf  of Guinea, and also that over the western 
United States, which had previously been indicated by Spar (1952) in a study of 
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S 2 (p) at 100 stations over nor th  America;  see also Figure 1.4. The latter anomaly  is 

at t r ibuted to the Rocky Mounta ins .  Spar concluded that  the topography affects the 

phase more than  the amplitude,  and  that  the influence of the Cordilleras resembles 

that  inferred theoretically by Kertz (1951). In  high latitudes the phases are mainly  

control led by the zonal wave; Haurwitz  and Septilveda (1957) made a special study 

of S z (p) and its seasonal var iat ion in the Arctic. 

Using readings from Figure 2S.3 at a regular network of 384 points, 15 ~ apart  in  

longitude, round  lati tude circles at 10 ~ intervals f rom 80 ~ to 70 ~ Haurwitz  (1956) 

used the method of least squares to obtain,  for each latitude, the four constants  b, fi, 

c, 7, in (1) that  best fit these numbers ,  after convert ing them to the A2, B2 coefficients, 

funct ions of 0 and  qS. He gave Table 2S.3, similar to Table 2S.2, but  for 16 latitudes 

TABLE 2S.3 

Amplitude and phase angle of W2 and Z~ (Haurwitz, 1956) 

W2 Z2 

Lat. b B e 

10 -~ mb 10 -2 mb 

80~ 1.0 148.3 ~ 10.2 109.8" 
70 ~ 3.4 146.3 ~ 9.1 107.9 ~ 
60 ~ 12.5 154.3 ~ 8.0 102.4 ~ 
50 ~ 28.4 153.4 ~ 7.0 92.0 ~ 
40 ~ 52.1 153.7 ~ 2.7 78.8 ~ 
30 ~ 73.7 153.2 ~ 2.0 304.3 ~ 
20 ~ 95.8 156.6 ~ 6.9 331.9 ~ 
10~ 113.7 157.4 ~ 5.7 350.1 ~ 
0 ~ 117.5 158.2 ~ 3.8 24.8 ~ 

10~ 110.5 159.5 ~ 4.2 73.0 ~ 
20 ~ 96.4 160.7 ~ 2.8 26.9 ~ 
30 ~ 77.8 159.6 ~ 1.7 105.9 ~ 
40 ~ 50.1 160.8 ~ 5.7 127.1 ~ 
50 ~ 25.2 159.9 ~ 7.7 102.3 ~ 
60 ~ 9.2 151.6 ~ 5.0 120.7 ~ 
70~ 0.9 162.8 ~ 5.0 120.8 ~ 

10 ~ apart,  and found  that the formula for the travelling wave 

1.16 sin a 0 sin (2t + 158 ~ rob,  

fits his b, fi data very well; both  the ampli tude and  phase agree rather well with those 

given by Simpson. Haurwitz  also gave a more complicated formula  for this wave, 

involving three spherical harmonic  funct ions;  but  the fit with the data was no t  more 

than equally good. 

Haurwitz  expressed the zonal part  of S 2 (p) in the form (analogous to Simpson's)  
(in mb) 

0.085 P2 (0) sin (2t, + 118~ P2 = (3 cos20 - 1)/2. 

The ampli tude here is only two thirds of that given by Simpson, Haurwitz  also ex- 
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pressed this zonal wave as a sum of four terms of the form CkE k (0) sin(2t, + ak), for k 
from 1 to 4; the Hough functions Ek are of the special (s=0)  Solberg (1936) type 

E2~+ ~ = sin cos0 E2k = cos(k cos 0), 

indicated by Haurwitz (1956) in his theoretical study of $2 (p) and its relation to 
S2 ( r ) .  

Kertz (1956b) determined additional waves in Sz(p), using the tabulated values 
of A2 and B 2 derived by Haurwitz from Figure 2S.3. Kertz harmonically analyzed 
each series of 24 values round each circle of latitude, giving: 

A 2 (0, ~) ---= 2 (kv cos v~ -1- 1 v sin vgb) (4a) 
v 

B 2 (0, q~) = ~, (rn~ cos vq~ + n~ sin vgb). (4b) 

Then he converted the expression for $2 (p) relative to local mean solar time to an 
expression relative to Greenwich or universal time tu, made up of waves W~ each of 
the form 

c~ s cos (2t, + s~b) + fls sin (2t u + s~), or 7s sin(2t, + sq5 + es). (5) 

The factors ~s and fl~ are given by the following scheme: 

s: less than 2 2 greater than 2 

~s: (k2-~ + nz-~)/2 ko ( / ~ - 2 -  ms-z)/2 

fls: (-- k2-s + nz-s)/2 mo (ls-2 + m~-2)/2. 

In the Equations (4), (5) the coefficients k, /, m, n and ~,, fl, and the amplitude ~, 
are all functions of 0. Mean amplitudes ~, were calculated as follows, from the 
16 values of the ys's (cf. Kertz's Equation (2.5)): 

~z = • 72/16. (6) 

Figure 2S.4 shows on a logarithmic scale the values of ~ for the larger amplitudes. 
The travelling wave corresponds to s = 2, and is outstanding; its value agrees well 
with that deduced by Haurwitz from his maps. The zonal wave is the one for which 
s = 0, and this is the next greatest; but the wave for which s = 3 has nearly as great 
an amplitude. All the other terms are much smaller. The magnitude of the wave 
W23 was first revealed by this study by Kertz. 

Each set of coefficients e~(0) and fls(0), for the 16 values of 0 considered, can be 
expressed as a sum of associated Legendre functions, of order 2 and degree 2 or more. 

t 

2S.4A. 1. Types of  associated Legendre Functions 

Different types of associated Legendre functions, differing only by numerical factors, 
are in use in mathematical and geophysical literature, and different notations are 
in use for the same or different forms. Schmidt (1935; see also Chapman and Bartels, 
1940, pp. 611,612) introduced a form, here denoted by P~ (0), which he called semi- 
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normalized, which is much in use in geomagnetic studies, and has also been used in 

studies of atmospheric tides and thermal tides by Haurwitz (1956, 1965), Kertz 
(1956a) and Siebert (1961). Haurwitz and Cowley (1969) have used a normalized type 

here denoted by P.,,.(x), where 

X = C O S 0 ,  

100- 1(SZmb 

50-  

10- 

5-  

0.5- 

-10 -8 -6 -4 -2 0 2 4 
S 

6 8 I0 12 14 

Fig. 2S.4. The amplitudes (on a logarithmic scale, and averaged over the latitudes 80~ to 70~ 
of the semidiurnal pressure waves, parts of S2(p), of the type ?ssin(2t. _L S~ + as), where tu signifies 

universal mean solar time. After Kertz (1956b). 

in a study of L 2 (p), and the same form is used later in this review. The two forms are 
thus related: for 

m = O, P.,m/P~ = (n + �89 ; for m > O, P.,m/P~,"= (2n + 1)1/2/2. 

Tables of values of P~' and associated quantities have been given by Schmidt (1935), 
and Belousov (1962) has tabulated P.,.,. 

The type P., m may be called normalized because 

1 

f {P.,, .(x)} dx = 1. 
- 1  

The functions S'~(O, 4)) defined by P2 cosmq5 and P.,,. cosmq~ (=  S., m) are spherical 
harmonic surface functions, and their root mean square values over a sphere of 
unit radius (hence of area 4n), is 1/(2n + 1) ~/z for S~", and �89 for S., m. The same is true, 
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of course, if cosm~b here is replaced by sinmr Thus the root mean square value of 
every function S,,,, over the unit sphere is the same. 

In discussing the expressions of  the atmospheric tides and thermal tides in terms 

of associated Legendre functions, in this chapter and in Chapter 2L, the Schmidt type 
is used. 

The functions P~' are related as follows to the Neumann form, here denoted by 
N "  and thus defined, for m > 0 (for m = 0, P~" = N m = P,,). 

N," = (sin 0) m d (cos O) m' P~ = 2 (n + m) N~m' 

where P, ( =  pO) signifies the Legendre function. Explicit formulae for p m are given 

by Matsushita and Campbell (1967, pp. 1353-1355) for m from 0 to 6, and for nine 
values of  n(>~m) for each m; see also Chapman and Bartels (1940; chap. 17). 

2S.4A.2. The Spherical Harmonic Expression of $2 (p) 

Kertz (1956b) expressed the three main waves in S 2 ( p )  , namely W~, W ~ W~, in 
spherical harmonic terms, using Schmidt's form of the associated Legendre functions. 
This involves the expression of the series of  es and/~s for the 16 values of 0 as series 
of  such functions. Kertz in an appendix explained his method of deriving the coeffi- 

cients and phases of the several terms of the form e~P~ (0) sin(2t u + s~b + e~,), and how 
to estimate the probable errors (though he did not give such estimates). Table 2S.4 
gives the terms he found, that have amplitudes c at least equal to 0.04 mb. The 

columns marked (H) give the corresponding values deduced by Kertz f rom Table 2S.3 
(of Haurwitz). The agreement is good. 

Figure 2S.5 shows the isobars for the main harmonic term (k = 3) of  the wave W 3, 3 

TABLE 2S.4, W~e, 

100 c (mb) e 100c (H) (mb) e(H) 

s = 2  k--2  122 158 ~ 
k = 3  4.6 78 
k = 4 21.6 342 
k = 6  4.3 332 

s--O k =2 7.2 135 
k = 3 5.6 123 
k -- 6 4.9 275 

s--3 k--3  10.7 88 
k = 7  4.1 183 

123 158 ~ 
4.5 77 

22.5 343 

8.5 118 

at Greenwich time 0 h or noon. This system of three high and three low pressure areas 
moves round the earth in 1.5 days; its dependence on 0, according to sin 3 0, is the 
same as that of the main travelling wave W~. 

Kertz also expressed the main terms W~, W ~ and W~ in Hough functions, both 
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Fig. 2S.5. Isobars of the wave W32, 3(p), proportional to P~Ssin(2tu + 34,-t-as), the component 
of Sz(p) next in importance after the travelling and standing waves s = 2, s = 0. Unit 10 pb. 

After Kertz (1956a). 

for p and T, and in connection therewith he discussed atmospheric resonance con- 

ditions. 
The S2(p) data so far considered are for the annual mean; parallel studies for the 

seasons j, e, d have not so far been made. The variation of S 2 (p) throughout the 
year is shown by the sets of monthly dial points in Figure 2S. 1, for 5 northern stations 
and one southern (nos. 24, 37, 21 +25 + 31, 99 of Table 2L.2). The maximum occurs 

earlier in winter (d) than summer ( j )  at the northern stations. 

2S.4B. Sl (p) 

The first comprehensive study of S 1 (p) as an aspect of a worldwide atmospheric 

oscillation was made by Haurwitz (1965). He had data for 228 stations, very irregu- 

larly distributed over the globe - with large gaps over the Pacific Ocean, and only 
a few stations for the southern latitudes from 40 ~ to 90 ~ Most of  the harmonic con- 
stants available to him were based on five or more years of record, but for a few high 
latitude stations the record covered only about  one year. His sources included Hann 's  
extensive compilations (mainly in 1889, but supplemented by Hann in 1892, 1917 
and 1918), and others by Schou (1939) for northern Europe, by Frost (1960) for 

Malaya, by Sellick (1948) for southern Africa, and by weathership data collected 
by Rosenthal and Baum (1956) for the North Atlantic. Where harmonic coefficients 
for any station were available from more than one analysis, those based on the 
longer record were always chosen. In general the probable errors of  the determinations 
of  the first harmonic of S(p) were not available. 

The geographical distribution of S 1 (p) was represented on world maps by equilines 
- one map for each harmonic coefficient, Ax and B~. These are reproduced here as 
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Figures 2S.6a, b, which show equilines at intervals of 2 mm Hg (the maps actually 
drawn for the later analysis had equilines at 1 m m  intervals). In drawing the equilines, 
cases where special local conditions at a station made S(p)  there very abnormal were 
disregarded. 

The maps clearly show the influence of the continents on $1 (p). In general, A i 
exceeds B1, and equilines of the amplitude sl would not be significantly less irregular 
than those for As. Hence comparison of Figure 2S.6a with Figure 2S.3a for s2 well 
shows how much more regular is the distribution of S 2 (p) than that of S 1 (p). Never- 
theless, by and large, s~ does decrease with increasing latitude. 

For the purpose of spherical harmonic analysis, Haurwitz used As and B 1 values 
read from the maps at 336 ( = 2 4  • 14) grid points, along 14 circles of  latitude at 10 ~ 
intervals, f rom 10 ~ to 140 ~ colatitude, and at intervals of  15 ~ of longitude along each 

latitude circle. For each circle a harmonic analysis was made of the 24 values of A 1 
and of B~, along the circle. Thus harmonic series for each colatitude 0 r were obtained 
as follows: 

A s = ~ (/% cos vq~ + Iv sin v~b) (1) 
v 

B 1 = ~ (m~ cos vq5 + n~ sin vqS). (2) 

From these, following Kertz (1956b, 1959), component waves were obtained, expressed 
thus in terms of UT: 

~s cos (t u + s(~) + fls sin (t u + sq~). (3) 

F o r s =  1, as=ko,  fis=mo; for s <  1, c~=(kl_~+nl_s) /2 ,  f l s=(mi_s - l i_~) /2  , and for 

s> 1, O:s=(ks_ i - n s _ l ) / 2 ,  f is=(m 1_~+/1_~)/2. 
The amplitudes and phases of  the terms with wave numbers (s) from - 7  to + 9 

2+ f12) was found for each term for were determined. The amplitude 7~ (where 72 = a s 

each colatitude 0r from 10 ~ to 140~ and from these 14 values of ~, a mean amplitude 
~ was calculated for each s, using the formula 

'Ts = {~, ~ (0r)sin Or}l{ Z sin 0~}. (4) 
r 

Here the factor sin0r allows for the different areas of  the I0 ~ latitude belts. This 
method of determining ~s differs f rom that used by Kertz for $2 (p); cf. (6) of Section 
2S.4A. Figure 2S.7 shows ~ for each s, the unit being the microbar (#b). 

By far the largest amplitude is that of the term for s = 1, corresponding to a wave 
travelling westward with the sun, proportional to the local time function sin(t + a~). 
All the other waves have much smaller amplitude, including the zonal wave s = 0 ,  
dependent only on UT and latitude. 

The geographical distribution of the coefficients e~, fl~ for each combination ___ s 

Fig. 2S.6. World maps showing equilines of the coefficients A1 (below) and B1 (above) of Si(p), 
relative to local mean time unit 10 2 mm Hg. After Haurwitz (1965), wherein the captions of 

Figures 1, 2 should be interchanged. 
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4 0 0  _ _  - - - - ~  

3 0 0  _ _  

2 0 0  _ _  

I 0 0  

0 
- 7 - 6 - 5 - 4 - 3 - Z - t  0 I 2 : 5  4 5 6 7 8 9 

Wave number, s 

Fig. 2S.7. The amplitudes (on a logarithmic scale, and averaged over the latitudes from the north 
pole to 60~ of the diurnal pressure waves, parts of Sl(p), of the type 7, sin(tu + sq~ + as). After 

Haurwitz (1965). 

was then represented approximately by only three spherical harmonic terms, of order 

]sl and degree [s[+i, of the Schmidt type, for i=0,  1, 2, namely 

~ls[ olsl sin(tu + s~b + ~lsl Isl +i ~[sl +i ~'lsl +i)- 

The coefficients of these several harmonic terms were determined by the method of 
least squares, with weights sin0 r for the circle of colatitude 0 r, from the series of 
values of c~ and ]~s. Then their amplitudes and phases were found. Those for the four 
waves specially considered, namely those for s=  - 1, 0, 1, 2, are given in Table 2S.5. 

The representation of $1 (p) by only these twelve spherical harmonic terms ignores 
many waves of small mean amplitude, such as are indicated in Figure 2S.7. Thus the 
12-term series can give only a smoothed picture of the geographical distribution 

of S 1 (p). 
The sum of the 8 principal wave components in Table 2S.5, ignoring the four terms 

whose amplitudes are less than 40 pb, gives values A* and B* for A1 and B 1 for each 
of the 336 grid points on the map. Their root-mean-square difference from the values 

read from the maps, namely 

[ ~  {(A* - A1)2 + (B* - (5) 

is 209 pb (or, for comparison with Figure 2S.6b, 15.6 x 10 .2 mm Hg). 
Even only the two principal terms in Table 2S.5, with amplitudes 464 and 210 pb, 

which relate to the main westward travelling wave SI, give a fairly good approxima- 
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TABLE 2S.5 

(Haurwitz, 1965) 

WaveNumber Is[+i Amplitude(pb) Phase 
~tsl§ ~lsl§ 

s = 1 1 464 12 ~ 
2 69 321 
3 210 195 

s = 2  2 158 263 
3 69 235 
4 4 293 

s = - - I  1 19 279 
2 134 109 
3 40 174 

s = 0  0 12 154 
1 16 301 
2 61 182 

t ion  to the ac tual  geographical  d is t r ibut ion  of  S 1 (p);  the roo t -mean-square  difference 

using this simplif ied representa t ion  is 248 #b, or  18.5 x 10 .2  m m  Hg. 

As these two pr inc ipa l  terms are a lmos t  oppos i te  in phase  (the difference being 

195 ~  12 ~  183~ they can with litt le er ror  be combined,  and  their  sum is well 

app rox ima ted  by the very simple fo rmula  

S~ (p) = 593 pb  sin30 s in ( t  + 12~ (6) 

expressed in terms o f  local  t ime t. 

F igure  2S.8 shows how well (6) represents  the mean  ampl i tude  sl  for  each lat i tude,  

40O 
. f .  ~. 

300 "~,, 

. ~ 2 0 0  + ~\ \  

I00 

0 

-I00 

-s~O0 

0 30 45 60 70 90 105 120 135 150 180 ~ 
15 COLATITUDE 165 

Fig. 2S.8. The crosses show the amplitude of Sil(p) for each latitude; curve 1 (full line) shows the 
amplitude given by the sum of 3 terms ($11, $21, $31), and curve 2 (broken line) shows the amplitude 

expressed as a multiple of sina0, where 0 denotes the colatitude. After Haurwitz (1965). 
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derived from the first three S~ (p) spherical harmonics P,~ (9 terms) in Table 2S.5. The 
crosses show the mean amplitude sl (0r) of 5'1 (p) for each latitude, derived from the 
maps (Figures 2S.6a, b). The formula (b) approximately represents the main westward 
travelling wave S~ of S~ (p); it shows that this has an amplitude that varies with 
latitude in the same way as does the main travelling wave S~ of $2 (p), according to 
Simpson's formula (2) of Section 2S.4A. According to these formulae, the amplitude 
of S~ at the equator (593 #b) is rather less than half that of S 2 at the equator (1250 pb). 

The corresponding main travelling wave S~ of S(T), the solar diurnal variation of 
air temperature at ground level, has an amplitude, at the equator, about 2.5 times 
greater than that of $22 (T) at the equator. This illustrates in numerical terms, for the 
main parts of S(p), the contrast remarked by Kelvin between their ratio, and that 
of $1 (T) and $2 (T). 

2S.4C. S3(p) 

This 8-hourly variation was studied by Hann (1918), Schmidt (1919), Bartels and 
Kertz (1952) and others. Its geographical distribution is rather regular, and it has a 
notable seasonal reversal of phase from summer to winter in each hemisphere, being 
approximately antisymmetrical relative to the equator. Bartels and Kertz expressed it 

thus: 0.293p3(0) sin (3t + o-a) mb; P4 a = (35/8) 1/2 sin 3 0 cos 0. 

In season j, a3 = 149 ~ in season d it is 335 ~ This phase reversal comes from a cor- 
responding phase reversal of $3 (T), the cause of S 3 (p); see Bartels (1927; also p. 675, 
Barrels and Kertz, 1952) for Potsdam month-to-month dial polygons for Sa (P) and 

Siebert (1957), on the basis of Hann's data for January and July only, modified 
the factor 0.293P ] in the above expression for the seasonally reversing part of $3 (p) to 

0.269P43 - 0.014P63, 

and gave o- 3 for July as 175 ~ and for January as 355~ he found also a small part that 
remains constant throughout the year, with amplitude 

0.075P 3 + 0.044P ] + 0.039P~ 

and phase 10 ~ 

2S.4D. S4(p) 

The component S4(p) has been discussed by Pramanik (1926) and Kertz (1956c, 
1957, 1959). It is small, and its geographical variations are greater than those of 
S2(p) and S3(p ), but it has more regularity than SI(p). Kertz (1956c) discussed 
S4(p) in relation to S4(T), extending Pramanik's study of the annual mean results 
to include also the seasonal (j,e,d) results. Using monthly mean data for S4(p) for 
22 stations, regrettably not well distributed, given by Angot (1889), each based on 
many years' record, he analyzed them in the manner outlined in Section 2S.3, and 
obtained the ellipses of the annual and semi-annual variations of A4, B4 on a harmonic 
dial. Almost all were narrow, and could be approximated by straight lines. The ends 
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of the annual ellipse major axis were the points for summer and winter, for the semi- 
annual ellipse they were the points for the seasons e and ( j +  d)/2. Hence the seasonal 

mean values A4,B 4 for j, e, d indicate the variation of S4(p) throughout the year 
fairly well. Kertz (1956c) gave a table of their values for 62 stations, f rom analyses 
by Hann, Angot and Chapman;  many of these are for the stations and periods in- 

dicated in the paper on L 2 (p) by Chapman and Tschu (1948). 
Using these data, Kertz (1956c) gave the following amplitudes and phases for the 

4 main terms in the spherical harmonic expression of the geographical distribution 

of $4 (p). 
TABLE 2S.6 

7 
S4(p) = ~ sm4pm 4 sin(4t + crm4) 

for the seasons j, e, d and for the year y: the unit here used is the microbar 

Amplitude sm 4 (/tb) Phase am 4 

m j e d y j e d y 
4 19.1 17.4 7.9 13.4 180 ~ 173 ~ 244 ~ 187 ~ 
5 24.2 27.9 98.1 35.1 359 204 207 213 
6 26.8 34.7 24.4 15.5 222 336 215 260 
7 22.8 13.9 28.2 10.8 33l 252 191 248 

2S.5. The Daily Variation of Air Temperature T 

There is a great volume of data for the air temperature T, mainly for its value To at 
the surface. Its daily variation S(To) has not been discussed and analyzed so fully 

as has been done for S(p). Haurwitz (1965) has discussed the diurnal component  
St (T), the annual mean data for which he has analyzed (Haurwitz, 1962). From his 

analysis he has deduced, partly in combination with theory, the expression of the 

main wave S~ (To) in terms of spherical harmonic functions (as he did for $2 (p); 
cf. Section 2S.4A) for the terms of degree Is[+i  equal to 1,2,3. Theoretically such 
expressions have also been deduced, for the equinoctial season, by Siebert (1961) on 
the basis of  absorption of solar radiation, and by Kertz (1957), who took account 
also of mass exchange by turbulence. Table 2S.7 gives their results; the main term 
proportional to PI  is not greatly larger than the terms in Pz ~ (asymmetrical to the 

equator) and P3 ~. "As shown by Laplace (see Lamb, 1932, pp. 341-2), no changes in 
the elevation of the free surface of an ocean of uniform depth covering the whole 
earth will occur if the generating force is of  the form P~. We may therefore surmise 

that the corresponding term in the diurnal temperature oscillation will not cause an 
appreciable pressure oscillation of this form" (Haurwitz, 1965). 

These ground data, however, need to be considered along with data for S(T) at 
higher levels (Section 2S.5), in considering the (certainly thermal) generation of 

S1 (P) .  

Haurwitz and M611er (1955) analyzed the annual mean data for $1 (T) as follows: 



50 RICHARD S. LINDZEN AND SYDNEY CHAPMAN 

TABLE 2S.7 
Harmonic coefficients of the diurnal surface temperature wave 

Wave Type Isl + i Haurwitz Kertz Siebert 
Amp. Phase const. Amp. Phase const. Amp. Phase const. 

1 1.007~ 232 ~ 0.748~ 225 ~ 0.158~ 180 ~ 
Sll(To) 2 0.647 232 0.439 225 - - 

3 0.502 238 0.083 225 0.020 0 

Studying the S(T) curves for many stations they distinguished three types, polar, 
temperate and tropical; in any one of these areas, S(T) was similar in type, but 
its range A differed f rom station to station. They determined standard polar, temperate 

and tropical forms of S(T), here denoted by Sp, Sty, Str, of  range 1 ~ for each of 
these they gave bihourly values of  the deviation from the mean. They divided the 
earth's surface into a set of areas bounded by meridians 20 ~ apart and latitude circles 

10 ~ apart ;  for each of these they determined the fraction k covered by land. They 
read the range A from a chart given by Shaw (1936), and took S(T) for each such 
area to be given by kAS, where S signifies Sp, Ste or Str according to the situation: 
the semidiurnal component  of the variation, for all the areas, was their basis for a 

spherical harmonic expression of $2, made along the lines already described in con- 
nection with $2 (p). The expression included a zonal standing wave S o (T), expressed 
as follows, the dominant term being P3. 

S o (T) = 0.024 sin (2tu + 219 ~ + 0.076 P1 sin (2t u + 194 ~ 

+ 0.040P 2 sin (2t u + 214 ~ + 0.112 P3 sin (2tu - 1 ~ + 0.104 P4 sin (2tu + 56~ 

For the part  of  the wave that follows the sun, $22 (T), they modified their material 

by taking k to be the same (a mean value) over each belt of latitude, independent of  
longitude. This led to the following expression: 

S~(T) = 0.301 P2 z sin (2t + 65 ~ + 0.368 P~ sin(Zt + 65 ~ 

+ 0.113 P]  sin(2t + 68~ 

Here the term P32 asymmetrical with respect to the equator exceeds the other main 
t e r m P  2, the reason being the great difference in the land fractions on the two sides 

of  the equator. 
For the P 2 term (only) they revised the calculation by taking account of  the variation 

of k in each belt of  latitude. This led to the conception of a semidiurnal temperature 
variation whose phase varies with Greenwich time. This complicated picture would 
be still more complicated if the P~ term were taken into account. 

These determinations of S2(T)and  S2(T) were discussed in connection with the 
thermal excitation of the corresponding p variations. But further consideration of 
this problem is required, to take account of  the influence of S2(T ) at other levels, 
such as in the ozone layer. 

Siebert (1957), using January and July data for S3(T), gave the following ex- 
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pression for the amplitude of the seasonally reversing part: 

0.018 p3 + 0.075 P] + 0.064 p3 § 0.057 p3 § 0.050 p3, 

with phase 45 ~ in July and 225 ~ in January: and the following for the amplitude of 
the unchanging part, with phase 12~ 

0.067 p3 + 0.030 p3 + 0.014 p3. 

The theoretical study of S(T) made by Kertz (1956a) led to results expressing 
various components in terms of spherical harmonics. Kertz (1956b) discussed the 
nature and geographical distribution of 3'4 (T) in relation to 5'4 (p), and also compared 
his results with the observational data (Pramanik, 1926) for continental stations 
(only). Kertz took S(T) to be zero, to a first approximation, over the water. The 
theoretical amplitudes were found to be too small by a factor of order 2, and phase 
differences also were found for some of the Pm 4 terms. No clear conclusions were 
reached regarding the relation between $4 (T) and $4 (p), and further study of the 
observed data and of their seasonal variations was urged. 

2S.6. The Daily Wind Variation S(V) 

The daily wind changes have been studied much less than S(p) and S(T). They 
depend greatly on topography and weather (e.g., land and sea breezes near coasts). 
The observations also depend much on such local influences as the height and situation 
of the anemometers, which have far less effect on the barometer. These local effects 
on wind are described in meteorological textbooks. 

The world-wide distribution of the wind has some notable planetary features, such 
as the trade and counter-trade winds, but we know little about the world-wide 
distribution of the daily variation S(V). M611er (1940) attempted, on the basis of a 
10-year series of Potsdam wind data, to distinguish between a convective part due 
to local heating and cooling, and a pressure gradient part. 

In the process of determining the lunar tidal wind variation L(V), for Mauritius 
(Chapman, 1949) and for Uppsala and Hongkong (Haurwitz and Cowley, 1969), 
values of $2 (V) were obtained, as follows, for S 2 (u), $2 (v) - see 2L. 13; here u and v 
denote respectively the southward and eastward wind components of V (in Chapter 3 
these are referred to as northerly and westerly); the unit is 1 cm/sec. 

Mauritius 
20~ S; 16 years 
$2 (u): 13.4 sin (2t + 263 o); 
$2 (v): 27.6 sin (2t + 92 ~ 

Hongkong 
23~ N; 67 years 
18.1 cm/sec _+0.4; 199~ 
13.0 cm/sec _+0.4; 288.3; 

Uppsala 
59~ 84 years 
2.3 cm/sec +0.4; 341 ~ 
8.4 cm/sec +0.3; 51% 

Figure 2L.9, lower part, p. 103, gives the harmonic dial vectors for S 2 ( - - u ) ,  S 2 (t)) at 
Mauritius. Figure 2L.10, lower part, p. 104, shows how the S2(V) vector changes 
during the day - the curve is described twice daily, before and after noon. The same 
curve describes the path of a particle that moves solely according to $2 (V); for this 
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interpretation the scale on the left of the origin is to be used, and all the hour numbers 
are to be increased by 3. Thus the total excursion of the particle on either side of its 
mean position is 23 kin. 

It is of interest to compare the value of S 2 (V) obtained from the observations, 
with the value calculated from S 2 (p), for an atmosphere on a rotating earth, but 
ignoring friction. The equations of motion are as follows; a denotes the earth's 
radius, o) its angular velocity: 

~u 1 0 p  
- -  - 209v cos 0 - 
~?t ~ a#O 

~v 1 ~p 
- -  + 2cou cos 0 - 
~?t Q a sin 0 c3(0 

We consider only the main term in $2 (p), given in 2S.4a, namely 

Ps sin3 0 sin(4~zt./T s + 2(0 + (7), Ps = 1.16 rob, (r = 158 ~ 

Here tu is taken to be expressed in seconds. Thus in connection with $2, 

27c 

~ t T s c~ (0 " 

It is readily verified that the solution of the equation for $2 (V) is 

S2(u) = 2.5 Cs cos0 sin(2t + (7 + 90~ 

Sa(v ) = C s (1 + 1.5 cos 2 0) sin(2t + (7 + 180~ 

where 
C s = ps/~aco = 20.0 cm/sec. 

Thus the 'theoretical' phase for 8 2 (U) should be 248 ~ in northern latitudes, and 68 ~ 
in southern latitudes; for S2(v ) it should be 338 ~ in all latitudes. These phase predic- 
tions do not agree well with the determined results given above. The amplitudes are 
still more discordant; for S2(u) they are 17.2, 19.8 and 40.3 cm/sec, and for S2(v) 
they are 23.5, 24.7 and 39.4, respectively for Mauritius, Hongkong and Uppsala. 
The theoretical amplitudes increase with latitude; instead the observational values 
decrease. For Mauritius the amplitude agreement is fairly good, but with increasing 
latitude it changes to disagreement, pronouncedly so for Uppsala. 

As remarked by Haurwitz and Cowley (1968), the angle e, measured anticlockwise, 
towards the east, between the southerly direction and the wind vector, is given by 
tanc~=v/u. Hence differentiation with respect to time gives d~/dt by the equation 
(usecc@ dc~/dt=2UoVo s in(a , -av) ,  where Uo, Vo denote the amplitudes, and o- u, (Tv 
the phases, of S2(u) and S2(v). Thus, if sin(o-,-  (Tv) is positive, the wind vector 
rotates anticlockwise, or clockwise if it is negative. For Mauritius sin((7,-(7~) is 
positive; hence, as shown by Figure 2L.10, its S2(V ) vector rotates anticlockwise. 
In this respect, but not as regards the magnitude of (7,-o-~, S2(V ) at Mauritius 
agrees fairly well with the theory. At the two northern stations the phase differences, 
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but not the phases, agree fairly well, in sign and magnitude, with the theory. It  

remains to be considered whether the neglect of  friction, in the equations of motion, 

can account for these discrepancies with theory; certainly near the ground friction 
must modify these systematic winds. 

2S.7. Atmospheric Daily Changes above Ground Level 

The great bulk of  tidal and thermotidal analyses have been made for surface data. 
Obviously this is because such data are most readily available. However, at the 

surface, daily variations (at least those on a global scale) usually constitute only a 
small fraction of the meteorologically interesting variation. As pointed out in 1.11, 

it is only higher in the atmosphere that daily variations comprise an important and 

eventually dominant part of  the total fields. Above the ground, daily variations are 
not only scientifically interesting, they are also major components of the physics of 
the atmosphere. It  is, therefore, regrettable that above-ground data are both rarer 
and more expensive to obtain than surface data. Nevertheless, in view of the large 
relative and absolute magnitude of daily variations in the upper atmosphere, less 

material is necessary to isolate the various oscillations, and over the last 15 years 
or so, appreciable progress has been made in this area. 

2S.7A. DAILY VARIATIONS BETWEEN THE GROUND AND 30 KM 

Data at these heights are available from balloons for both wind and temperature - 
though data for the former appear more common and reliable. Data from many 

stations are available every 12 hrs, while a smaller number of  stations take soundings 
every 6 hrs. Data  are taken at standard hours, which, at present, are 0000 and 1200 
G M T  for stations taking soundings every 12 hrs, and 0000, 0600, 1200 and 1800 G M T  
for stations taking soundings every 6 hrs. Prior to 1 June 1957, the standard hours 
were 0300 and 1500 G M T  and 0300, 0900, 1500 and 2100 respectively. Thus, there 
are available for many stations long term means of the wind at 6-hour intervals, and 
for fewer stations at 3-hour intervals. This situation existed somewhat earlier in 
Great  Britain, where in the early 1950's there existed nearby stations taking soundings 
at 0000, 0600, 1200 and 1800, and at 0300, 0900, 1500 and 2100. Such data give eight 
values for the wind equispaced over a day. These values can be harmonically analysed 
in the manner described in Section 2S.2, to give the first four harmonics. This was 
first done by Johnson (1955) for data from 150 mb-100 mb over England. Data  for 

one year were used. The deviation of the annual mean wind components for stated 
hours from the overall means is shown in Table 2S.8, taken f rom Johnson's paper. 

TABLE 2S.8 
Deviation of annual mean wind-components for stated hours from the overall means (Johnson, 1955) 

Time GMT 03 06 09 12 15 18 21 24 
u (cm/sec) -- 0.5 +27.8 +12.9 --53.0 48.9 +20.6 -I-36.6 -}- 5.7 
v (cm/sec) 22.1 -- 2.6 47.4 --36.1 23.7 28.3 1.5 10.3 
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The harmonic analysis of the data in Table 2S.8 yields 

S(u) = {27.8 sin(0 + 92 ~ 14') - 34.5 sin(20 + 74~ ') 
+ 3.1 sin(30 + 80032 ') - 0.13 sin (40 - 30~ cm/sec, (1) 

S(v) = {26.2 sin(0 + 144~ ') + 26.2 sin(20 + 57') 
- 3.6 sin(30 - 26~ ') + 0.0 sin(40)} cm/sec (2) 

where 0 goes from 0 to 360 ~ as time goes from 0 to 24 hrs GMT. The most notable 
features of Equations (1) and (2) are the dominance of the diurnal and semidiurnal 
components, and their almost equal amplitude. Johnson (1955) performed a careful 
statistical analysis of his data, showing it to be significant. He did not, however, 
calculate probable error circles. A perusal of his monthly means suggests that the error 
circles would have a radius of about 5 cm/sec. Subsequently, similar analyses were 
done on collections of data from Washington, D.C. (Harris, 1959) and from Terceira, 
Azores (38~ 27~ (Harris, Finger and Teweles, 1962). Analyses for eight more 
stations between 30~ and 76~ were made by Harris, Finger and Teweles (1966), 
whose results, given in Table 2S.9, are typical of those they obtained at all stations. 
Amplitudes are of order 30 cm/sec, and phases are typically such that the diurnal com- 
ponent of the wind blew northward at about local noon; maximum westerly flow 
occurred about 6 hours later. A mild decrease in amplitude from 30 ~ to 76 ~ was 
noted for both diurnal and semidiurnal oscillations. There were also some stations 
(primarily continental stations) where the diurnal oscillation had a distinct maximum 
in amplitude near the ground (ca. 70 cm/sec); at these stations the amplitude of the 
diurnal oscillation was greater (at most tropospheric levels) than at the other stations. 
In general, however, the picture of the daily wind variations presented by Harris, 
Finger and Teweles (1966) is fairly simple. A study of the daily variations over the 
central United States by Hering and Borden (1962), using 6-hourly data for summer, 
1958, showed a much more complicated picture. Their data indicated distinct maxima 
(ca. 1 m/s) in the diurnal wind oscillation amplitude at 1 km, 5 km and 12 kin. These 
maxima appeared to be associated with surface topography; Wallace and Hartranft 
(1969) confirmed this by an extensive study. They used the previously established fact, 
that the daily variation of wind consists predominantly of the diurnal and semidiurnal 
components, to conclude that the long term average of the differences between wind 
data taken at 1200 UT and 0000 UT should yield the diurnal component of the wind 
at 1200 UT. Moreover, most radiosonde stations take their soundings simultaneously 
in universal time. Thus, if one draws the twelve hour wind difference vectors at a given 
level for many stations on a map, one will have a picture of the general circulation due 
to the diurnal wind oscillation at that level. If the diurnal oscillation were merely 
travelling westward with the sun, this circulation would consist in only zonal wave 
number one (i.e., longitude dependence would be given by sin (q5 + ~)). Instead, at low 
levels there were circulation gyres associated with major topographical features such 
as mountain ranges. The influence of these features was evident as high as 200 mb, but 
diminished at still higher levels. Above 200 mb, however, there remained gyres associ- 
ated with the continents and oceans. By 15 mb the simple zonal wave number one 
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TABLE 2S.9 

Diurnal and semidiurnal variations of the eastward and northward components of the wind at 
Terceira, Azores. Annual mean values of the amplitude, s, in cm/sec, and phase, a, in degrees. P.E. 
is the radius of the probable error circle of the annual means. Time of maximum wind is related to 
by the expression tm~x. = (450 ~  where n = 1 for diurnal variations, and n = 2 for semidiurnal 

variations. After Harris, Finger and Teweles (1962) 

Mean Variation of eastward wind component Variation of northward wind component 

pressure, Diurnal Semidiurnal Diurnal Semidiurnal 
mb sl a l  P.E. s2 a2 P.E. s1 al  P.E. s2 a2 P~E. 

Ground 2 75 ~ 6 8 324 ~ 7 7 341 ~ 8 21 52 ~ 6 
1000 4 115 9 12 298 6 6 337 6 17 52 6 

950 2 154 8 14 317 8 21 271 1l 22 35 6 
900 2 248 3 19 292 6 32 272 9 23 31 8 
850 8 257 11 14 266 7 25 256 13 23 14 8 
800 4 322 10 22 313 8 18 265 11 31 359 8 
750 22 145 14 22 278 10 16 251 15 29 12 14 
700 5 304 11 18 304 8 9 4 l l  22 33 9 
650 4 255 11 20 292 5 13 318 9 23 50 8 
600 8 63 12 20 272 6 12 281 11 16 1 7 
550 20 159 10 31 327 9 18 249 13 16 7 10 
500 20 124 9 25 276 10 15 317 15 15 63 9 
450 17 76 11 26 295 10 22 295 16 20 346 10 
400 18 1 8 28 291 10 14 342 17 I0 317 12 
350 19 258 12 42 291 9 13 257 19 16 319 9 
300 24 193 18 51 292 14 8 247 21 14 4 13 
250 52 177 16 26 245 12 52 267 17 8 285 12 
200 56 153 15 46 267 11 18 238 14 15 338 12 
175 13 164 13 37 278 14 34 241 13 25 339 10 
150 16 186 11 39 300 11 18 185 14 52 18 9 
125 14 127 8 29 242 9 5 241 7 23 4 8 
100 27 112 10 55 280 10 34 153 11 28 19 6 

80 31 111 11 37 280 9 21 194 9 28 21 7 
60 34 109 11 36 262 8 40 196 9 27 5 10 
50 19 132 9 41 256 8 34 236 10 42 356 7 
40 6 96 11 44 263 12 27 235 11 49 4 8 
30 23 181 11 67 280 13 21 221 10 65 17 11 
20 30 147 12 62 295 12 64 235 13 60 36 14 
15 25 114 23 9l 303 20 66 238 14 61 30 10 
I0 . . . . . . . . . . . .  

p a t t e r n  a p p e a r s  to  b e  d o m i n a t i n g .  W a l l a c e  a n d  H a r t r a n f t  a l so  s h o w e d  t h a t  t o p o -  

g r a p h i c a l  effects  a re  s m a l l  a t  h i g h  l a t i t u d e s  a n d  d u r i n g  w i n t e r ;  t h e y  o c c u r  p r i m a r i l y  

d u r i n g  t he  s u m m e r  a t  t e m p e r a t u r e  a n d  t r o p i c a l  l a t i t udes .  A t  t r o p i c a l  l a t i t u d e s  t o p o -  

g r a p h i c a l  d i s t u r b a n c e s  p e n e t r a t e  to  g r e a t e r  a l t i t u d e s  t h a n  a t  h i g h e r  l a t i t udes .  T h e s e  

f e a t u r e s  a re  seen  in  F i g u r e s  2S .9 -11 .  

I n  F i g u r e  2S.9 we a l so  see v e c t o r s  r e p r e s e n t i n g  w i n d  d i f fe rences  b e t w e e n  0300  a n d  

1500 o b t a i n e d  f r o m  d a t a  o b t a i n e d  b e f o r e  J u n e  1957. 

2S.7B.  DAILY VARIATIONS FROM 30 KM-60 KM 

Since  1959, r e g u l a r  s o u n d i n g s  o f  t he  w i n d  b e t w e e n  30 a n d  60 k m  h a v e  b e e n  m a d e  a t  

a s m a l l  n u m b e r  o f  s t a t i o n s  u s i n g  m e t e o r o l o g i c a l  r o c k e t s  a n d  a v a r i e t y  o f  t e c h n i q u e s .  
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Fig. 2S.9. Annual average wind differences 0000-1200 GMT (solid) and 0300-1500 GMT (dashed) 
at 700 mb, plotted in vector form. The length scale is given in the figure. After Wallace and 

Hartranft (1969). 

Unfortunately, most soundings were made near local noon. Thus, it appeared that 
special series of  closely spaced soundings would be needed in order to detect daily 
variations. Sequences of 2-hourly soundings were taken over 24 hours over Eglin Air 
Force Base on 9-10 May 1961 (Lenhard, 1963), and over White Sands Missile Range 
on 7-8 February 1964 and on 21-22 November 1964 (Miers, 1965). Another sequence 
of 16 soundings over 51 hours was taken at White Sands Missile Range between 
30 June and 2 July 1965 (Beyers, Miers and Reed, 1966). It  is clear that such limited data 
hardly allow meaningful error analyses. However, all the experiments suggested the 
presence of a strong daily variation above 40 km. This is seen in Figure 2S.12 taken 
from Beyers, Miers and Reed (1966), showing the deviation of the meridional wind f rom 
its mean as a function of time. There can be little doubt that daily variations dominate 
the deviation. From Figure 2S.12 we estimate the amplitude of the diurnal wind 
oscillation to be about 8 m/s at 46 km. This amplitude is sufficiently great to suggest 
that our earlier statement that routine soundings were inadequate for determining 
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Fig. 2S.10. Annual average wind differences 0000-1200 GMT at 60 mb plotted in vector form. The 
length scale is given in the figure. After Wallace and Hartranft (1969). 

daily variations be reconsidered. If one divides the day into 12 two-hour segments, 
then we find that there are two stations (White Sands and Cape Kennedy - both near 
30 ~ where there are several soundings in each time segment. One could, therefore, 
calculate mean wind profiles for each time segment, and harmonically analyse these 
means at each altitude. Unfortunately, the soundings for each time segment are often 
irregularly distributed over the year, and there are problems of trend removal. For 
zonal wind, we know that there are variations between winter and summer of order 
100 m/s. In addition the winter mesosphere is disturbed by large scale planetary waves 
with periods of order 5 days. These affect both the zonal and meridional components 
of the wind. However, the summer mesosphere appears to be relatively free from these 
large scale disturbances, and the mean meridional flow in the summer mesosphere 
appears to be very small. Thus, it appears possible to use routine soundings at 
White Sands and Cape Kennedy during the summer to determine the daily variation 
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Fig. 2S.11. Annual average wind differences 0000-1200 GMT at 15 mb plotted in vector from. The 
length scale is given in the Figure. After Wallace and Hartranft (1969). 

in the meridional (i.e., northerly) wind. This was done by Reed, McKenzie and Vyver- 
berg (1966a), whose results are entirely consistent with the previously mentioned analy- 
ses. Figures 2S.13 and 2S.14 show vertical distributions of amplitude and phase of 
the diurnal oscillation in northerly wind from various analyses. The amplitude is small 
(less than 1 m/s) below about 37 km (consistent with findings cited in Section 2S.7A), 
rising rapidly to a maximum of about 8 m/s near 50 km and decreasing again above 
50 kin. There is some evidence of a resumed increase in amplitude above 60 km. The 
phase of the oscillation is such that maximum northerly wind occurs near 0000 local 
time at the level of maximum amplitude. Reed (1967) also attempted to use routine 
data to determine the solar semidiurna! oscillation at White Sands and at Ascension 
Island (8 ~ His results for White Sands are shown in Figure 2S. 15. The determination 
at 30 km appears consistent with the results cited in Section 2S.7A. The amplitude of 
the semidiurnal oscillation remains small (,-~ 1 m/s) until 50 kin, where it begins to 
increase to values comparable with the amplitude of the diurnal oscillation. There is 
clearly a 180 ~ shift of phase between the balloon levels and the region above 50 km. 
Given the small amplitude of the semidiurnal variation below 50 km, however, it is 
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48, 52, 56 and 60 km. Positive values indicate a south to north flow. After Beyers, 

Miers and Reed (1966). 

doubtful whether the level at which the phase shift occurs can be reliably determined 
with currently available data. 

The ease of determining diurnal oscillations in the meridional wind during summer 
led Reed, Oard and Sieminski (1969) to analyse data from regions with fewer sound- 
ings. First, they combined soundings from stations at nearby latitudes (namely, Fort 
Churchill (59 ~ and Fort Greely (64 ~ Green River (39 ~ Wallops Island (38 ~ 
and Point Mugu (34~ White Sands (32~ and Cape Kennedy (28 ~ Barking 
Sands (22~ Grand Fork (21 ~ and Antigua (17~ Ascension Island (8 ~ 
The resulting data for each group of stations was analysed at one kilometer altitude 
intervals by fitting diurnal and semidiurnal harmonics to the irregularly-spaced data 
points by the method of least squares. Each datum was weighted equally. Since 
soundings at the stations considered were concentrated primarily between the hours 
of 0800 and 1600 local time, the analysis amounted, in essence, to analysing about 
8-10 hours of data for diurnal oscillations. This method is adequate for determining 
amplitudes and phases if one is certain a pr ior i  that the meridional wind variations 
are due entirely to diurnal and semidiurnal oscillations. What happens under more 
general circumstances is analysed in Section 2S.7E. In the present case Reed (private 
communication) has stated that more conventional methods of analysis, giving equal 
weight to each time interval, yielded basically similar results. Thus, the results of 
Reed et al. (1969) are at least likely to be meaningful. Some examples of their results 
are given in Figures 2S. 16 and 2S. 17, giving the distribution with height of the ampli- 
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and summer conditions. After Lindzen (1967a). 

tude and phase of the diurnal oscillation at stations near 61 ~ and near 20~ The 
most notable difference in the oscillation at these two latitudes is in the variation of 
phase with height: pronounced at 20 ~ it is virtually non-existent at 61 ~ Figures 
2S. 13, 14, 16 and 17 show curves derived theoretically. These are discussed in Section 3.7. 

In addition to wind measurements, meteorological rockets are also used for 
temperature measurements (using thermistor beads). Sequences of  temperature 
soundings over White Sands appear to show day-night temperature differences at 
45 km of order 20~ (Beyers and Miers, 1965) - much larger than expected on the 
basis of radiative considerations (Pressman, 1955; Johnson, 1953). Much controversy 
was stimulated by the large claimed daily temperature variation, and it now appears 
that the changes observed were largely due to radiation errors (Hyson, 1968). Finger 
and McInturff  (1968), carefully analysing balloon data in such a manner as to elimi- 
nate radiation errors, and using balloon soundings reaching 36 km, found that 
day-night temperature differences at 3@ km are indeed much smaller than indicated 
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winter, equinoctial and summer conditions. After Lindzen (1967a). 

by rocket data. Finger and McInturff 's  analysis suggests an amplitude for the diurnal 
temperature oscillation at 36 km varying from 1 ~ at 40 ~ to 0.5 ~ at 70 ~ with 

maximum temperature occurring near 1800 hrs local time. 

2S.7C. DAILY VARIATIONS FROM 80-120 KM 

Rockets capable of  sounding the atmosphere above 60 km are, for the time being, 
too costly for routine use. While much useful rocket information is available for 
altitudes above 60 kin, it is neither as plentiful nor as regular as the data from below 
60 kin. Thus, most of  our data for this region comes from natural phenomena which 

make possible the indirect sensing of upper atmospheric winds f rom the ground. 
The most important measurement technique at present consists in observing by 

means of doppler radar the motion of ionized trails left by meteors disintegrating on 
traversing the atmosphere. Such disintegrations occur mainly between 80 and 110 km. 
At these altitudes the collision frequency for ions with neutral air molecules is much 
greater than the ionic gyromagnetic frequency. Thus, the ions move with the neutral 
air and serve as a tracer of  neutral air motions. The first analyses of  upper atmospheric 
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at 20~ After Reed, Oard and Sieminski (1969). 

daily variations were made by Greenhow and Neufeld (1961) at Jodrell Bank (53 ~ 
and by Elford (1959) at Adelaide, Australia (35 ~ Greenhow and Neufeld used data 
for about 100 days scattered through the years 1953-58, while Elford used data for 
about 400 days from 1952 until 1955. Their observed winds were, in fact, averages 
over 80-100 km. Haurwitz (1962a) reviewed tidal phenomena in the upper atmo- 
sphere, and prepared convenient displays (1964) of the results obtained by Greenhow 
and Neufeld, and by Elford. These are shown here in Figures 2S.18 and 2S.19. From 
Figure 2S. 18 we see that the diurnal contribution to the average wind between 80 and 
100 km above Jodrell Bank is typically only about 5 m/s, and the semidiurnal con- 
tribution is typically 13 m/s (the numbers refer to oscillation amplitudes). From 
Figure 2S.19 we see that diurnal amplitudes above Adelaide are typically more than 
20 m/s, and the semidiurnal amplitudes there are only of order 10 m/s. In both figures, 
E refers to equinoctial months (March, April, September and October), J to summer 
months (May, June, July and August), and D to winter months (November, Decem- 
ber, January and February). An important part of Haurwitz's presentation is the 
estimation of probable error circles. A meaningful determination generally requires 
that the magnitude of a quantity be more than three times the radius of the probable 
error circle. By this criterion, it is clear that several of the seasonal means shown in 
Figures 2S. 18 and 2S. 19 are not reliably determined. 

Table 2S.10 (p. 66) (Haurwitz, 1964), indicates how often, among the data con- 
sidered, the mean wind, in each component, is greater or less than the amplitude 
(sl or s2) of the diurnal and semidiurnal wind variations. It shows that between 80 
and 100 km the daily oscillations are a major part of the general circulation there. 
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Fig. 2S.18. Harmonic dials for the mean northerly and westerly components of (a) the diurnal and 
(b) the semidiurnal wind variations at Jodrell Bank at 80-100 km. Crosses indicate annual mean 

values, dots seasonal values. Circles show probable errors of the seasonal means. 
From Haurwitz (1964). 

More recently, radio meteor techniques capable of observing hourly winds with 
height resolutions of  order 1 km have been developed (Revah, Spizzichino and Masse- 
beuf, 1967). Analyses of  early observations over Garchy, France (47~ show the 
presence of  a semidiurnal oscillation whose amplitude varies from about 10 m/s at 
80 km to 40 m/s at 100 km. The phase increases upward at a rate appropriate to a 
vertical wavelength of  about 90 km, though in some months the phase increase was 
more rapid. 

The daily variations in wind at altitudes from about 110 to 120 kin, as inferred from 
dynamo calculations, are somewhat difficult to interpret. Such calculations have 
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hitherto assumed that  winds are independent of  altitude (which, as we have seen, 

is not  the case below 110 km). Using electrical conductivities calculated f rom observa- 

tions o f  electron distributions with height and their time variations, one can calculate 

the time varying 'slab'  winds giving rise to the observed quiet day daily variations in 
the geomagnetic field. Such calculations have been made by Maeda  (1955) and Ka to  
(1956). Some complications and uncertainties involved in these calculations are 

discussed by Hines (1963) and Price (1969). Kato ' s  results are shown in Figure 2S.20. 
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TABLE 2S.10 

Number of cases when the mean wind is larger or smaller than the amplitude of the 
first (SO and second ($2) harmonic of each wind component. From Haurwitz (1964). 

Jodrell Bank Adelaide 

NS EW NS EW 

g>S1 33 58 5 16 
~<$1 61 34 32 21 
f > S z  15 41 9 23 
~<$2 81 57 28 14 
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They suggest that the diurnal circulation is stronger than the semidiurnal circulation, 
and that both are larger at high latitudes than at low latitudes. 

Rocket soundings of the atmosphere above 80 km are still too infrequent (and 
sometimes unreliable) to provide much information concerning daily variations. 
Wind measurements between 90 and 120 km can be made by visually observing vapor 
trails released by rocket. Unfortunately, most such measurements have used sodium 
vapor, which can only be seen in twilight. Nevertheless, such soundings (a total of 
29 soundings were made by Manring, Bedinger, Knaflich and Layzer (1964) between 
August 1959 and May 1963 from Wallops Island, Virginia and from Sardinia - both 
near 38 ~ may be grouped into dawn soundings and dusk soundings. If one assumes 
that the wind is primarily due to a prevailing wind plus diurnal and semidiurnal 
oscillations, then the difference between dawn and dusk soundings should be indicative 
of the diurnal range (more precisely, it should be an upper bound). Similarly, the 
average of dawn and dusk soundings should be due to a combination of the prevailing 
wind and the semidiurnal oscillation. An analysis of the differences and means of the 
averages of dusk and dawn soundings has been made by Hines (1966). Figure 2S.21 
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Fig. 2S.21. Vectograms showing the diurnal tide at dawn and the prevailing wind plus the semidiurnal 
tide at its dawndusk phase, as functions of height. After Hines (1966). 

shows his findings. The amplitude of the diurnal oscillation appears to increase from 
about 10 m/s at 90 km to about 50 m/s at 105 km, and to decrease again above 105 km. 
The wind vector rotates about 360 ~ in 22 kin, indicating a wave with a vertical wave- 
length of about 22 km. New vapors permit the observation of chemi-luminescent trails 
throughout the night (Rosenberg and Edwards, 1964). Though soundings using such 
vapors will not provide data over a full day, tidal analyses may still be possible along 
the lines described in 2S.7B and analysed in 2S.7E. 

28.7D. DAILY VARIATIONS IN THE THERMOSPHERE 

Artificial satellites regularly travel through the earth's atmosphere above 200 km. 
Air exerts a drag on the satellite proportional to the air density, and the drag modifies 
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the satellite's orbit in a predictable manner. Given the relation between drag and air 
density, and precise measurements of satellite orbits, one may obtain extensive data 

for atmospheric density. The method is described in detail by Jacchia (1963). Exten- 
sive measurements (Harris and Priester, 1965) show an extremely strong daily 
variation in density at all levels above 200 kin. Density varies by a factor of five during 

a day at 360 kin, maximum densities occur near 1400 hours local time. 

2S.7E. ANALYSIS OF DATA COVERING ONLY A FRACTION OF A DAY 

It is clear from 2S.b and 2S.c that for some time to come much of the available upper 
atmosphere data will cover only part  of the day (near noon from 30-60 kin, night 
from 100-120 km). The question arises as to whether such data can be adequate for 
determining daily variations. Clearly, if data are available at 5 different times, at 
least, within the fractional segment of  a day, and if we know, a priori, that the wind 

consists only in a prevailing wind plus diurnal and semidiurnal oscillations, then the 
data will be adequate; we fit a mean plus diurnal and semidiurnal components to the 
data, using the method of least squares. What  we wish to discuss here is what happens 
in such an analysis when other types of time variation are present. 

Let us assume that data are available at t = fi, where 

and let 

1) 
t~ - 12 hrs,  (3) 

n 

i = 1 , 2 , 3  . . . .  ,n 

f *  = c~ o + a: cosT~t/12hrs + bl sin~t/12 hrs + a2 cos ~t/6 hrs 

+ b2 sin rct/6 hrs. (4) 

Let f ( t i )  be the actual observations (averages) at t~. We wish to choose ao, al, bl, a2, 

b2 to obtain a best least squares fit o f f *  (ti) tof( t i ) .  Let 

2 (s (5) 
i=I 

The best least squares fit is obtained when 

OI/Oao = OI/gal = OI/Ob: = d l / c3a  2 = ~ I / a b  2 = 0 .  (6) 

Using Equation (5) we obtain 

I =  L f2  + na 2 + a21Cll + b2sll + a2c22 
i = 1  

+ b 2 s 2 2  - 2aoAo - 2aaA1 - 2baB1 - 2a2A2 

- 2b2B2 + 2aoalClo + 2aobaMlo + 2aoazCo2 

+2aob2m2o + 2alblM11 + 2aiazC12 + 2albzMzl 

+ 2b:a2ma2 + 2b:bzU12 + 2azbzm22, (7) 
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where 

and 

Equations 

Am = i f i cos mti 
i=1 

Bm = i f is inmti  
i=1 

Cjm = ~ cos j t l cosm h 
i=1 

Ujm = ~ sinjti sin mti 
i=1 

Mj,, = ~, sinjt~ cos mtl 
i=1 

(8) 

fi  = f (tl). 

(7) and (6) lead to five equations for ao, ai, bl, a2 and b2:  

nao + Cloal + Mlobl  + Co2a2 + M2ob2 + Ao 
Cloao + Cl la l  + M l l b l  + C12a2 + M21b2 = A1 
Mloao + Mlla l  + Slabt + M 1 2 a 2  + S12b2 = B1 

C02ao + C 1 2 a l  + M l z b l  + C22a2 + m 2 2 b 2  = A 2 

Mzoao + M2ial  + Sa2bl + M22a2 + $22b2  = B 2 . 

(9) 
(10) 
(11) 
(12) 
(13) 

These five equations are linear in ao, al, bl, a:, and b2, while Ao, A1, B1, A2, and B 2 a re  

linear inf.  If  f consists in components other than a mean plus diurnal and semidiurnal 
components, these other components will make 'spurious' contributions to ao, al, 
bl, at, and b 2. If we treat these other components separately, then the contribution 
of a combination of these components will equal the sum of the various contributions. 

We have investigated the following forms for f :  

(a) f (ti)=x/12hrs t i (14) 
(b) .f(h)= + 1, i=0,  2 . . . .  (15) 

f ( t i ) = - l ,  i=1,3 , . . .  
(c) f(ti) = sin2 ~z/3 hrs t i (16) 
(d) f ( t i ) = c o s 2  ~z/3 hrs t v (17) 

We have also considered n = 6  and n=  11. Tables 2S.11 and 2S.12 show the contri- 
butions the abovef( t l ) ' s  make to ao, at, bl, a2 and b 2 for the two choices of n. 

TABLE 2S.l l  

n=6  
fa fb fc fd  

a0 1.31 0 8.83 5.10 
ai --1.44 1.47 -- 4.42 -- .539 
bi .386 --.395 --13.0 --8.05 
a2 .132 --.671 --4.45 --3.49 
b2 .228 --1.16 3.49 .425 
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TABLE 2S.12 

n=11 
fa fb fc fd 

ao 1.43 3.19 --1.03 .468 
a! --1.50 .69 .544 .586 
bl .215 --4.80 1.54 -.825 
a2 .079 --1.77 .57 - .464 
b2 .27 .52 --.452 --.487 

W h a t  is significant in Tables  2S.11 and  2S.12 is tha t  spurious cont r ibu t ions  to 

ao, as, bl ,  a 2 and  b2 may  exceed the ampl i tudes  of  the v a r i o u s f ' s .  Thus the cond i t ion  

that  a field be largely due to  steady, semidiurnal  and  d iurna l  componen t s  mus t  be a 

very demand ing  condi t ion  indeed,  i f  the ca lcula ted  coefficients are no t  to be largely 

due to spur ious  contr ibut ions .  



CHAPTER 2L 

THE L U N A R  A T M O S P H E R I C  TIDE AS R E V E A L E D  

BY M E T E O R O L O G I C A L  DATA 

2L.1. Introduction 

The lunar atmospheric tide, whose existence was recognized by Newton, was studied 
by Laplace, as indicated in Chapter 1, both theoretically, and from barometric 
observations. His attempt to determine it from eight years' observations, made four 
times daily at unequal intervals at the Paris observatory, was unsuccessful; he used 
only 4752 such readings, and after considering the probable error of the result he 
got, he decided that it was unreliable. Bouvard (1827) extended Laplace's calculations 
by including another four years' data, making twelve years in all, January 1, 1815 
to January 1, 1827; from 8940 readings his result was an amplitude of 0.0176 ram, 
with maxima at 2h 8m and 14h 8m of lunar mean time. The great difference between 
this and Laplace's amplitude, 0.054 mm, confirmed Laplace's conclusion that the 
data were too few (in both cases) to provide a reliable result. 

In 1843 Eisenlohr renewed the attempt with twenty-two years' additional data 
(1819-40), using all four daily readings. Unfortunately he departed from Laplace's 
excellent method of computation, which involved only d~erences between readings 
on the same day, thus eliminating the influence of the large changes of pressure from 
day to day (cf. Figure 1.1) characteristic of such latitudes as that of Paris. Eisenlohr 
rearranged his data according to the nearest lunar hour (0 to 23) at the time of each 
reading. With unlimited data this method would lead to a satisfactory result, and 
give the complete average change of the barometer according to lunar time, with 
the much larger solar daily change averaged out. But with his limited data the number 
of readings per lunar hour ranged from 1302 to 1377, and the hourly means were 
consequently differently affected by the great weather variations of pressure. The 
means showed a quite irregular variation from hour to hour. Thus his laborious 
effort, in many ways well-planned, was fruitless. He rightly concluded that his data 
were insufficient to determine L 2, and hence afortiori were those of Laplace and 
Bouvard. He urged that hourly readings of the barometer be taken, so that in time, 
from a long series, L 2 might be determined. 

This is what actually happened, long afterwards. In 1945, Daniel Kastler and 
Juliette Roquet, working in the Department of Mathematics at the Imperial College, 
London, determined the annual mean L 2 at Paris from 26 years' hourly data obtained 
at the meteorological and magnetic station in the Paris suburb of Parc St. Maur. 
The result was that the amplitude is 13.4/~b (with probable error 2.7 /~b); this is 
distinctly less than Bouvard's result (23.5 /~b), and much less than that of Laplace 
(72/~b); the phase 105 ~ implies maxima half an hour before upper and lower mean 
lunar transit. Rougerie (1957) extended this determination (see pp. 90, 92). 
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2L.2. The Tropical Lunar Air Tide 

When Eisenlohr wrote (1843), L2 had already been determined from tropical pressure 
data, though the result was not published until 1847, by Sabine. Around 1840, several 
British colonial observatories, magnetic and meteorological, were set up under 
Sabine's leadership. In 1842 the director (Lefroy) of the St. Helena Observatory 
successfully used his seventeen months' (August 1840 to December 1841) of bihourly 
weekday barometric eye readings to determine L2. (No readings were taken on Sundays 
because of the Sabbatarian principles then supported in Britain.) His successor 
Smythe, with Sabine, confirmed the determination from hourly readings for three 
more years, October 1842 to September 1845. Sabine (1847) was even able to show 
from these data that the air tide was greater near perigee than near apogee. 

In 1852 the director (Elliot) of the Singapore observatory determined L 2 there 
from five years' data, 1841 to 1845. 

Later, when the Batavia observatory was established in 1866, these results stimu- 
lated its directors, Bergsma (1871, 1878) and Van der Stok (1882, 1885, 1887), to 
determine L2 from their hourly barometric data, recorded photographically. Bergsma 
published the first results, for 1866 to 1868, in 1871. By 1905, L 2 at Batavia was really 
well determined, from 350000 observations covering forty years (ref. Figure 1.3). 

2L.3. The Lunar Air Tide Outside the Tropics 

Laplace (1799, 1827) stressed the need, in deriving results from observations, to 
determine the probability that their error lies within narrow known limits. This need 
has been overlooked or neglected by a multitude of those who, before and since his 
time, have vainly sought for lunar monthly meteorological variations. Eisenlohr, from 
1833, was among these; but only a few of them have, like him, engaged in the more 
hopeful but still perilous search for lunar daily meteorological variations, in particular 
for L2. Of these few, some, like Kreil in 1841, or later Bouquet de la Grye, used quite 
inadequate data - for one year only, or even for five years, like Neumayer (1867), 
who in 1867 failed to obtain consistent results for L2(p) from five years' hourly data 
(1858 to 1863) for Melbourne Oat. 38 ~ Even Airy (1877), who used 180000 hourly 
values for Greenwich (51~ for twenty years, 1854 to 1873), unwisely concluded 
that "we can assert positively that there is no trace of lunar tide in the atmosphere". 
B/Jrnstein (1891) used only four years' data for Berlin and Vienna and Hamburg; 
for Keitum (55 ~ he used ten years' hourly data (1878 to 1887), but found "no trace 
of a semidiurnal variation such as a lunar tide would produce"; he thought, however, 
he had found a definite lunar diurnal variation, a view shared also by Wegener (1915). 
Barrels (1927) showed that these conclusions completely misinterpreted the actual 
results that B6rnstein had obtained, and that his supposed lunar diurnal variation 
was a purely chance effect, whereas L2 was contained in his curves, though it was 
ill-determined. The misinterpretation sprang directly from the neglect of Laplace's 
advice to consider the probable accuracy of the results. 

Morano (1899) used four years' data (1891 to 1894) for Rome Oat 42~ although 
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Neumayer (1867) had failed, by the same method applied to five years' data for 

Melbourne, in a rather lower latitude, to obtain a reliable result. The validity of  
Morano's result, which was probably near the true value of L 2 at Rome, remained 
uncertain. 

A new attempt (Chapman, 1918a) succeeded in determining L2 from the Greenwich 
hourly data, by then available for sixty-four years. Two-thirds of the material was 
rejected; the only days used were those on which the barometric range did not 
exceed 0.1 in. This was the first certainly valid nontropical determination of L 2. 

This investigation was planned and undertaken with guidance (Chapman, 1918b), 
in a very simple way, from the theory of random errors. According to this theory, 
if a single observation is subject to an accidental error e, the probable random error 
of the sum of N such (independent) observations is ex/N, and that of their mean is 
e/~/N. The moon produces a systematic (though very small) semidiurnal variation 
of  the barometer; if this is combined from N lunar days' observations (each in the 
form of a sequence of lunar hourly values), by forming the sum of the values for each 
lunar hour, the sequence of sums will contain N times the lunar daily variation. 
It will, however, be affected also by the other causes of variation, particularly, outside 
the tropics, by the succession of cyclones and anticyclones. If these produce an average 
random departure e of any hourly value from the long-term barometric mean, they 
will contribute to each lunar hourly sum of N hourly values a random contribution 
of the order e x/N. As N is increased, the regular lunar daily variation in the lunar 
hourly sequence of sums will increase proportionately to N, and the random con- 
tributions will increase, but proportionately only to x/N. Thus, although e greatly 
exceeds the range of the lunar air tide at Greenwich, the systematic tidal effect will 
altogether overpower the random contribution, if N is taken large enough. In the 
sequence of lunar hourly means, L2 is independent of N, whereas the random errors 
are of the order e/x/N. 

As the Greenwich data were used only for days of barometric range 0.1 in. or less, 
the average random departures e from each day's mean might be estimated as 0.01 
inch. As N was 6457, e/x/N would be about 0.00012 inch. 

Figure 2L. 1 (full line) shows the mean lunar daily variation of Greenwich pressure 
obtained from these N days, by a method of rearrangement of solar hourly values 
according to lunar time. Happily, this method avoided a pitfall, then unsuspected 
but afterwards disclosed by Bartels (1927), associated with the use of selected baro- 
metrically 'quiet' days (Chapman, 1936). 

The total range of pressure in Figure 2L. 1 is less than 0.001 in., and the change from 
one lunar hour to the next averages about 0.00015 in. This exceeds the average random 
error in Figure 2L.1, namely, 0.00012 in., and the systematic nature of the lunar 
daily variation is clearly manifest. Apart from its meteorological and dynamical 
interest, this determination has great statistical interest as a remarkable illustration 
of the 'law of combination of random errors' - an example confirmed by many later 
air-tide determinations, most notably by that of the tidal variation of air temperature 
at Batavia (Chapman, 1932a, b). 
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Fig. 2L.1. Daygraph of L2(p) for Greenwich computed from 6457 quiet days' hourly barometric 
data, 1854-1917; the broken line shows the semidiurnal component of the daygraph, computed by 

harmonic analysis. After Chapman (1918a). 

2L.4. The Month and the Lunar Day 

The moon describes an orbit round the earth in a plane inclined at 5 ~ 15 to the 
ecliptic; the pole of the orbit revolves about that of the ecliptic once in 18.60 years, 
so that the inclination of the plane of the moon's  orbit to the earth's equator varies 
between 23~ + 5 ~ or 18~ and 28~ The moon's  declination consequently 
changes during each passage round its orbit between maximum northern and southern 
values which may vary from 18�89 ~ (for instance, in the year 1941) to 28�89 ~ (in the year 
1950); in midwinter, therefore, the full moon stood 10 ~ higher at midnight in 1950 

than in 1941. The mean distance of the moon from the earth is 384405 kin, or 60.335 
times the earth's radius (6371.2 kin). The eccentricity of  the orbit is considerable, and 
slightly variable; the mean ratio of  the maximum distance, at apogee, to the minimum 
value, at perigee, is 1.1162, and the maximum ratio is 1.1411. The period from one 
apogee to the next is called the anomalistic month. The apogee revolves round the 
lunar orbit once in 8.8 years. 

The moon 's  passage round the earth is accomplished in 27d7h43 m (the sidereal 
period), so that the mean lunar day, or average interval between two successive 
passages of the moon across any terrestrial meridian, is 24h50.47 m, though the actual 
interval varies owing to the changing distance and orbit of the moon. 

The moon revolves round the earth relative to the line OC through the sun's 
centre once in M days, where M=29.5306. This period is called a lunation, or the 
synodic or lunar month. The moon's  phases depend on the angle v between the 
meridian half-planes through the sun and moon (reckoned positive when the moon 
is to the east of the sun). New moon corresponds to v = 0, and the values of v at first 
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eighth phase, first quarter (half-moon), full moon, and so on, are 45~ 90 ~ 180 ~ and 
so on. The phase is a measure of  the moon 's  age, reckoned from new moon. 

The east longitude z of  any station P relative to the meridian opposite to that 

containing the moon is a measure of  the local apparent lunar time. Clearly, if t is 
the local apparent solar time (Figure 2L.2), 

t = r + v ,  (1) 

if angular measure is used. 

MEAN 
(OR ACTUAL) 

MOON 

MEAN 
(OR ACTUAL) 

SUN 

Fig. 2L.2. To illustrate the relation between solar and lunar (apparent or mean) time and the lunar 
phase angle. After Sugiura and Fanselau (1966). 

Mean instead of apparent solar time t is used (as in civil life) in calculating solar 
daily variations; because it proceeds uniformly, its use is more convenient in ob- 
servatory work and records. The difference between apparent and mean time can 
be readily allowed for in any discussion concerning variations with apparent time 
(cf. Section 1.2A). By analogy with the mean solar time, a mean lunar time is in- 
troduced, determined by the motion of  a fictitious mean moon, which is imagined 
to revolve uniformly round the earth. We shall now use t and T to denote mean and 
not apparent solar and lunar time. Just as t is counted in 24 solar hours from mid- 
night to midnight, z is 0 for the lower transit of  the mean moon and increases by 
24 lunar hours up to the next lower transit. A mean lunar day equals 1.03505 solar 
days, or 24h50.47 m. I f  now we denote by v the angle between the meridian half 
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planes containing the mean sun and mean moon, then (Figure 2L.2) 

t = z + v ; (2) 

here t, v, and ~ may be reckoned either in angular measure or in hours (15~ l hour). 
The age v of the mean moon completes a full cycle of 24 hours in the course of a 

synodic month;  v increases by 0.81272 hours in the course of a mean solar day; 
correspondingly v ~ increases by 12 ~ 19080 in each such day. 

The differences between apparent and mean lunar time are much greater than 
those in the solar case. The following extreme cases illustrate the variability in the 
length of the apparent lunar day - the time interval from one transit to the next. 
In Berlin, on 1893 December 22-23, this interval was 25h8.6 m of mean solar time, 
but on 1913 August 18-19 it was only 24h38.7 m, nearly half an hour less. The semi- 

diameter of the moon 's  disk was 16' 47.4" in the first case and 14' 43.0" in the second 
case; the actual moon 's  motion in its orbit was, in the first case, faster, because of 
its closer proximity to the earth, so that the apparent motion of the moon in the 
daily celestial rotation appeared slower. On the other hand, the length of the apparent 

solar day never deviates from that of the mean solar day by more than half a minute 
of  time. 

On 1930 January 13-15 the upper transits of the moon followed each other after 
an interval of 25h7.3m; the moon's  semi-diameter had the high value 16' 47.4", as in 

the former example. About  a quarter of a month before or after such a day on which 
the moon approaches the earth so closely, the greatest differences between apparent 

and mean lunar time are to be expected. Thus on 1930 January 9 the apparent moon 
culminated more than half an hour before the mean moon, but then speeded up in 
its orbital motion, and on January 21 culminated half an hour after the mean moon. 

In spite of  these irregularities, lunar geophysical reductions (other than those 
relative to the sea-tides) have, in the past, usually been based on the movement of  
the actual moon - largely because of the convenience of the data furnished day by 

day for the actual moon in the astronomical year-books. The tidal action of the 
moon, however, has been expressed, by strictly harmonic analysis (Section 2L.4A) of 
the tidal forces, in relation to the motion of the mean moon. Therefore it is preferable 
to use mean lunar time throughout. 

Schmidt (1928), in his studies of the lunar daily geomagnetic variations at Potsdam, 
introduced the quantity given, for each day of Universal or Greenwich Time, by 

/~ = 24 - v~,/150 ~ , 

where v~, signifies the phase angle of the mean moon at Greenwich noon on that day, 
reduced by such an integer multiple of 360 ~ as to bring/~ within the range from 0 to 
the unattained upper limit 24. Bartels and Fanselau (1937, 1938a) published a Lunar 
Almanac giving for the first day of every month, for the years 1850 to 1975 inclusive, 
the value of # to two decimal places, together with other quantities related to the 
moon ' s  mean apogee and perigee, and to its passage through the ascending node. 
Bartels and Fanselau (1938b) published Moon Tables giving the integer Mu, ranging 
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from 0 to 23, nearest to the value of/~, for each day of the same period. This integer 
regresses from 23 to 0 in the course of each lnnation. 

However, it seems better to characterize each Greenwich day by the integer Nu 
from 0 to 23 nearest to the value of v~,/15 ~ on that day, after modifying v~ by an 
integer multiple of 360 ~ so as to bring Nu within the said range; still better is to use 
the integer Nu' ranging from 0 to 11, equal to the integer nearest to v~,/15 ~ after 
modifying v~ by an integer multiple of 180 ~ so as to bring Nu' within that range. 
Bartels (1954) gave daily values of Nu' (denoted by him by L) for the years 1902-52; 
Sugiura and Fanselau (1966) have published daily values of Nu' for the period 1850 
to 2050. These tables are useful for computations to determine the influence of the 
main term (M2) in the harmonic development (Doodson, 1922) of the lunar tidal 
potential. In computer programs to determine lunar geophysical effects from obser- 
vational data, it may be more convenient to use the simple formula for v ~ (Section 
2L.4A) to generate the number Nu' rather than to take it from the Tables. 

2 L . 4 A .  THE MAIN HARMONIC COMPONENTS OF THE LUNAR TIDAL POTENTIAL 

The lunar tidal potential V (cf. p. 126) was analyzed harmonically (in the main) by 
Darwin (1901), who gave symbols for the principal terms. Doodson (1922) completed 
the analysis and gave a strictly harmonic development. His numerical constants have 
been improved as astronomical measurements of the quantities involved have gained 
in accuracy (Bartels and Horn, 1952; Bartels, 1957). 

The main term, denoted (following Darwin) by M2, for a point P in geographic 
latitude q9 and at distance r from the center of the earth (whose mean radius we here 
denote by ro) is 

0.90812 (r/ro)2G cos 2 q5 cos 2z, 
where 

G = 26206 cm2/sec 2 . 

The main term that depends on the varying distance of the moon from the earth 
is N2, approximately lunar semidiurnal, given by 

0.17387 (r/ro)2G cos2 q5 cos(2~ - s + p), 

The only remaining term that seems at all likely to have a perceptible effect on 
meteorological data (until the time series for them are very much longer than now) 
is the term O1, approximately lunar diurnal, given by 

0.37689 (r/ro)2G sin 2q5 sin (~ - s). 

At the earth's surface the factor (r/ro) 2 is unity. The horizontal component of the 
potential gradient seems the most likely to affect meteorological and ionospheric 
data. Its northward component X is c? V / r ~ ,  and its eastward component Y is 
OV/r cosq5c32, where 2 denotes the eastward longitude of the point on the earth. 
Thus the values of X derived from M 2 and Nz vary with latitude on the earth as 
sin2qS, and the the part derived from O1 varies as cos2q~; the former increase with 
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latitude up to 45 ~ and then decline again to zero; the O1 (diurnally varying) part  of X 
is strongest at the equator and poles, in opposite directions, with zero at 45 ~ latitude. 

The 4) dependence of Y is the same as for the above terms of V; its semidiurnal 
part  declines steadily from a maximum at the equator to zero at both poles; the 
diurnally varying part  is zero at the poles and equator, with opposite maxima at 
+_ 45 ~ latitude. 

In the above time factors, 

z = t + h - s = t - v ,  v = s - h ,  2 z - 3 + p = 2 t - 3 v - h + p ;  

s denotes the longitude of the mean moon (s for selene, Greek for moon), h the 
longitude of the mean sun (h for helios, Greek for sun), and p denotes the longitude 
of the moon's  perigee. The values of  h, s and p are as follows: 

s = 270~ 659 + 481267~ + 0~ 2 

h = 279 ~ 69 668 + 36 000 ~ 892T + 0 ~ 030T a 

p = 334~ + 4069~ - 0~ 2 _ 0~ 3 

v = s - h = - 9~ + 445267~ 0~ z 

Here T signifies the time that has elapsed since Greenwich mean noon on 1899 

December 31, measured in the Julian century (36 525 days) as unit; alternatively the 
middle term may be expressed in terms of td, the elapsed time in days; in that case 
the corresponding coefficients of  T are respectively 

(for s) 13~ (for h) 0~ 
(for p) 0~ (for v) 12~ 
(for 3v + h - p) 37~ 

The harmonic N2 is the principal one involved in the lunar tidal effect of the changing 
distance of the moon from the earth. Its appearance in geophysical data has been 

verified by Bartels and Johnston (1940) in regard to the horizontal geomagnetic 
force at Huancayo, Peru, nearly on the magnetic dip equator. Just as the M z term in 
geophysical data is determined by dividing the days into twelve groups according to 
their Nu '  number, it is convenient in seeking an N2 term to divide the days into 
twelve groups according to their N '  integer defined as the one nearest to the Green- 

wich noon values of  

12k + (3v + h -  p)/30 ~ ; 

here k is an integer chosen so that N '  lies in the range 0 to 11 ; this grouping has the 
advantage that the Chapman-Miller method of analysis can be readily adapted to 

determine the N2 term by substituting N '  for Nu '  in the program, and changing din2 s 
to 0.9323 for S = 2 4  or 0.9357 for S =  12. Thus the 12-fold grouping is preferable to 
the 8-fold grouping proposed by Bartels (1954), in a paper in which he gave the 
integers N nearest to the Greenwich noon values of  

8k - (3v + h - p)/45 ~ ; 
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here k is an integer chosen so that N lies in the range 0 to 7. Whereas Nu '  increases 

approximately twice by 12 in each lunation, N '  increases approximately three times 

by 12, and N decreases approximately three times by 8, in each lunation. (Bartels' 
table of  N is not affected by errors in his account of  these numbers; e.g., he wrongly 
stated that N decreases daily by 45~ 

The variation of the moon's  distance from the earth is sufficient to make consider- 
able changes in the intensity of  the tidal force, which varies inversely as the 
cube of the distance; the variation about the mean value can range up to _+ 20%. 
Consequently the apparent lunar and lunisolar daily geophysical variations produced 
by the lunar tide increase and decrease throughout the anomalistic month. The 
determination of N2 in geophysical data is preferable, as a way of studying the 

influence of the changes of lunar distance, to the method occasionally used in the 
past, of  determining L 2 for groups of days centered on or lying between the epochs 

of apogee and perigee of the actual moon (the combination o f M  2 and N2 produces 
'beats '  in the apparent values of  Lz). 

2L.5. Methods of Computation of L from Observed Data; 
Early Methods based on Apparent Lunar Time 

Many different methods have been used to determine lunar daily variations in 
geophysical data. The method used by Lefroy, who made the first successful deter- 

mination of L2(p),  for St. Helena (15~ was described by him as follows, in a 
report to Sabine dated June 1, 1842: 

The corrected height of the barometer (i.e., the reading reduced to 32 ~ Fahrenheit) at the hour of 
observation nearest the moon's meridian passage for every day has been entered in a central column; 
and in parallel columns headed - 2  h, - 4  ~, &c and +2 h, +411, &c have been entered the '(bihourly)' 
observations at 2 h, 4 ~1, &c before and after the central observation. A mean has been taken for the 
observations included in each lunar month. It appears from the seventeen months thus examined, 
that a maximum of pressure corresponds to the moon's passage over both the inferior and superior 
meridians, being slightly greater in the latter case; and that a minimum corresponds nearly to the 
rising and setting, or to ~: 6 h. The average of the seventeen months gives the respective pressures 
as follows, viz. - 

inches 
Moon on the meridian 28.2714 
Moon on the horizon 28.2675 
The difference being .0039 inch. 

From October 1, 1842 the readings of  the barometer at St. Helena were made hourly. 
Smythe, Lefroy's successor, somewhat refined the above method; he subtracted the 

mean solar daily variation derived from each lunar month, f rom the hourly observa- 
tions, before re-ordering them in rows of 12 values preceding and 12 following the 
value for the hour nearest to the moon's  central meridian passage each day. Sabine 
continued this procedure with further data from St. Helena, but used the mean 
S ( =  p) for the calendar months, instead of the rather more exact course of  treating 
the lunar months as Smythe had done. Smythe and Sabine both gave lunar daily 
sequences of  25 mean values, for whole or half years. They did not make a harmonic 
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analysis  of  their  sequences, or consider  the p robab le  error.  The result  ob ta ined  by 

ha rmonic  analysis  o f  their  combined  sequence was later  given by  C h a p m a n  and  

Wes t fo ld  (1956). 

Smythe r emarked  tha t  sometimes there were only 23 (solar hourly)  readings  

between successive mer id ian  passages o f  the m o o n ;  in tha t  case he entered the reading  

midway  between the passages,  in bo th  the columns - 12 and + 12. 

The  Sunday  in termiss ion of  the hour ly  readings somewhat  reduced the number  o f  

usable  days '  data .  The  in t roduc t ion  of  pen or pho tog raph ic  recording finally removed  

this difficulty affecting the British stations.  

The  sequences o f  25 equidis tant  readings ob ta ined  by the above  methods  were 

somet imes  g raphed  and readings  taken  f rom the g raph  at  24 equal  intervals,  for  

ease of  ha rmonic  analysis ;  a l ternat ively the formulae  for  ha rmon ic  analysis  of  25 

equidis tant  values were used. 

A t  some stat ions,  after the in t roduc t ion  o f  au tomat i c  recording,  the records  were 

measured  no t  only at  the solar  hours  but  also re -measured  at  lunar  hours ,  bu t  the 

varying length of  the intervals  between mer id ian  passages of  the m o o n  compl ica ted  

this l abor ious  procedure .  

In  the de te rmina t ion  of  L2(p) at Greenwich  (Chapman  1918a), based  on  the 

readings taken  f rom the pho tog raph ic  record  for  the 64 years 1854-1917, the da ta  

used were confined to 6457 days,  abou t  a th i rd  of  the whole - the selected days  being 

those on which the range d id  no t  exceed 0.1 inch. The me thod  of  t rea tment  was 

unusual ;  in each row of  solar  hour ly  readings a red vert ical  ma rk  was made  preceding 

the entry for the hour  next before the m o o n ' s  t rans i t  on  that  day (or before  the hour  

of  t ransi t  when this coincided with a solar  hour).  To quote  f rom the account  of  the 

fur ther  p rocedure :  

In transferring the entries for the quiet days from the original sheets to others arranged according to 
lunar time, days from each calendar month were kept on separate sheets; on each sheet the rows 
were entered in chronological order, the year being indicated in the first column. 

On the 'lunar' sheets there were 25 hourly columns following upon the one just mentioned. These 
columns were headed 0�89 h, 1�89 h, and so on. In these were copied the hourly entries for each quiet 
day, beginning with the one immediately to the right of the red mark indicating the time of lunar 
transit. On the average this reading would be one-half solar hour after the latter epoch, regarded 
as 0 h of the lunar day. The lunar day contains approximately 25 solar hours, so that the last entry 
in any quiet-day row (at 23 h. solar time) would correspond to a lunar time one hour earlier than 
that for the entry immediately above it on the original sheets (at 23 h of the preceding solar day). 
Hence, when the entries to the right of the red mark on any quiet-day row had been copied on to 
the appropriate lunar sheet, the next entry copied was the one just referred to, and then followed 
those for 0 h, 1 h, and so on, for the earlier part of the quiet day, until the red mark was again 
reached from the left. Thus the 25 entries in any lunar row corresponded to a lunar day of 25 hours, 
commencing at 23 h on the day previous to the quiet day itself; this lunar day was, however, broken 
into two pieces, so as to make the part before the lunar transit follow that beginning with the hour 
immediately after lunar transit. The discontinuity thus introduced occurred, of course, at all lunar 
hours, and it was assumed that its effect would average out with the other irregularities present. 

The regular solar daily barometric variation was not abstracted from the observations before 
transference to the lunar sheets. The transference, however, was not simply a process of copying. 
Previous experience of such work as this suggested that little or nothing would be gained by copying 
the hourly entries to the third decimal place (representing units of 0.001 inch). The earlier decimals 
vary so much from day to day, on account of the large irregular fluctuations in the barometer, that 
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no real advantage accrues from the retention of the third decimal, provided the second decimal 
figure is raised by one unit when the third figure exceeds 5. When the third figure was 5, the next 
even figure was adopted for the second decimal; thus 29.875 would be read as 29.88, and 29.865 as 
29.86. 

Further, since the range on the selected days did not exceed 0.10, it was convenient to subtract 
from all the entries for any one lunar row such a number, consisting of so many inches and whole 
tenths of an inch, as would render the least and greatest remainders less than ten and twenty hun- 
dredths respectively. Thus, if the greatest and least of the 25 entries on the original sheets were, in 
any particular case, equal to 29.88 and 29.79 respectively (after the third decimals had been allowed 
for mentally), 29.70 would be subtracted throughout that lunar row, and the greatest and least entries 
on the lunar sheet would be 18 and 9. No decimal points were inserted on copying, so that the unit 
on the lunar sheets represented 0.01 inch. 

After the copying had been done, on this plan, the sums were taken for each column. The results 
for each of periods 1854-73, 1874-93, and 1894-1917 were kept separate, so that it was possible to 
form the complete sums for the following three threefold subdivisions of the material: (a) all days, 
of whatever month or distance group, in each of the above three periods; (b) days, drawn from the 
whole period 1854-1917, grouped according to the three seasons, summer (May, June, July, August), 
equinox (March, April, September, October), and winter (November, December, January, February); 
and (c) days, likewise drawn from the whole period, grouped according to the moon's distance, as 
indicated by the numbers 14, 15, 16 representing its semi-diameter. Nine 25-hourly lunar diurnal 
inequalities were thus obtained, being the sums of the lunar entries for about 2000 days in each case. 
These nine inequalities, and a tenth which was derived from all the 6457 days, were subjected to 
harmonic analysis, to determine the diurnal and semidiurnal component variations. A correction was 
duly made to allow for the fact that the lunar entries were at the half-hours, 0�89 h, and so on, and 
not at lunar hours. The Fourier coefficients were then divided by the number of days to which 
corresponded the sequence of sums analysed, and the results were, finally, expressed in units of 
0.0001 mm of mercury. 

The semidiurnal  ha rmonic  coefficients for  the three groups  o f  years  agreed fair ly 

well with each other,  though  the d iurna l  coefficients were p la in ly  accidental .  But in 

o ther  cases there were differences between the values ob ta ined  for  L 2 (p), which were 

in terpre ted  as due to a residue o f  S(p) not  fully e l iminated  by the averaging. Hence a 

me thod  was devised and  appl ied  that  r emoved  this influence, and  this b rough t  

reasonable  agreement  between the var ious  determinat ions .  La te r  Bartels (1927) 

es t imated the p robab le  e r ror  o f  the three seasonal  values and the annual  mean  o f  

L2(p). 
In  the same paper  Bartels showed tha t  there is a danger  in using only quiet  days '  

da t a  in de termining  L 2 (p). This is because,  as he found,  such days in the ma in  occur  

near  the epochs o f  m a x i m u m  baromet r ic  pressure,  when the general  shape of  the 

b a r o g r a p h  is convex upward.  In  the o rd inary  me thod  o f  rear ranging  the solar  hour ly  

values accord ing  to lunar  time, this convexity is no t  e l iminated;  thus it remains  in 

the result ing ' lunar '  dai ly sequences, added  to the true L 2 (p). Its range is comparab l e  

with or  a t  some stat ions greater  than  that  of  L2 (p), in tempera te  lat i tudes.  Thus the 

ha rmonic  coefficients do no t  represent  only  Lz (p), and may  be comple te ly  misleading.  

C h a p m a n  did no t  know of  this when using the 6457 Greenwich  days as the basis o f  

his de te rmina t ion ;  but  he unconsciously  avoided  the danger  because of  the pecul iar  

p l an  he adopted ,  o f  pu t t ing  the la ter  pa r t  o f  each solar  day  before the earlier. In  

seeking to determine  L2 (p) f rom a long series o f  hour ly  da ta  f rom Glasgow,  R o b b  

and  Tannahi l l  (1935) incurred  the pi t fal l ;  the convexity var ia t ion  in their  mean  lunar  

sequences exceeded L 2 ; C h a p m a n  (1936) a t t empted  to correct  the results  by a l lowing 
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for the convexity, but this was too large to enable a reliable correction to be made. 
Earlier Robb had used the method adopted for the Greenwich data, for many years 

Glasgow data, and his results thus obtained showed that L 2 (p) at Glasgow is small 

for the latitude. Slightly earlier, Chapman and Austin (1934) had discussed L2(p) at 
Buenos Aires, using mainly almost all days, but also, in part of their work, selected 

quiet days. The results from the latter showed the convexity effect, and a correction 

was made for it, assuming that the convexity was parabolic; but at Buenos Aires, as 

at Glasgow, L 2 (p) is small for the latitude, and the results from almost all days were 
more reliable than those for quiet days, because of the uncertainty of the correction 

for the convexity of the barograph on those days. It would have been possible to 

obtain a better result from the quiet day data had the solar daily variation character- 

istic of these days been removed in the analysis, instead of only the monthly mean 
solar daily variation. 

Variants of the methods just described, of determining L using solar hourly values 

and apparent lunar time, have been devised by several authors. Egedal (1956) has 

described 'two simple methods' (1956), one of which he applied to eleven years' 

record of magnetic declination at Rude Skov; the other he applied to a further 33 

years' of the same record. Unlike L(p), the L for the magnetic elements contains 
significant terms that are not semidiurnal, as was first discovered by Broun (1874); 

but Egedal, like many others before and since, did not make the division of his data 

into different groups of days at successive lunar phases, necessary to determine the 

non-semidiurnal terms. 

In his first method the solar daily variation is not removed from the hourly data before 

these are re-arranged according to lunar time; the hourly data are simply re-written in 

rows of 24 values, taking for each lunar hour (1/24 of  a lunar day) the hourly value 

most nearly coinciding with that time. This means that on most days one hourly 

value is superfluous; to use also this value to some extent, for the lunar hour nearest 

to the full solar hour the mean of the preceeding and succeeding hourly values is used 

(the same method had been applied by Chambers in 1887 and Moos in 1910 to Bombay 

magnetic data). 
In the other method, the solar hourly values are re-arranged in 24 rows of 28, 29 

or occasionally 30 values each (Rooney, 1938). Egedal's description of this method 

is as follows: 

As the treatment is similar for hourly and bihourly values only the procedure used for hourly values 
will be described. First the hourly mean values for the interval 0h-1 h GMT have been treated, next 
the values for the interval lh-2 h and so on. The values for a considered hour are written down 
according to the age of the moon starting in the first row with the value of the first day for which 
the lunar age at 0:: in Greenwich is nearest to 0 and writing the following value in the second row 
and so on to the 30th row (lunar age 29). Hereafter the following values are placed in the second 
column and so on. When all values for the considered year are placed on the list the departures of 
the mean values for each lunar age from the common mean are computed and corrections for the 
secular variation are made, considering the secular variation to vary proportionately with time 
through the synodic month (29.53 days). In this way 24 sets of departures are obtained, each set 
consisting of 30 values. 
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Again in this method there is no removal of S from the data. For further details of 
the later stage of the computations using this method of retabulation of the data, 
the reader is referred to the original paper by Egedal. 

The use of apparent lunar time in these methods is not essential to them, but was 
adopted only because of the ease with which the times of actual lunar transit can 
be obtained from the Nautical Ahnanac or other ephemeris. But it involved the 
irregularities of the length of the apparent lunar day. In geomagnetic lunar studies, 
Schmidt (1928) was a pioneer in following the practice adopted in modern sea tidal 
computations (Doodson, 1922), of using mean lunar time, and making the analysis 
truly harmonic. Chapman and his collaborators made many determinations of L in 
meteorological and geomagnetic data from 1914 onwards, using apparent lunar time 
as the basis, until about 1938. Then he changed to the use of mean lunar time, at the 
suggestion of Doodson, and in connection with a new method devised jointly with 
Miller (Chapman and Miller, 1940) (here referred to as the C-M method). It is the 
one now generally adopted (with slight variations) in geophysical studies of L; the 
older 'apparent lunar time' methods may be considered obsolete. 

2L.6. The Chapman-Miller (or C-M) Method for Meteorological Variables 

This is a simplified version of a method proposed by Chapman (1930), that has 
apparently never been applied. It was devised to improve the determination of L in 
cases where this is overlaid not only by S, but also by large irregular fluctuations - for 
example, to determine Lz (p) for stations in high latitudes, where weather produces 
large barometric variations. The C-M method cuts down the eliminatory procedure 
proposed by Chapman to the allowance merely for the non-cyclic variation, either 
for each day, or more usually, in meteorological studies, in the mean for sets of days 
grouped according to the lunar phase number Nu'. Here the method is outlined only 
for analyses in which, as for meteorological variables, L 2 is the significant lunar 
harmonic to be determined; its application to geomagnetic and ionospheric data, 
whose variations usually include also non-semidiurnal (lunisolar) components, is 
more complicated. 

The meteorological data considered are taken to be instantaneous values (as they 
usually are, for example, for air pressure and temperature), not hourly means as in the 
case of modern geomagnetic hourly values. 

For all these kinds of data, the basic material for the determination of L consists 
of S values per day at equal time intervals, namely hourly (S = 24) or bihourly (even 
or odd hours: S= 12), or even trihourly. To eliminate the non-cyclic variation we 
take sequences of S+ 1 terms. The hours to which the first and last refer may, for 
example, be either 0 and 24 or 1 and 25. 

In any section of the material, for example, for all the months January, or all the 
seasons j, over a period of years, the days are divided into 12 groups according to 
their lunar phase integers Nu'. For each group sums are taken of the daily sequences 
of values; thus we have 12 sum-sequences, one for each value of Nu' (note that in 
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formulae, v' will be written to signify the integer Nu' ; v' is to be carefully distinguished 
from v; the latter is an angle, 0 ~ to 360 ~ whereas v' or Nu' is an integer ranging from 
0 to  11). 

The subsequent procedure involves two processes of harmonic analysis, called 
primary and secondary. The first, primary, harmonic analysis is applied to the 12 
sum-sequences, allowing for the non-cyclic variation. In meteorological studies only 
the semidiurnal component S 2 need be determined; in geomagnetic and ionospheric 
studies the first four harmonics are calculated. Thus we obtain A 2 (v ')  and O 2 (v'),  
the coefficients of $2 for each sum-sequence v' (=Nu ' ) ,  formed from N(v ' )  days. 
If there were no lunar daily variation, all the A's and all the B's, after division by 
their corresponding N(v' ) ,  would be the same, except for accidental error. But 
because of the presence of L2, given by 

L 2 = l z sin(Zz + 22) = 12 sin(Zt + 22 - 2v), (1) 

$2 (v') will be given by 

$2 (v ') /N (v') = S 2 + 1'2 sin (2t + 22 - 30 ~ v'). (2) 

Here the first term is the true solar semidiurnal variation. The second term is the 
averaged contribution made by L 2 to the calculated semidiurnal variation on the 
solar days of phase integer v'. In (1), v represents a lunar phase angle that increases 
by 360 ~ from one new moon (phase 0 ~ to the next; on any solar day of the v' set 
its mean value will lie between 15 ~ v'-t-7.5 ~ or between these values plus 180~ in (2) 
the averaged value of - 2  v will be - 3 0  ~ v'. Owing to this phase spread, and because 
the harmonic analysis refers to a solar, not lunar day, l~ in (2) is slightly less than 12. 

On a harmonic dial, $2 (v') is represented by the sum of the dial vector correspond- 
ing to S 2, with amplitude s2 and phase o- 2, and a vector for the second term in (2), of  
amplitude l~ and phase 22 - 30~ '. Thus as v' increases from 0 to 11, the second vector 
regresses in phase by 330 ~ turning in the clockwise direction. The values of A2(v '  ) 
and Bz(v ' )  are given by: 

A2 (v ' ) /N(v ' )  = Az + I'2 sin (.~2 - 30 ~ v'), (3) 

B2 (v') /N (v') = B 2 + 1'2 cos (22 - 30 ~ v'). (4) 

Each set of 12 values of A2 (v') and of B2 (v'), and also the set of 12 numbers N(v ' ) ,  
is harmonically analyzed (the secondary analysis), as follows: the sums are all from 
v'=O to v ' = l l ;  

Ap, a = Z A, (v') cos (30 ~ v'), 

B., A = Z B.(v')  cos(30 ~ v'), 

u , , .  = Z u (v') cos (30 ~ 

Ap, s - 2 Ap (v') sin (30 ~ v'), 

Bp, B = ~, Bp (v') sin (30 ~ v') 

NI , ,  = • N (v') sin (30 ~ v'). 

(5) 

(6) 

(7) 

In the case of meteorological data p = 2, as above indicated; in geomagnetic and 
ionospheric studies, other values of p, namely 1, 3, 4, are also taken into account. 

Thus in the meteorological case we obtain from the secondary harmonic analysis 
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the 6 numbers Az, A, Aa,~, B2, A, B2,B, N1,A, N1,B. From these we calculate U2, 
V2 as follows (here taking p = 2): 

Up = (Av, a + By, . )  -- (Ap, N NI,A + Bp, N N1, B)/N (8) 
Vv = (By, A - Ap, . )  - (By, N N~,a - Ap, N N~, . ) / N  (9) 

Here 

N =  2 N(v '  ) ,  Av, u =  Z Ap(v ') Bp, N= 2 Bp(v' ).  (10) 

The next step is to calculate/2 and 2~ from the equations: 

12 s i n 2 ~  = U2/Kdmps, 12 cosJ [~  - -  Vz/Kdmp s. (11)  

Here 

K = (e,  SN/2)  (1 - U~/U2), N~ = U~, a + Uf, ~ (12) 
e R = (sin0R)/0R, 0 =~z/R R = 12; l ie a = 1.01152 (13) 

sin 7c(m - p) I (m - p) + cot Tcp'~ dmv R - cot ~ (14) 
s _ s j  

and m = 2 ( 1 -  l /M) ,  M=29.5306, the number of mean solar days in a lunation. For 
S =  24 and S =  12 the values of din2 s are as follows: 

S =  24 S =  12 
dm2 R 0.9596 0.9619. 

Finally a phase correction must be applied to 2[ to obtain 22. The correction (to be 
added to 2~) is given in degrees by 

22 - 21 = 2L'/M - 15~ ' + m ( L -  E)  ~ . (15) 

Here L denotes the longitude of the station whose data are under discussion, measured 
from Greenwich (in degrees, reckoned positive if westward, negative if eastward, up 
to 180~ ' is the longitude (similarly measured and reckoned) of the meridian of time 
reckoning with respect to which the data are tabulated; and H' is the solar hour of 
the initial value of each daily sequence, according to the same time-reckoning. 

Modern geomagnetic hourly data are not instantaneous values, like barometric 
readings, but means over hourly intervals; and some meteorological data, such as 
wind and rainfall, may likewise be mean values over an hour. In this case, the lunar 
amplitude l 2 (and its probable error) needs to be enhanced by the factor 1/e R defined 
by (13); its value is 1.01 152. 

2L.6A. USE OF THE INTEGERS Mu (OR #) INSTEAD OF THE INTEGERS Nu OR N U '  (OR V') 

Until 1954, when Bartels (1954) gave a table of values of Nu' (or v') (there denoted 
by L), several lunar analyses of meteorological and geomagnetic data had been made 
using Schmidt's lunar phase integers Mu (/~) as the basis; and Chapman and Miller 
(1940) expounded their method in relation to these numbers. Tschu (1949) described 
the practical application of the method on this basis; Chapman (1952) corrected his 
account of the calculation of the probable errors involved. The choice of/~ or v' as 
the basis is immaterial up to the end of the secondary harmonic analysis. But if ~ is 
used, the signs of N1,B, Av, a and Bp,~ in the Equations (8), (9) are to be reversed. 
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2L.6B. THE COMPONENTS Sp 
In the course of the C-M method of determining L, the analysis gives also S 2 (and 
the other components Sp if these are calculated in the primary harmonic analysis, 
for values o fp  other than 2). Thus let 

1 A , ( v ' )  , Bp(v ' )  
A 'p 

N (v ' ) '  BP = E /-" N(v ' ) '  
i r2  p2 t 2  r t �9 t t S ;  C O S  O"p ,  Sp = At, + Bv , Ap = sp sin ap, Bp = 

then 
t ! 

Sp = Sp/6eR , R = 24 /p .  ap = ap - 15 ~ p H '  + p ( L -  E )  ~ . 

2L.7. Vector Probable Errors 

In all cases of physical measurement it is desirable to give some estimate of the accu- 
racy of the result. This is particularly true for lunar geophysical terms in meteoro- 
logical data, because they are usually of very small amplitude, and overlaid by much 
larger solar daily changes, and also at many places by large irregular variations 
associated with weather changes. 

Figure 1.3 shows a harmonic dial for L2(p) for Batavia, with n(=40)  points, all 
of  equal weight, because each indicates the determination for one calendar year. 
Assuming that their plane distribution around their centroid C is Gaussian and 
symmetrical, the probable error r 0 of the 40-year mean determination given by C, 
is r / ( n - 1 )  1/2, where r denotes the probable error for each of the yearly points; this 
is given by r = 0.989d, where d denotes their mean distance from C. If the true value 
of the 40-year mean L2(p) were known, r o would be r/n 1/2. But the denominator is 
changed to ( n - 1 )  1/2 because C itself is determined from the n dial points, leaving 
only n -  1 independent quantities, or, as the statisticians say, n - 1 degrees of freedom 
(James and James, 1959, p. 163). 

When L is determined by the C-M method, instead of finding its probable error 
from several determinations of L, it may be found for each single determination, 
from the 12 dial points for the results of the primary harmonic analysis. They are 
given by the coordinates A 2 ( v ' ) /N (v ' ) ,  B 2 ( v ' ) / N ( v ' ) ;  these are represented by (3), (4) 
of Section 2.L.6 as the ends of a vector with components A2, B2 representing $2, 
and a contribution from L 2, varying in phase from group to group, that is, depending 
on Nu'. But there is also a contribution of accidental character from the irregular 
variations. Were this not so, the 12 dial points would lie on a regular 12-sided polygon, 
but the accidental contributions distort the polygon. Let 

A A 2(v ' )  = A2 (v') - N ( v ' ) A 2 / N ,  

AB  2 (v') = S 2 (v') - N (v') B 2 / N .  

From these the components of the error vectors are derived by the following equations: 

A~t (v') = A a (v') cos 30~ ' + A B (v') sin 30~ ' - N (v') U 2 / N  

A' n (v') = A n (v') cos 30~ ' - A a (v') sin 30~ ' - S (v') V2/N.  
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The root mean square of the amplitudes of the error vectors is given by 

11 

E = (1/12) }-" {A' (v') 2 + A' (v')2} ~/z. 
v ' = O  

The probable error r of any one dial point is given by 

r = 0.9394E. 

The probable error r s of S 2 is r / ( n - 2 )  1/2 where n =  I2, because we have determined 

the amplitudes of both $2 and L z and r f rom the 12 points, losing two degrees of  
freedom. The probable error of  r L of Lz  is 1.01 152rs/d,,ps; the first additional factor 
corrects for the spread of v/15 ~ around the integers Nu'.  Clearly r s and rL are nearly 

the same, and r s is much smaller relative to s 2 than rL is to lz. It  is desirable always to 
quote rL in connection with any determination of L z, but it does not seem necessary 

to quote also rs in connection with the associated determination of $2. 

2L.8. The Determination of Lz from Only a Few Meteorological 
Readings per Day 

Bartels (1938) determined L2 (P) for the African coast town Dare s  Salaam from baro- 
metric readings made only three times daily, at 7, 14 and 21 hours, local mean solar 
time, over a period of 17 years. Like Laplace he dealt with differences between 
readings on the same day. He eliminated from his calculations the changes of mean 
level from day to day, and the non-cyclic variation (assumed to proceed uniformly) 
in the course of  each day. He grouped the differences according to Schmidt's re- 
gressing phase integers/~, and determined the semi-monthly variation in the twelve 

mean differences. From these he was able to infer the values of  I z and 22. Haurwitz 
and Cowley (1967) have applied his method, using the integers Nu '  instead of #. 
Their explanation of the method is followed here, in terms of Nu'.  

Let h', h, h" denote the local mean solar times (in hour units) at which the readings 
are taken; let h' < h < h". Reckon local mean solar time t f rom midnight (h = 0) on 
day zero. Numbering the days as 0, 1, 2 . . . .  , r . . . . .  then at hour h of day r, the time 
t, reckoned in angle at the rate 360 ~ per mean solar day, is given by 

t = 360~ + 15~ (1) 

Let Vo denote the mean moon's  phase angle at time t = 0, and let v, vr denote its values 
on day r at hour h and at noon (h=  12). Because v progresses at 1 / M  of the rate of  
progress of t, where M=29.5306 (see Section 2.L4), we have 

v = Vo + (360~ + 15~ vr = Vo + (360~ + 180~ (2) 
Hence 

v = v,. + 15~ -- 12)/M. (3) 

At any time t the pressure p is expressible as 

p = p r + A + S + L .  
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here p,. denotes the mean value o f p  on the day considered, A is an 'accidental' part,  
and S, L denote the contributions f rom the daily variations, solar and lunar. We 
suppose that in the averaging processes to be described, the influence of A and S on 
the results is reduced to insignificance compared even with the small part  of p cor- 

responding to L 2. Consequently henceforward in this explanation only L is mentioned. 
It  is expressible thus (omitting the subscripts (2) of I and 2): 

/ s i n ( 2 v + 2 )  or / s i n ( Z t = Z v + 2 ) .  (4) 

Thus at hour h on day r, the L 2 contribution to p is given by 

L(r,  h) = 1 sin(V20~ + 30~ - 2v + 2) (5) 

= 1 sin {30~ - 2v~ - 30 ~ (h - 12)/M + 2} (6) 

= I sin (30~ - 2vr + 2 + 360~ (7) 
where 

9 = 1 = 1 /M = 0.966137. (8) 

It  is clearly allowable to add to v, in (8) whatever integer multiple of • 180 ~ will 
bring it into the range 0 to 180~ let us suppose this is done. With each day r there is 
associated a lunar phase integer v', in the range from 0 to 11, given by 

where 
v' = vr/15 ~ + 6, v, = 15 ~ v' + a (9) 

- 1/2 ~< 6 < 1/2, - 7~ ~< a < 7~ (10) 

Here we take v to refer to Greenwich noon on the day considered. Let the average 
~ ~ (r, h) taken over all the days associated with the phase integer v' be denoted value o~-z~ 

by L ( v ' ,  h); then if there are many days in the group, we have very approximately 

L(v' ,  h) = f I sin(2v' - 30~ - 2 - 360~ + 180~ (11) 

where 
f = sin(Tr/12)/(~/12) = 1/1.01152. (12) 

By harmonic analysis of the sequence of 12 mean values L (v', h) for v' = 0, 1, 2, ..., 11, 
we obtain the amplitude f l  and the phase angle 180 ~  360~ - 2 -30~  and hence 
the values of  I and 2 can be found. But as in Eisenlohr's analysis of the Paris baro- 
metric data, the day to day changes of barometric level enter into the averaging, 
and the data may be too few, as in his case, to reduce their average effect on the 
deduced harmonic component  of the L ( v ' ,  h) sequence to an adequately small 
amount.  

Thus instead we may analyze the sequence of differences L(r ,  h ' ) - L ( r ,  h) grouped 
according to v' and averaged; this eliminates the influence of the day to day changes 

of  level, but not the non-cyclic variation during this interval of  the day considered. 

Clearly 
L ( r , h ' )  - L ( r , h )  = 21 sin {15~ (h' - h} cos{15~ + h') - 

2vr + 2 + 360~ 
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and 

where 

L(v', h') - L(v', h) = l' sin (2v' + )J), (13) 

l' = 2 f l  sin{15~ ' - h)}, 2' = -  2 -  15~ + h') + 90 ~ - 360~ 
(14) 

Thus if we analyze the sequence of mean differences (13) and so determine l' and 2', 

we can infer the values of l and 2 from (14). 
If 15~ ( h ' -  h) were _ 180 ~ the method would fail, because then l' = 0; if this 

angle is 90 ~ the time difference h ' - h  gives the largest value of l', namely 2f l .  If  
h - h ' =  7, as at Dares  Salaam, l' is almost the same, beir~g less by the factor 0.969. 

When there are three readings daily, as supposed above, with h - h '  and h " - h  
both not very different from 6 or 7, it is convenient to deal with group averages of 
L(r, h ' ) - L ( r ,  h )+L(r ,  h " ) - L ( r ,  h). The harmonic analysis leads to the following 

values: 
l' sin (2r + 2') + l" sin (2v' + 2"), 

where l" and 2" are given by (14) with h" substituted for h'. If  h - h '  = h " - h ,  as for 
the D a r e s  Salaam data, this procedure eliminates the non-cyclic variation; if not, 
the elimination can be made, using the value of this variation (for the day) given by 
the difference between the values at hour h' on the given day and the next day. This 
considerably complicates the formulae, and is not considered here. When the two 
intervals h -  h' and h " - h  are equal, the formulae are as follows: 

1 = {(I' cos2' + l" cos 2") 2 + (/' sin2' + I" sin2")2}l/2/4fsin 2 15~ ' - h) 

2 = - 2' - 360~ - 7~ 9 (h' + 2h + h"). 

To find the probable error of the result, it suffices to divide the data into m equal 
parts, and to obtain the L 2 dial point for each, as above. The centroid of the m points 
C gives the overall mean L2, and its probable error is 0.9394 d / ( m - 1 )  I/z, where d 

denotes the mean distance of the m dial points from C. 

2L.9. The Lunar Semidiurnal Barometric Tide L2 (p) 

The many unsuccessful attempts to determine La(p) included those of Laplace, 
Bouvard and Eisenlohr for Paris (Sections 1.1,2 L.1), of Airy for Greenwich, of 
Neumayer for Melbourne, and of B/Srnstein for Berlin and Vienna (Section 2L.3); 

the main cause of failure was inadequate material. The first successful meteorological 
determinations of L were those given in Table 2L. 1. 

During the period covered in this table many determinations had been made also 
of the lunar geomagnetic tide (Chapman and Bartels, 1940, Chap. 8). Chapman's 
interest in lunar influences in geophysics began with studies in this field (1913, 1919a), 
which then led him to consider the simpler causative atmospheric tide determinable 
from the barometric records. Barrels' progress was in the opposite direction. For 
more than three decades they stimulated also other workers (called by Bartels the 
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TABLE 2L.1 
Early determinations of L~(p). The unit for the amplitudes and probable errors is 1 microbar (/zb) 

Stations (s) Years' data Author(s) Publication 

St. Helena 1842-45 Lefroy, Sabine, Smythe Sabine (1847) 
Singapore 1841-45 Elliot Elliot (1852) 
Batavia 1866-1905 Bergsma, Van der Stok Observatory Yearbooks 
Rome 1891-94 Morano 1899 
Greenwich 1854-1917  Chapman 1918a 
Batavia 1866-95 Chapman 1919b 
Hongkong 1885-1912  Chapman 1919b 
Aberdeen 1 8 6 9 - 1 9 1 9  Chapman, Falshaw 1922 
Mauritius 1867-1915  Chapman 1924a 
Tiflis 1880-1905 Chapman 1924a 
Potsdam 1893-1922 Bartels 1927 
Hamburg 1884-1920 Bartels 1927 
Keitum 1878-87 Bartels 1927 

Society of Lunatics I) who made or studied determinations of L from meteorological 
or magnetic records. They included Miller, Westfold and Tschu in England, Fanselau, 
Schneider, Kertz and Siebert in Germany, and Rougerie in France. 

In the studies by Chapman and his collaborators up to 1930, the data were re- 
arranged on handwritten sheets; they took apparent lunar time as basis; at most a 
desk calculator was used. Then these primitive methods, differing little f rom those 
first used by Lefroy in 1842, gave place in 1930 to the use of punched cards (45 
columns), and of sorting and tabulating machines (freely loaned and serviced by the 
British Tabulating Machine Company),  with the aid and guidance of L. J. Comrie. 
(Barte]s, however, always used handwriting methods, applied to hour-to-hour differ- 
ences, allowing simple checks on the copying and subtractions; he also pioneered in 
the harmonic analysis of  each day's data.) 

A small computing staff was set up at the Imperial College, London, for lunar 
computations. The Chapman-Miller method was developed and used there for some 
years before its publication, at first still taking apparent lunar time as basis. When 
published in 1940, a referee (Doodson) indicated the desirability of  the use of  mean 
lunar time and truly harmonic analysis, and consequently the description was given 
in terms of Schmidt's regressing lunar phase integers Mu. After World War IX 
Bartels and Chapman decided that it was preferable to use instead of Mu the pro- 
gressing lunar phase integers Nu or Nu'.  At first only the primary harmonic analysis 
was done by computer;  the mechanization of the complete process was first made by 
Wilkes (1962) in a determination of L in geomagnetic data for San Fernando. 

By 1939 the determinations made by handwriting methods had added 28 to the 12 
made between 1842 and 1927. Chapman's  use of machine methods led to a rapid 
increase in the number of determinations up to and during World War II, until this 
brought his computing office to an end; the results thus obtained, for 27 stations, 
were published in one paper (Chapman and Tschu, 1948). By 1956 Chapman and 
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Westfold had a total of 69 determinations available for discussion in relation to their 
geographical distribution and seasonal variations, and also for comparison with 

$2 (p) results for most of the stations. The determinations of S, (p) made in the course 
of the Chapman-Miller method from each subdivision of the often long series of 
data used to calculate L 2 (p), are a valuable by-product of the work. 

In the early 1950's Haurwitz, with some of his pupils, took up the study of atmo- 
spheric tides and thermal tides, at first more theoretically than observationally. More 
recently he has become the main contributor, with his colleague Cowley, to our 
further knowledge of L z (p) and of other meteorological manifestations of the lunar 
tide. They have used the Chapman-Miller method, when hourly data have been 
available. For 7 African stations where only three daily readings were available they 
used the Bartels method described in Section 2L.8. For ten Australasian stations 
where trihourly readings were made, except at midnight (thus 7 per day), they used 
the C-M method, after first calculating A o and A,, B, for n from 1 to 3, by formulae 
necessarily different from those usual in harmonic analysis. 

The number of determinations of L2(p) has now risen to 104, as indicated in the 
Table 2L.2; it gives the annual mean L 2, and also, for 85 stations, the seasonal values 
for j, e, d. Monthly mean values have been obtained for 13 stations. 

The geographical distribution of L2(p) has been discussed by Chapman and 
Westfold (1956) on the basis of 69 annual mean values. That study has been much 
extended by Haurwitz and Cowley (1969), for the seasonal means as well as for the 
annual mean. Figure 2L.3 (p. 95) gives their map of equilines of the amplitude Iz for 
the yearly mean. It has fewer lines than the corresponding map for the annual mean 
amplitude sz of S2(p), Figure 2S.3, and a smaller part of the earth is covered. It is 
difficult to compare the geographical distributions of S z (p) and L 2 (p) from such 
maps. A better method, applied by Haurwitz and Cowley, is to make a spherical 
harmonic analysis of Lz (p). 

2L.10. The Expression of L 2 (p) in Spherical Harmonic Functions 

Haurwitz and Cowley drew maps, seasonal and annual, showing by equilines the 
distribution of the harmonic coefficients a2, b2 of L 2 (p). From these maps the values 
were read at 24 points round each of 11 circles of latitude 10 ~ apart, from 50~ to 
50 ~ The sequences of values for each latitude were harmonically analyzed and 
expressions in terms of waves depending on 2% + s ~  were then derived, as described 
in Section 2.4A for $2 (p), from the coefficients ~s(0),/~s(0). From the corresponding 
amplitudes 7s(O) a mean amplitude ~ was determined for each s, in the same way 
as for S 1 (p); cf. (4) of Section 2S.4B. Figure 2L.4 (p. 95), shows on a logarithmic scale 
the values of ~ thus found. The main wave is that for s=  2, corresponding to a tide 
travelling with the moon round the earth. The next greatest amplitudes are less than 
a tenth of the main wave, then come those for s = 0 and s = - 2 .  The waves for which 
s r  are due to the non-uniform structure of the atmosphere on which the tidal 
force acts, and on the irregular tidal rise and fall of the surface on which the atmo- 
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50 ~ S) of the lunar semidiurnal pressure waves, parts of L2 (p), of the type Is sin (2vu + s~ + 2s), where 

ru signifies universal mean lunar time. After Haurwitz and Cowley (1970). 

sphere rests; they also include 'noise ' ,  part ly due to the irregularity and  accidental 
errors of the data. 

As described in  Section 2S.4B, each wave s (for the five values - 2 ,  0, 1, 2, 3) was 

expressed in  terms of associated Legendre functions of order Isl and degree n = ]sJ + i, 
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TABLE 2L.3 
Mains pherical harmonic terms in L~ (p) = c~, 8Pe, ~ sin(2ru + s~ + e~, s) 

Unit 1 pb (Haurwitz and Cowley, 1970) 

Year Seasonj Season e Season d c~S/c,~, s 

Pi,i 6.9 190 ~ 6.4 155 ~ 5.3 1620 7.4 192 0.866 
P2,z 57.0 75.2 62.3 78.7 57.5 78.8 52.7 57.3 1.118 
Pz,~ 5.7 326.5 3.6 0.9 3.6 265.7 9.1 305.2 1.323 
P4,z 9.3 225.3 12.7 244.3 10.3 251.6 4.4 193.1 1.5 

using the method of weighted least squares; three values of i were found sufficient in 
each case. Here we quote only those terms in Table 2S.5 that have coefficients (for 
the normalized functions P,,,,: cf. Section 2S.4A1) at least equal to 5 #b for the annual 
mean Lz (p). The amplitude is denoted by Ck, ~ and the phase by ek, s ; factors are given 
e~,/Ck, ~ by which to multiply Ck,~ to obtain the amplitude c], of the corresponding 
Schmidt function P~,. Haurwitz and Cowley also give the coefficients ak,~ and bk,s 
corresponding to Ck,~, and ek,~, and amplitudes and phases for the Hough functions 
s=2 ,  k = 2 ,  3, 4. 

For the main term s = 2, k = 2 the amplitudes and phases of the Hough functions 
2 are very similar to those shown above for P2,2- 

To test how well the various analytical expressions derived for L 2 (p) agree with 
the original equiline maps for a2,bz, Haurwitz and Cowley calculated an overall 
index of the differences between the originally measured values of a2, b 2 (themselves 
a smoothed version of the irregularly distributed data for L2(p) ), and the values 
calculated from the formulae; the method used resembles that indicated by (10) of 
Section 2S.4B. Comparisons of 3 kinds were made, using'analytical' values calculated (i) 
from the three Hough functions above mentioned; (ii) using only the three Legendre 
functions for s = 2, k = 2, 3, 4; and (iii) using all 15 terms of their table. This was 
done for the year and the three seasons, y, j, e, d. For (i) and (ii) the results were very 
similar, approximately 11 pb in all 8 cases; for (iii), depending on many more adjusted 
constants, the 'error' was reduced by 20 to 30%. It was also found that only in- 
significant changes resulted if the 'errors' were calculated using weighting factors, as 
in (4) of Section 2S.4B, proportional to the area of the different latitude zones. 

In all four cases, y, j ,  e, d, the 'error' is about is- of the amplitude of the principal 
term Pe, 2. For S 1 (p) the corresponding ratio was larger, �89 of the amplitude of the 
principal term P1,1. This means that the irregular features superposed on the principal 
travelling wave are proportionately greater for SI(p) than for L2 (p). 

2L.11. The Asymmetry of La(p) Relative to the Equator, and 
its Seasonal Variation 

Figures 2L.5a, b, c, d, respectively (Haurwitz and Cowley, 1969) are harmonic dials 
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for Lz(p) for the year (y) and the three seasons j, e, d. The dots show the components 
as, fls for each colatitude 0 from 30 ~ to 150 ~ derived as explained in Section 2L.10 
(or Section 2S.4A); the crosses show the values computed from the sum of the three 
terms s=2 ,  k=2 ,  3, 4 of Table 2S.5. The crosses are joined by continuous curves. 
The dials show that except for the season e there is considerable asymmetry between 
the northern and southern hemispheres. This was noted earlier, from data for fewer 
stations, especially in the south, by Chapman and Westfold (1956), as shown by the 
c u r v e  l 2 of Figure 2L.6. The Figures 2L.5a, b, d for y, j, d show that at southern 
stations the maxima of L2 (p) occur earlier than at the same latitudes in the north. 
The amplitudes are greater, for the same distance from the equator, in the south 
than in the north. 

Figures 2L.5b, c, d also well show the very considerable seasonal change of L 2 (p), 
both in amplitude and phase, in the different latitudes. This is shown in more detail 
(monthly) in Figure 2L.7, consisting of harmonic dials for L2(p) for 8 stations 
individually or averaged (nos. 45, 21+25+31,  7, 77, 47 of Table 2L.2). All the 
stations are northern except Batavia, which shows a similar variation throughout the 
year, as at the northern stations. The change of phase from January to June is still 
greater than is shown for the 4-monthly seasons by Figure 2L.5. 

Haurwitz and Cowley (1969) discuss the possible causes of the asymmetry and the 
seasonal variation. The great difference between the ocean area in the northern and 
southern hemispheres will certainly affect whatever part of L 2 (p) is due to the lunar 
tidal rise and fall of the surface underlying the atmosphere. An investigation by 
Sawada (1965) of the influence of the oceanic rise and fall upon L 2 ( p )  suggests that 
the hemispheric asymmetry may produce an asymmetry of Lz(p) in the observed 
direction. There will also be considerable asymmetry in the surface friction 
over the two hemispheres, for the same reason; namely, the land sea disparity 
between them. This will also affect the temperature-height distribution over 
them, and its seasonal variation. 

2L.12. Comparison of L2(p) and S2(p) 

Figure 2L.6 indicates the variation with latitude, from north to south, of the annual 
mean amplitudes lz and s2 of L2(p) and Sz(p), averaged over 10 ~ belts of latitude, 
derived from 69 stations. There is a 20-fold ratio of the scales for L 2 and $2. The 
considerable similarity and overlap of the Sz and L 2 graphs shows that the ratio 
s2/12 is close to 20. 

This ratio can be inferred more exactly, on the basis of considerably more data, 
both for S 2 and L2, from the expressions for the main term P2 z in their spherical 
harmonic expressions. For $2 Haurwitz (Section 2.4A) gives 

1.16 mb sin30 sin(2t + 158~ 

For L 2 the main term found by Haurwitz and Cowley is 57.0/~ z sin(2z +75~ or, 
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Fig. 2L.6. Mean values of the amplitudes s2 (full line) and 12 (broken line) of the annual mean solar 
and lunar semidiurnal air-tides in barometric pressure, Sz(p) and L2(p), for 10 ~ belts of latitude. 
The numbers beside each point show from how many stations that point was determined. After 

Chapman and Westfold (1956). 

because/>2,2 = 0.9684 sin 3 0, it is 

55.2 pb sin 3 0 sin (2z + 75~ 

Thus s2/I 2 = 1160/55.2=21.0. The phase difference ~r 2 - 2 2  = 83 ~ 
These results are further indicated in more detail by Figures 2L.Sa, b, which show 

the dial vectors of  the annual mean Sz (p) and L2 (p) for many places widely spread 
over the globe. Again the scales for $2 and L 2 differ by a factor of  20. The probable 
error circles for L 2 a r e  shown. Clearly on the whole the vectors for $2 and L 2 o n  their 
different scales are about equal, and their phases differ by slightly less than 90 ~ 
though both as regards amplitude and phase there are striking exceptions. 

A remarkable feature indicated by comparison of Figures 2S.1 and 2L.7 is the 

great difference between the seasonal variations of  S z (p) and L2 (p). I t  is proportion- 
ately much greater for L2 (p) than for S 2 (p), exactly the opposite to what one would 
expect. The thermal excitation of S2(p) must certainly differ considerably f rom 
summer to winter, whereas the tidal L forces have no seasonal variation. The con- 
siderable seasonal variation of L 2 (p) must indicate some notable disparity of  atmo- 
spheric structure between summer and winter. It  would seem that this change partly 
cancels the influence of the change of excitation of 5'2. 
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Fig. 2L.7. Harmonic dials, with probable error circles, indicating the changes of the lunar semi- 
diurnal air-tide in barometric pressure in the course of a year, (a) Annual (y) and four-monthly 
seasonal (j, e, d) determinations for Tahoku, Formosa (now Taiwan, Taipei) (1897-1932). Also five 

sets of twelve monthly-mean dial points. See Table 2L.2 for particulars of the seven stations. 
After Chapman (1951). 

2L.13. The Lunar Tidal Wind Variation 

The tidal variation of  sea level is associated with tidal currents, superposed on any 
other motions present, such as the Gulf Stream. Similarly in the atmosphere the 

Fig. 2L.8. Harmonic dial vectors for the lunar and solar semidiurnal air-tides L2(p) and S2(p) in 
barometric pressure at 69 stations (omitting $2 for station 3 and Lz for station 8). The lunar amplitudes 
& are on a scale 20 times that for the solar amplitudes s~. The circles or dots surrounding the 'free' 
ends of the L2 vectors indicate the probable errors of L2. The vectors refer to the points at their 
common origin. After Chapman and Westfold (1956); the numbers alongside each point refer to 
their list of stations. 
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Lz(p) variations must involve lunar tidal wind variations. They will be small, and 
are overlaid by much larger winds, which are very variable, changing direction 
sometimes many times within a single hour. Hence it is to be expected that it will 
be far more difficult to determine the lunar tidal wind variation L(V) from wind 
data than it is to determine L(p) from barometric data. Wind data are usually 
registered and published in the form of wind speed and wind direction. To determine 

L(V) it is necessary to convert the data into hourly values of  the wind components, 

u southward and v eastward. Only very few observatories have given their wind data 
already converted in this way; among them are Mauritius and Bombay. The first 

at tempt to determine L 2(u) and L 2Q)) was based on the Mauritius data (Chapman, 
1948) for about 16 years, 1916, 1917 and 1920-33. The results obtained were not well 
determined. Recently Haurwitz and Cowley (1968) have made six more determina- 
tions, for the stations 32, 47, 52, 55 and 62 of Table 2L.2 and Uppsala (59.9 ~ 

17.6~ Their original data were in the usual form of wind speed and direction. With 
modern computers the labor of  conversion to u and v, once the data are on cards 
or tape, is not serious. Some of their data covered periods of  about 20 years, but for 
Uppsala and Hongkong 84 and 67 years respectively were used. Again the results were 
not well determined, apart  f rom the notable exception of Hongkong. All the results 

are shown in Table 2L.4. 

TABLE 2L.4 
Lunar tidal wind components (unit 1 cm/sec) 

Period latitude days Southward Eastward 
component u component v 

lz P.E. 22 /2 P.E. 22 

Uppsala, Sweden 1874-1957 59.9 ~ N 25752 0.64 0.37 204 ~ 0.75 0.27 179 ~ 
Greensboro,N.C. 1945-62 36.1 N 6182 1.3 1.0 191 1.8 1.0 80 
Hongkong a 22.3 N 22892 1.0 0.4 98 2.2 0.4 69 
SanJuan, P.R. 1941-62 18.5 N 7650 1.4 0.7 267 0.6 1.0 253 
Aguadilla 1945-62 15.5 N 6203 1.5 0.9 245 1.5 0.9 100 
Balboa, Panama 1941-61 9.0 N 7435 1.2 0.6 209 0.6 0.8 195 
Mauritius 1916, 17, 20.1 S 5730 1.2 0.6 176 1.0 0.6 220 

20-23 

1890-1939, 1947-59, 1963-66, omitting days when the daily range of either component exceeded 
10 m/sec. 

Six of these fourteen determinations have amplitudes that are at least twice the 
probable error; this corresponds to nearly 95~ significance. But only for L(v) at 
Hongkong is the ratio at least 3 (actually 5.5), the value hitherto generally regarded 
as a satisfactory minimum. In two of the eight cases where the ratio is less than 2, 
it is actually less than 1. Clearly there is need for more reliable determinations, 
requiring longer series of data. In all the above cases, the C-M method was used. 
Haurwitz and Cowley omitted some days of unusual or too irregular wind strength; 
if too many are omitted, however, the reduction in the number of days increases the 
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probable error by more than the reduction coming from the smaller error per day. 

It  seems that at least 60 years data are needed for places where the wind regime is 

like that at the seven stations of  the Table. 

Chapman illustrated his results for Mauritius by Figures 2L.9 and 2L.10. The 
former gives harmonic dials showing L 2 ( - u  ) and L2(v ) and also, on a tenfold 

90* 

Z T O  ~ (o1 

9 0  ~ 

12 ~ ~ , , ~ o  

SOL4[? I h 

MAURITIUS WIND \ 
SOLAR TIDE / 

I10 210 cm sec-Ilo o 

( b )  

Fig. 2L.9. Harmonic dials showing (above) the L2 vectors (with probable error circles) for the 
northward and eastward lunar tidal wind components at Mauritius, based on about 16 years' hourly 
data; and (below) dials showing the corresponding S~ dial vectors. The vectors of the upper diagram 
are magnified ten times compared with those in the lower diagram. After Chapman (1949, 1951). 

different scale, S 2 ( - u )  and $2 (v), determined by the C-M method as a by-product 
in finding L 2. For L a the probable errors are shown; they are notably larger, pro- 
portionately, than in the other harmonic dials here given (Figures 1.3, 2L.7, 2L.8). 
The amplitudes of  L 2 ( - u  ) and Lz(v  ) are similar, their phases are considerably 
different; for S z the phases are nearly the same, but $2 (v) has nearly twice the ampli- 
tude of $2 ( -  u). 

Figure 2L.10 shows the magnitude and direction of the lunar tidal wind V L at 
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each lunar hour, and likewise (on a tenfold different scale) of the solar thermal tidal 
wind Vs at each solar hour. These vector end points describe an ellipse twice daily. 
These ellipses can also bear another interpretation: they show the path of an air 
particle from its mean position, corresponding to VI~ and Vs; for this interpretation 
the length scale is shown to the left of the origin, and the hour numbers must be 

N 
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(16 YEARS' DATA| 
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Fig. 2L.10. Vectograms based on Figure 2L.9: they show in plan the wind velocities at each mean 
lunar or solar hour, morning and afternoon, associated with the lunar and solar semidiurnal wind 
variations at Mauritius. The speed at each hour is represented (on the scale shown on the right of the 
origin) by the distance from the dial point (at that hour) to the origin. The diagrams also illustrate 
the corresponding paths of an air particle at Mauritius, due to these wind variations, if the hour 
numbers are increased by three. The distance scales are shown to the left of the origin. There is a 

scale ratio of 10 between the two diagrams. After Chapman (1949, 1951). 

increased by 3. The ratio of the speed scale, shown to the right of the origin, to the 
length scale, is T/4rc, where T denotes respectively the lunar or solar day in seconds. 
The extreme departures of the air particle from its mean position at Mauritius, in 
the absence of other winds, is about 23 km for S and about 1 km for L. 

In 2S.6 a comparison was made between the observed values of S 2 (V) at Uppsala, 
Hongkong and Mauritius, and what theory would infer from $2 (p), taking account 
of the earth's rotation, but neglecting friction. A similar comparison relating to 
L2 (p) and L2 (V) is here made. In the lunar case, 

c? 2re ~ T s 
- -  - -  ( . 0  . 
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The ratio TL/T s is 1.0335; if this factor, for a first approximation, is treated as unity, 
then the solutions given in 2S.6 for S2(u) and S2(v) apply also to L2(u ) and L2(v), 

if there we substitute for Ps and a the values PL and 2, given by Haurwitz and Cowley 
(1968) as 55.2/~b and 75 ~ (see 2L.12), and also CL (=0.95 cm/sec) for C s. Thus for 
Uppsala, Hongkong and Mauritius respectively the theoretical amplitudes and 
phases are 1.9, 0.9, 0.8 and 165 ~ 165 ~ 345 ~ for 2(u), and 1.9, 1.2, 1.2 and 235 ~ 235 ~ 
235 ~ for 2 (v). The amplitudes are of the same order of magnitude as the values derived 
from observations, but the latter do not have the systematic increase with latitude; 
the Uppsala determined value is only one third of the theoretical value, whereas 
for the best-determined result, that for L z (v) at Hongkong, the determined value is 
almost twice the theoretical value. There is also much disagreement between the 
two sets of phases. 

In Figure 2L. 10 the direction of rotation of the wind vector of L 2 (V) is clockwise; 
this corresponds (see 2S.6) to the negative value of 2 , -2 , ,  for Mauritius; for all the 
northern stations 2 v - 2  v is positive, so that the rotation in similar diagrams for their 
L2(V ) would be counterclockwise. All these directions are opposite to what the 
equations of motion lead to. This adds another to the problems yet to be solved 
in bringing theory into accord with the observational data for the lunar atmospheric 
tide. 

There is a possibility that L z (V) might be found more readily, with less or no more 
data than was used in the above determinations, by using data from stations where 
(at least at certain seasons) the wind is specially gentle and regular. This is the case, 
for instance, at Fairbanks, Alaska, during most winter days, when usually there is a 
great inversion of temperature. Ordinary anemometers fail to measure the wind 
when the speed is less than 2 knots; according to an unpublished study by Fogle, there 
were 1176 hours per year, over the average of the period 1959-61, when for this 
reason there was no wind record there. More sensitive anemometers are now available 
that could measure the wind during such calm periods. From such data S(V) should 
be determinable for that season after a year or two, and L(V) from twenty years' 
data, or perhaps from ten years. 

2L.14. The Lunar Tidal Variation of Air Temperature 

The heating of the atmosphere by moonlight is quite negligible; if it were otherwise 
there would be a lunar diurnal variation of air temperature, L~ (p). But the moon does 
produce a lunar semidiurnal air temperature variation, as a secondary consequence 
of its mechanical tidal action. The changes of air density accompanying the tidal 
variation of pressure will depend on whether the pressure changes adiabatically or 
isothermally, or something between these extremes. A similar question arises in 
connection with sound waves. Newton, who was the first to try to calculate the speed 
of sound, assumed that the density changes are isothermal, and his result did not 
agree with his measurements. Laplace realized that the density variations are too 
rapid for the heat of compression to be conducted away during the brief period of 
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each oscillation; the assumption that the changes are adiabatic led him to the correct 
formula for the speed of sound. 

The lunar atmospheric tide is a double tidal wave travelling round the earth each 
lunar day. The period is long - half a lunar day; but the distance between the regions 
of compression and rarefaction, or high and low pressure, is also great, except in 
high latitudes. Calculation (Chapman, 1932b) shows that the horizontal conduction 
is quite negligible. Consider for simplicity a uniform medium in which there is 
generation of heat of amount 

asin(pt + 2~x/;~), 

where x is the horizontal coordinate. The equation of horizontal conduction is 

0~ ~ t  =/~ c~x~ + a sin pt + 

Here a denotes the specific heat and k the thermal conductivity. If  the first term on 
the right, corresponding to the horizontal conduction, is omitted, 

T =  T O + fl cos(pt  + 27cx/2), /~ = - a/otrp. 

The term k ~2T/Ox2 is then of order &c2kfl/22, and its ratio to the other two terms 
is 4rcZk/ocrp22. For lunar semidiurnal variations p=2rc/43350= 1.45 x 10- 4/sec; 
for air 0 = 1 . 2 5 x 1 0  -a, a=0.24,  and k (the eddy conductivity, much greater 
than the molecular conductivity except at great heights) may be taken as 15 
to 30, according to the wind speed and roughness of the ground: over the sea it 
appears to be smaller (Taylor, 1917). Taking the larger value of k, the ratio is 
2.72 x 101~ At the equator the wavelength ~ is half the circumference of the earth, 
or 109 cm; in latitude L ~ it is 109 cosL ~ Thus the ratio is 2.7 x lO-8/cos2L ~ This is 
quite negligible up to very high latitudes (e.g., at latitude 80 ~ it is 3 x 10- s). 

Ignoring horizontal conduction, we next consider vertical conduction. The factor 
k/o in the above ratio increases rapidly with height, but neglecting this increase for 
low levels near the ground, the most important change in the ratio comes from the 
great reduction in the value of 2. For the lunar atmospheric tide 2 is greater than 
10 km o r  10  6 cm, and hence the above ratio is less than 1~. At higher levels, however, 
thermal conduction will become important. Chapman (1932b) suggested 120 km as 
such a height, but this may be an overestimate. 

It remains to consider conduction from the atmosphere to the medium below, 
land or sea. Chapman (1932b) considered conduction from an upper to a lower 
uniform media; in the upper one (0, a, k) there is a periodic generation of heat asinpt 
per unit volume, which causes heat to flow into the other medium (0', a', k'). If there 
were no such flow, T in the upper medium would be as stated above; the presence 
of the lower medium reduces the interface temperature amplitude fi in the ratio 

k#/(k# + k'#'), #2 = pocr/2k, #,2 = p~'r 

In the atmosphere near the ground, taking k = 30 over land, and 1 over the sea, the 
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corresponding values ofkkt are 8.1 x 10 -4 and 1.5 x 10 -4. For the land we may take 

Qa to be about 0.4 (e.g., ~=2 ,  a=0 .2 ) ;  k depends on the nature of the ground, e.g., 

for dry sandstone k is about  10 -4, and 6 x 10 .3 for granite: for moist ground it may 

be greater. The reduction of the interface temperature amplitude in the first case is by 
a factor about 0.95, and in the second, about 32-. 

Over the sea, where in the air kg is 1.5 x 10 -4, the greater conductivity of the sea 
water may reduce the interface temperature variation more drastically. As in the air, 
the molecular conductivity is much smaller than the eddy conductivity, which varies 
with the wind strength; for moderate winds (10 m/sec), k# appears to be about 300. 

For water ~'a'= 1 (~ '=  1, a =  1). Taking k =  1, the reduction of fl is found to be by a 
factor 3 x 10 .3 - that is, in the case of L2(p), the adiabatic variation is almost 
completely annulled; the pressure variations are isothermal. 

The adiabatic nature of the tidal air wave propagation has been tested (Chapman, 

1932a) by determining the lunar semidiurnal variation of air temperature at Batavia, 

f rom 62 years'  hourly observations. Figure 2L.11 shows the resulting dial vector 

90 ~ 

0 0 . 0 0 5 o c  O,OIOOC 

Fig. 2L.11. Harmonic dial (with probable error circle) specifying the lunar semidiurnal variation 
of air temperature at Batavia. The point C represents the variation calculated from the lunar semi- 
diurnal barometric variation at Batavia, on the assumption that the variation of pressure and density 

are adiabatic. After Chapman (1932a, 1951). 

with its probable error circle. The point C shows the dial vector calculated from 
L 2 (p) at Batavia on the assumption that the tidal pressure changes are adiabatic; the 
agreement is within the probable error. 

Chapman discussed the situation of Batavia relative to the sea, and the wind 
regime there, and concluded that it is effectively a land station, where the reduction 
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of an adiabatic pressure change of temperature would at most be of  order 10%. 
It  would be of interest to determine the lunar semidiurnal variation of air tem- 

perature from a long series of hourly observations made on the windward side of  
some small flat tropical island in a great ocean. This would throw light on the degree 
of interchange of heat between the air and the sea. Bartels suggested that it might 

prove advantageous in such a study to use only the night record, if this was less 
variable than the day record. 

In the study of L 2 (T) at Batavia a subsidiary reduction was made for the rainless 
days, about 50% of the whole (but many more in the j than in the other seasons); 

but this did not lead to any improvement of the result shown in Figure 2L. 11. 

2L.15. The Lunar Tidal Changes of Height of Various Pressure Levels 

The lunar atmospheric tide heaps up the air over certain regions and reduces its 
amount  over other regions, and these regions change as the moon revolves relative 
to the rotating earth. The tidal changes of  pressure at ground level are accompanied 

by changes at higher fixed levels; this means that the isobaric or constant-pressure 
surfaces rise and fall during each lunar half-day. The first direct evidence of this was 

provided by Appleton and Weekes (1939). They found a lunar semidiurnal variation 
of the noon height of the E-layer above southern England, amounting to a twice 
(lunar) daily rise and fall of  about  1 km from the mean level. Their result is illustrated 
by Figure 2L. 12, which shows 11 dial points, each representing a determination from 

a half month (12 to 14 days), between August 1937 and July 1938. The cross shows 
the mean dial point, and the probable error circle shows the uncertainty of  any one 
of the 11 dial points. The radius of the probable error circle for the mean dial point 
is less by a factor slightly greater than 3, so that the determination is a good one. 

2 h 

I ~  ~ 0.5 2h 

9hi I / ~ 3h 
0 0.5 1.0 1.5 

KM 
Fig. 2L.12. Harmonic dial for the lunar semidiurnal variation of the height of the E-region of the 
ionosphere near London, England. The circle shows the probable error for any one of the eleven 

separate dial points, each based on 12-14 days' data. After Appleton and Weekes (1948). 



ATMOSPHERIC TIDES 109 

Since 1939 there have been many studies of lunar tidal influences on the ionosphere, 
of two main kinds, namely of the layer heights, for the D-, F 1- and F2-1ayers as well 
as for the E-layer: and of the electron density of each of these layers. This electron 
density is influenced by the lunar tide in a complicated way; it is determined by a 
changing balance between processes of electron detachment by absorption of solar 
photons of short wavelength, and of recombination or charge exchange. The lunar 
tidal changes of height and electron density affect other ionospheric properties also, 
such as the absorption of solar photons of particular wavelengths. Reports on many 
of these studies of lunar tidal influences on the ionosphere up to 1963 are given in the 
bibliography mentioned at the beginning of the References. 

The different ionospheric layers, or their levels of peak density, are not isobaric 
surfaces, so that the deduction from them of the pressure changes at particular heights 
is a somewhat involved matter. 

One notable feature of the results is that the amplitude of rise and fall of the 
successive ionospheric layers, D, E, F 1, F z increases with height, as the tidal theory 
of  Chapter 3 would imply. 

Evidence of pressure changes at a lower level between the ionosphere and the 
ground, or of height changes of an isobaric surface there, was given by Duperier 
(!946). Cosmic ray observations provide, in a surprising and most interesting way, 
information as to the lunar air tide at a level of 18 or 20 km above the ground. Mesons 
are generated by primary cosmic rays at these levels, and those that descend to the 
ground can be recorded there. As they are unstable, a proportion of them are trans- 
formed on their way to the ground. If  the lunar tide raises or lowers the level of the 
mean air pressure at which the mesons are generated, their path to the ground will 
be lengthened or shortened. This will cause more or fewer to be transformed in the 
air, and will reduce or increase the number of survivors recorded at ground level. 
Duperier made a determination of L 2, with satisfactory probable error, in his re- 
corded amounts of cosmic ray reception (mainly mesons) at London. From his 
result he inferred that the lunar tide at about 18 km is considerably magnified (about 
tenfold what the equilibrium tide would indicate). Studies of this kind deserve more 
attention and effort, both observational and theoretical. 

2L.16. Brief Mention of the Lunar Geomagnetic Tide 

Nearly a century ago a small lunar daily variation was detected in the records of the 
components (or 'elements') of the earth's magnetic field. This variation is produced 
(like the corresponding solar daily geomagnetic variation) mainly above the earth's 
surface, though these varying 'primary' magnetic fields of external origin induce 
electric currents in the conducting body of the earth - mainly deep down, but also, 
to a lesser degree, near the surface, where they can be measured and recorded. The 
analysis of these earth-current records reveals solar and lunar daily variations, which 
form yet another curious by-product, as in the cosmic rays, of the high-level solar 
and lunar tidal atmospheric oscillations. 
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These layers are not yet clearly identified, but the E-layer is probably the main 
region of flow. The flow is probably chiefly in the E-layer, but from time to time 
solar flares enhance the electron density of the D-layer, and the electric currents flow 
there also until the flare ceases and the extra D-ionization dies away. There is some 
electric current flow; however, attaining a far higher level above the equator, because 
it goes from the northern to the southern hemisphere, or vice versa, along the geo- 
magnetic field lines. 

The currents are generated, as first suggested by Balfour Stewart, as in a dynamo. 
The moving air corresponds to the armature, the conducting ionospheric layers to 
the armature windings, and the earth's magnetic field to that of the dynamo pole 
pieces. 

The air motion effective for dynamo action is mainly horizontal. The part due to 
the solar action, mainly thermal, varies in the course of a solar day, and the part 
due to the moon's tidal action varies in the course of a lunar day. This results in 
corresponding daily geomagnetic variations, S and L. The L-variation is lunar 
semidiurnal when averaged over a lunation, but at any particular lunar phase the 
lunar-induced electric currents are stronger over the sunlit than over the dark hemi- 
sphere, because of the greater ionization over the former hemisphere. Consequently 
the magnetic records show not only a lunar semidiurnal component L2, but also luni- 
solar components L,, for which n = p - 2 / M ,  p being an integer (Chapman and 
Bartels, 1940, Chap. 8). 

From the determinations of S n and Ln in the magnetic records of many stations it 
is possible to determine the distribution and intensity of these solar and lunar daily- 
varying electric current systems in the ionosphere, and also the type of the inducing 
atmospheric motions at those levels. To infer the intensity of these motions requires 
a knowledge of the electric conductivity of the layers in which the known electric 
currents flow. Until the precise situation of the currents is ascertained, and their 
electric conductivity, the intensity of the solar daily and lunar daily oscillations in the 
ionosphere cannot be precisely inferred from the geomagnetic data. The present 
indication is that the lunar tidal horizontal movements, like the lunar tidal rise and 
fall of the E-layer, are very greatly magnified as compared with what the barometric 
L2 data would suggest. It is, however, of interest to note that the ratio of $2 to L 2 in 
the magnetic records is about the same as that in the barometric variations. 

As mentioned in Section 2S.9C, calculations of the wind distributions responsible 
for the geomagnetic S and L have been made (Maeda, 1955; Kato, 1956); naturally 
they simplified the problem considerably in order to arrive at definite results. The 
complexity of the problem has been stressed by Price (1969). One apparently clear 
result has been obtained, namely, that the lunar air flow in the layer where the geo- 
magnetic L is generated is opposite to that near ground level. There is much scope 
for further study, both by observation and theory, of the bearing of these geomagnetic 
data on the solar and lunar atmospheric tides and thermal tides. 



CHAPTER 3 

Q U A N T I T A T I V E  T H E O R Y  OF A T M O S P H E R I C  T I D E S  

AND T H E R M A L  T I D E S  

3.1. Introduction 

The theory of atmospheric tides and thermal tides has two main parts: (a) The in- 
vestigation of the sources of periodic excitation, and (b) The calculation of the 
atmospheric response to the excitation. The former could include a detailed con- 
sideration of atmospheric composition and chemistry, the solar spectrum, molecular 
absorption, radiative transfer, turbulent transfer, and other topics. A study of (b) 
could in principle concern all the problems involved in the general circulation of the 
entire atmosphere, including non-adiabatic, orographic, non-linear, hydromagnetic, 
and numerous other types of process. It is not possible to be so comprehensive in 
this review, and we here concern ourselves with such topics, as have previous re- 
viewers (Wilkes, 1949; Chapman, 1951; Kertz, 1957; Siebert, 1961; Craig, 1965), 
only to the extent that they have been used in current investigations. We begin by 
describing the equations for the atmospheric response to arbitrary excitations - 
invoking numerous assumptions and approximations. Some attention is given to 
methods of solution for the equations obtained. We then describe, rather simply, the 
sources of excitation included in various tidal calculations, and the specific responses 
inferred. Where possible, the effect of various approximations in these solutions is 
discussed. 

3.2. Equations 

In this section we deal with the response of the atmospheric pressure, density, 
temperature and velocity, hut not with the geomagnetic response. Among the ap- 
proximations used, the following are almost universally applied without much 
question: 

(a) The motion of the atmosphere may be described by the Navier-Stokes equations 
for a compressible gas. It is convenient to express them in spherical coordinates for 
a frame of reference rotating with the earth. It is rare to find these equations written 
down in full. However, some idea of their appearance may be obtained from Gold- 
stein (1938), Haurwitz (1951), and Brunt (1939). 

(b) The atmosphere is always in local thermodynamic equilibrium ; i.e., it responds 
to heating via a continuous sequence of equilibrium states. This matter is discussed 
further by Landau and Lifshitz (1959) and Roberts (1967). Somewhat less rigorous 
assumptions are: 

(c) The atmosphere is a perfect gas, so that, with the usual symbols (see p. 8),* 

p = ~oRT.  (1) 

* The most common symbols and their meaning as used in this chapter are listed on pp. 176-179. 
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Moreover, it is assumed that the atmosphere is of constant composition, so that R 
is a constant. This is nearly true up to about 95 km (Nawrocki and Papa, 1961). 
R=2.871 x 106ergg -1 deg -1 at the ground, 2.878 x 106 e rg9  -1 deg -1 at 100 km 
and 3.16 x 106 erg 9 -1 deg -1 at 200 kin. 

(d) The atmosphere is regarded as a geometrically thin fluid layer of small thickness 

compared with a, the radius of the earth. Thus, expressing the distance from the 
earth's center as 

r = a + z ,  (2) 

we neglect terms in our equations whose order is z / a .  One consequence is that the 
acceleration of gravity, g, is treated as a constant; at z =  100 km the error is only 3~.  

I f  the shallow atmosphere approximation is introduced into the definition of the 
metric factors for spherical polar coordinates, then the neglect of  the component  of  
the earth's rotation vector parallel to the earth's surface follows (Phillips, 1966).* 
The physical validity of  this procedure appears to depend on a wave's frequency 
being much less than the Brunt-VS.isfil~i frequency (Phillips, 1968). 

(e) The atmosphere is taken to be in hydrostatic equilibrium. This implies that 

vertical accelerations are small compared with g, so that 

1 ap 
- g .  ( 3 )  

0 0z 

Solberg (1936)felt concern over this approximation, but, Hylleraas (1939) found the 
approximation to be good and a p o s t e r i o r i  checks of obtained solutions appear to 

confirm this (Yanowitch, 1966). 
(f) The earth's ellipticity is ignored. 
None of the above seem to constitute serious limitations on atmospheric tidal 

theory. The following are more significant approximations: 
(g) The earth's surface topography is ignored, so that, the influence of mountains 

and the land-sea distribution is not taken into account. 
(h) Dissipative processes such as molecular and turbulent viscosity and con- 

ductivity, ion drag, and infrared radiative transfer are ignored. 
(i) Tidal fields are considered as linearizable perturbations about some basic state. 

Let a given field be written 

f = f o + f ' ,  

where fo is the basic field and f '  is the tidal contribution to f.  By 'linearizable' we 
mean that we may neglect quadratic and higher order terms in f ' .  The detailed 
procedure of linearizing the equations of hydrodynamics is given by Haurwitz (1951) 
and is reproduced by Craig (1965). I f  there is a tidal excitation, E, t h e n f '  is proportional 

* The equations of motion have been expressed by Hough (1897) and Phillips (1966) in terms of 
general curvilinear coordinates. For spherical polar coordinates the metric factors are ho ~ r sin0, 
ho = r and hr = 1. The 'shallow atmosphere' approximation consists in replacing these by h~ ~ a sin0, 
ho = a and hr = 1 (r = distance from center of the earth, 0 = colatitude, a = radius of the solid earth). 
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to  E, and linearization requires at the least that  E be sufficiently small. As we shall 

see, however (Section 3.6.C), this is not  enough. 

(j) Even linear equations can become intractable if their coefficients are at all 

complicated. In order to make the tidal equations tractable, a number  o f  approxima-  

tions are made for the basic fields. First, they are assumed to be steady; this should 
be adequate if the non-tidal fields change with time scales much longer than tidal 

periods. Second, we assume that  the basic flow may be set equal to zero. This, in 

turn, implies that  To, Po and Go are independent o f  latitude and longitude. F r o m  
Equations (1) and (3) we then obtain 

Po = Po (0) e-~ (4) 

Go = Po/g H ,  (5) 

where T O = basic temperature distribution, 

H = RTo/g,  (6) 

0 

We now investigate the equations based on the above approximations,  and obtain 

solutions for  the most  c o m m o n  thermal tides and tides.* In the light of  these solutions 

we examine the effects of  approximations (g)-(j) referring, where possible, to earlier 

studies o f  these matters. 

We use the equations in the form chosen by Siebert (1961, p. 128)t and Pekeris 
(1937); making much use of  Equations (4) to (6): 

where 

. . . . .  3u 2cov cosO = 1 ~ (6p  ) 3t a (30 + f2 , (8) 

~ + 2cou cos 0 - a sin 0 3~o \ ) o  + f2 , (9) 

36p OQ 
Oz g6G - Go Oz ' (10) 

DG 36G dGo 
- ~- w . . . . .  OoZ, (11) 

Dt  (3t dz 

1 3 1 3v Ow, 
Z -= V . V -  a sin0 30 (u sin0) + + - - ,  (12) a sin 0 Og0 0z 

R D T  R ( ~ 6 T  wdTo~ gHDG 
- - -  + - + J (13) 

7 -  1 Dt  ? 1 \  ~t d z J  Qo Dt  ' 

* Some of the approximations made above are avoided to some extent in a recent study by Hunt 
and Manabe (1968) using a numerical weather prediction model. However, that study introduced 
additional approximations (such as putting a top on the atmosphere near 38 kin, and using 18 levels, 
equi-spaced in pressure to resolve the tidal vertical structure) which are seen in what follows to be 
more serious than the approximations used here. See also Lindzen, Batten and Kim (1968). 
t But we use the gas constant R for air rather than the universal gas constant Ro (cf. p. 8). 
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and 
6p/po = fiT/To + 5Q/~o. (14) 

Here 0 = colatitude; q5 = east longitude; t = time; u = northerly velocity; v = westerly 
velocity; w = upward velocity; 6p = pressure perturbation; 6~ = density perturbation; 
6 T =  temperature perturbation; J =  thermotidal heating per unit mass per unit time; 
f2=gravitational tidal potential; co=earth's rotation rate; 7=Cv/Cv  = 1.4, and for 
future reference ~ :=(y-  1)/? =2/7. 

Here (8) and (9) are the linearized equations for northerly and westerly momentum 
respectively (the coriolis terms in these equations describe the advection of the earth's 
momentum due to its rotation); (10) is the hydrostatic pressure relation, (11) is the 
continuity equation, (13) is the thermodynamic energy equation where heating is 
produced by both external sources (J) and 'adiabatic' compression; (14) is the 
linearized version of the perfect gas law. Using (14) to eliminate 5T  from (13), we 
obtain 

Dp _ O6p dp0 DQ 
Dt  ~ + w dzz = 7gH D t  + (? - 1)~o J .  (15) 

In meteorological work D p / D t  is often used as the main dependent variable (and 
usually denoted by co); a related variable comparably convenient for tidal theory is 

1Dp 
G - (16) 

?Po Dt ' 

which is used in our subsequent equations from (22) onwards. 
In tidal theory we are generally concerned with fields periodic in time and longitude; 

i.e., of the form (using complex quantities) 

f = f~'~(O, z) e ~(at+s40, (17) 

where 27z/a represents either a solar or lunar day or some suitable fraction thereof; 

s = 0 ,  + 1, +_2,....  

From (17) we have 

~/Ot = icr ; (3/O(a = is.  

Using (17) we may solve (8) and (9) for u and v: 

Uap  s _ 

4a~o z ( f 2 2 c o s  20) ~ + \ ~o +12 *'s , (18) 

and 

v~'s = 4aco 2 (f~- -- cos 20) ~3-0 + s~nn0] \~o-o  + ~2~" ' (19) 

where 
f --- o'/2co . 
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Here @ is a complex function, and 

[(3/(30 + s cot O/f] and [(cos O/f) ((~/00) + s/sin 0] 

are different operators; hence (18) and (19) do not imply that u lags 90 ~ in phase 
behind v in the northern hemisphere. In addition, u and v may change sign at dif- 
ferent latitudes; thus, there may exist a latitude band where u leads v (Blamont and 
Teitelbaum, 1968); (18) and (19) also appear to suggest that u and v become infinite 
when f =-t- cos0. However, as Brillouin (1932) showed, this does not occur for 
complete solutions of our equations. Substituting (18) and (19) into (12) we get 

Qw i cr /@ \ 
)~ Oz - 4  --~-75 F | "  acv k~ o + fJ) ' (20) 

where 

F - sin 0 ~30 2 ~ cos 2 0 ~-0 f 2 _ cos 2 0 f 2 _ cos 2 0 ~- sin z 0 " 

(21) 

Equations (20), (16), (15), (11) and (10) are five equations in five unknowns: G, @, 
~30, w, and x. They are readily reduced to a single equation for G alone: 

H _ _  
( ~ 2 G " ' S ( d U ) O G ' ~ ' s i ~ o 2 Q ~ ' , "  

~z~ T - +  ~ - 1  ~z g &2 

_ g F ( (  dH ) G  ~'~ tcJ'~'s~ 
- 4a2o) ~ ~-z + tc 7 ~  J"  (22) 

In general the scale length for the z-variation of ~2 is the moon-earth or sun-earth 
distance. Consistently with the 'shallow atmosphere' approximation, therefore, 
(tr/g) (~z~2/~z2) may be neglected, leaving us with 

~2G~r's ( d H ) ~ G ~ ' S _ g  F ( f a H  ) tcJ*'*~ 
H ~5- zz  + dzz - 1 ~z 4a2(o 2 \ \ d z  + ~c G ''s . (23) 

This may be solved by the method of separation of variables. Assume that G*'" may 
be written 

G*'S = Z E~," (z) O~'" (0) (24) 
n 

and, moreover, that the set {O~'* (0)}all. is complete for 0~<0<rc. Then J may be 
expanded thus: 

if, s a ,  j~,s = Z J[, (z) O. s(o). (25) 
n 

Substitution of (24) and (25) into (23) yields the following set of equations for U~ s 
and ~' ~" O n �9 

4a2co 2 
F(O2's) = -  ohm'-- s O2 "~ (26) 
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and 

H - - " - +  - 1  + .,~ d z  +re L~ '~=  ~c dz 2 dzz h. ygHh~, 's j~,s (27) 

where hi' s is the constant of separation.* 
The boundary conditions on {O,} are that they be bounded at the poles (i.e., at 

0 =0, n). With these conditions (26) defines an eigenfunction-eigenvalue problem 
where {h,} is the set of eigenvalues. Laplace (1799, 1825) first derived (26), which is 
therefore called Laplace's Tidal Equation for the free surface oscillations of a spherical 
ocean envelope. In his problem, however, h, was replaced by h, the depth of the 
ocean; the eigenvalue was ~ (which appears in the operator F). By historical analogy 
with this problem {h,} is often called the set of equivalent depths (Taylor, 1936). The 
eigenfunctions {0,} are often called Hough Functions after Hough (1897, 1898), who 
pioneered in the solution of (26). 

Equation (27) is an inhomogeneous equation which, given two boundary conditions, 
has a unique solution for the vertical structure of a given Hough mode (i.e., the 
complete field whose latitude variation is given by a Hough function); (27) is often 
called the vertical structure equation. The relevant boundary conditions are discussed 
at the end of this section. We follow the common practice of reducing (27) to 
canonical form by the change of variables given by (7), or (using (4)) 

= - , (28) 

and 
L, = e x/2 y,.  (29) 

Then (26) becomes 

d2y. 1 4 
dx 2 ~ 1 - h .  ~CH+dxx Y~=Tgh.--e (30) 

Equations (20), (16), (15), (14), (11) and (10) together with Equation (24) imply that 

6p = E 6p,(x) 0 , ,  (31) 
n 

6~ = Y, (3p. (x) O.,  (32) 
n 

6T= Z 6T,(x)O,,  (33) 

w = Y, w, (x) O,,  (34) 
8 

* The superscripts a, s apply to all tidal fields, Hough functions, and equivalent depths. We will, 
therefore, generally omit them, their presence being understood. 
J For those readers familiar with the meteorological use of pressure (rather than z) as a vertical 
coordinate, a somewhat simpler derivation of (30) is available wherein dp/dt rather than G is used 
as a basic variable (Nunn, 1967; Flattery, 1967), and pressure coordinates are used from the beginning. 
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where it may be shown that 

-- H ( x )  0 icr \ d x  - �89 ' (35) 

( 6~. = (or_/) 2 ( -  en ~-x 1 + / / d ~  ] + io e-Xn 1 + h Uxx/\ d~ 

1 {~,dH ygh. ex/2[tc ~ +  1 (d  +H 
6T. = ~ dx ,~ H dx h. 

io" rdY. (/-/ 1) ] w. - ~ (2, + 7h. e x/2 
k d x + L  2 Y .  

(36) 

- Y" + i~r) 

(38) 

From (18), (19) and (35) it also follows that 

where 

u = E u.(x) u . (o ) ,  
n 

v = E v.(x) v.(0), 
n 

70) U n - f 2  cos20 ~ - t -  - -  On, 

1 (COS0 d 
V. = f Z _ c o s  2 0 \  f dO 

7ghne x/2 ( d y .  _ �89 

un = 4aco 2 \ d x  ,/ 

--+silo)~ 

(39) 

(40) 

(41) 

(42) 

(43) 

iTgh.e x/z ( d y  n 1 
v . -  4a~~ 2 \ d x  2y.. .]  (44) 

Here f2 has already been expanded thus: 

f2 = Z Q, (x) On. (45) 
n 

We now turn to the question of boundary conditions for (30) or (27). Given our 
assumption of a smooth spherical earth, the lower boundary condition is simply w=0 
at x = z = 0. (46) 
Using (38) this implies that at x=  0, 

dy,, (H  1) ia 
dx  + h. - 2 y" = ygh .  g?"" (47) 
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For the upper boundary condition one generally requires that the kinetic energy 
density �89 shall remain bounded as z~oo.  This, in turn, requires that yn(x) 
remains bounded as x ~ o e  (viz. Eckart, 1960; Wilkes, 1949). In some circumstances 
this condition is inadequate. For example, consider an atmosphere with an isothermal 
top where H is a constant and Jn = 0; then (30) becomes 

d2 yn 1 I 4~H-] 
dxZ 4 L1 h~, JY" = 0. (48) 

For h, < 4KH the solution of (48) is 

y = Ae i~x + Be -i;'x ' (49) 

where 

2 =  4" 

Both terms in (49) are bounded (Wilkes, 1949). The term e iax is associated with 
upward propagation of energy (Wilkes, 1949) and e-i~,x with downward propagation. 
Thus B = 0 if there are no energy sources at x-- oo. This result was also obtained by 
Eliassen and Palm (1961). It is generally referred to as the radiation condition. It may 
alternately be obtained by introducing a small damping (cf., Golitsyn, 1965; Booker 
and Bretherton, 1967; Giwa, 1967, among numerous others), or by considering the 
tidal problem from an initial-value point of view (Wurtele, 1953). We use the radiation 
condition in our calculations. However, as shown later, it is not always applicable. 
In particular, it is possible for viscosity and conductivity, both of which increase as 
1/6, to cause reflections of tides at great altitudes if 2 is very small. 

3.3. Methods of Solution 

In this section we indicate some common methods for solving (26) and (30), and 
outline the use of these solutions. 

3.3A. L A P L A C E ' S  TIDAL EQUATION 

Equation (26) may be rewritten, as by Hough (1897, 1898), in the form 

d ( 1 - #  2 dO,~ 1 rsf2q-# 2 s2 1 4 0 2 c ~  

(51) 

where # = cos 0; this form has been studied for well over a century, and most current 
methods of solution are based on Hough's work. However, only in recent years have 
thorough investigations of its solutions and their properties been made, largely owing 
to the advent of the electronic digital computer. Such analyses have been made by 
Flattery (1967), Longuet-Higgins (1967), Dikii (1965, 1967), and Golitsyn and Dikii 
(1966). Lindzen (1967b) has followed a simpler, more approximate approach, to 
isolate the effects of a change of sign of the quantity ( f 2  _#z) .  

In this section we simply outline a formal solution procedure. Looking at (51), it 
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is fairly clear that  there are, in general, no 'obvious'  closed solutions and that an 

expansion procedure is necessary.* 
It turns out that  (51) has regular solutions for the whole domain 0 ~< 0~<~t. Thus, 

we might, for  example, seek power series solutions of  (51). Unfor tunate ly  the sub- 
stitution of  such a series into (51) leads to an infinite set of  fifth-order recursion 
relations, that  is, each relation involves five of  the power series coefficients. However,  
as Hough  (1898) noted, the use of  an expansion in associated Legendre Polynomials 
leads to a much more  tractable set of  third-order  recursion relations. Briefly, let 

0 ~ ' * =  ~" C ~*.,,n P~, (P) .  (59) 
r n = s  

Substitution of  (59) into (51) leads, after considerable manipulation,  to the following 
set of  equations for (7,,,, 

( 2 m -  1 ) ~ 7 1 ~ _  1 ) -  (2m ---3) C ' ' '0 -2  + 

s h . g  
m (m + 1) - f C. m 

- -  f z m 2 ( m  + 1)2 4(.o2a 2_ , 

(m - 1) 2 (m + s) -] 

rrt 2(2m "}- 1) Cn, m J 

(m + s  + 1) [ (m  + 2) 2(rn - s  + 1)C 

+ ( 2 m + 3 ) { ( m + l ) ( m + 2 ) - f } k  ( - m +  1)2(2m + 1 )  .,m 

(re+s+2) ] 
+ ( 2 m + 5 )  C . , , . + z  = 0 ,  (60) 

* There are three exceptions: 
(a) When s = 0 , f  = 1, as Solberg (1936) first noticed, 

On2~, 0 = sin �89 n~z/2 n = 1, 3, 5, (52) 
O,~2o~, o = cos �89 mr/z n = 0, 2, 4, 

and 
4co2a2/ghn~O, o = (�89 n~r)2. (53) 

(b) For a non-rotating earth, 
Ona,s -- p s (Iz), (54) 

where P~  (/0 is an associated Legendre Polynomial as defined by Whittaker and Watson (1927); then 
a 2 = n(n + 1) gh,,sa 2. (55) 

(c) when h = o% 
O J  '~ = Rn~P~ 1 s + SnSPn+l s, (56) 

Rn s = (n + 1/n), ~/n + s (57a) 
Sn s -- [n/(n q- 1)] [(n + 1 - - s ) / ~ / n  q- s], (57b) 

and 
f -  s/n(n q- 1). (58) 

Flattery (1967) discussed these cases in some detail; see also Siebert (1961) for cases (a), (b), and 
Haurwitz (1940) and Neamtan (1946) for case (c). 
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Hough (1898) found it convenient to introduce a set of auxiliary constants D.,m+l 
and D.,,. thus defined: 

2(rn + 1)2(m - s) (rn + s + 1)C 
mZ(2m- 1) C.,m-1 + 2 m + - 3  .,m+i 

= 2  2 D.,m. (61) 
m 

It turns out that each D., m can be interpreted as a coefficient in an expansion of the 
stream function for the horizontal flow (Love, 1913; Flattery, 1967; Longuet- 
Higgins, 1967). Substituting (61) into (60) we get 

For brevity 

2(m + 1)2(rn - s) (m + s  + 1) 
m 2 ( 2 m - 1 )  D"'m-a + ( 2 m + 3 )  D.,m+l 

m fm ~ - ( r e + l )  24092a2_1 , . (62) 

(61) and (62) may be rewritten thus: 

and 

where 

KS Cn, m - 1  --  gTn'S Dn, m + gSm Cn, m+l -~ 0, 

K ~  D., ,n-1 - M,,~,'.~ Cn, m + I]'Sm On, m+1 = O,  

(63) 

(64) 

2(m + 1)2(m - s) 
K:, = ( 2 ~  - 1 ) m  2 (65) 

( m + s + l )  
LSm - -  (66) 

(2m + 3) 

N,,~,s=2{m+l i f }  m m 2 (67) 

o,s - (m + 1) 2 "' y (68) M,,,m= 2 f2  m + l  1 
m m 2 4~Taa 2 " 

Two things may be noted about (63) and (64): First, the equations for {C,,m}, ( m - s )  
odd, {D,,m}, (m-s) even are decoupled from the equations for {C,,m}, (m-s) even, 
{D .... }, ( m - s )  odd. The latter correspond to Hough Functions symmetric about the 
equator and the former to Hough Functions antisymmetric about the equator. 
Second, (63) and (64) are homogeneous. Thus, for (63) and (64) to have any solution, 
the coefficients must satisfy a self-consistency relation, and this relation yields the 
eigenvalues {h,} ; (63) and (64) are an infinite set of homogeneous linear equations 
for an infinite number of unknowns. By analogy with the case of N homogeneous 
equations in N unknowns, where self-consistency requires that the determinant of the 
coefficients equals zero, we require (ignoring certain mathematical technicalities) 
that the infinite determinant of the coefficients in (63) and (64) equals zero. For 
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example; let a (or f )  and s be given, then our self-consistency relations are 

- M 2 j  G o o o 
Ks+  - o o 

0 Ks+ 2 a,s - m ~ , s +  2 /5s+2 0 

0 0 K[+3 - N{_;~ L~+ 3 
�9 ' '  ~ 0  

0 
(69) 

(this yields the eigenvalues for symmetric eigenfunctions) and 

- N j ' s  G o o o 
K2+ 1 ,,, s - M;,,s+I Cs+l 0 0 

o K L 2  - L' +2 0 

0 0 KL3 - m ~ , s +  3 /2~+3 

�9 .. = 0 

(70) 

(which yields the eigenvalues for antisymmetric eigenfunctions). That (69) and (70), 
viewed as polynomials in h,, have an infinite number of roots, merely corresponds 
to the infinity of values of n. Having obtained h, from (69) or (70), one can obtain 
the eigenfunction by solving (63) and (64) for {C,,m} for all m. In general, if (59) 
converges, C, . . . .  ~ 0, and from (61) the same will hold for D,,,,,,. Hence a given 
solution of (69) or (70) is also an approximate solution of (69) or (70) when the 
determinants are truncated after a sufficiently large number of terms. Let x = h,,9/4o~2a 2 

and let Dl (x) be the l x I truncation of either (69) or (70). In practice we solve D l (x) = 0 
and see if the result is appreciably altered by considering Dt+~(x)=0. We continue 
this process until the root is negligibly altered. This is essentially the method of 
Galerkin (Dikii, 1965); for an example, see Lindzen (1966a). 

3.3B. VERTICAL STRUCTURE EQUATION 

For reasonable choices of H, (30) is a well-behaved, non-singular differential equation. 
However, except for particularly simple choices of H, there are no simple closed form 
solutions. When H is a constant (isothermal atmosphere) or when x H +  d H / d x  is a 
constant (see Siebert (1961) for a discussion of this rather unrealistic case), (30) has 
homogeneous solutions which are either exponential or sinusoidal. When d H / d z  is 
constant, it may be shown that (30) has homogeneous solutions in the form of Bessel 
Functions. In either case Green's functions can be formed to handle the inhomoge- 
neous problem. Treatments of tidal problems along the above lines have been given 
by Pekeris (1937), Siebert (1961), Butler and Small (1963), Lindzen (1967a), and 
others. For problems of any complexity, even the above methods usually require 
the use of a computer�9 This being the case, there are certain advantages in immediately 
approaching the solution of (30) numerically, as was done by Lindzen (1968a). The 
most obvious advantage of a numerical integration is the convenient flexibility it 
affords in the choice of H and J. 

The rest of this section is devoted to a description of a particularly efficient 
numerical scheme, due originally to Bruce, Peaceman, Rachford and Rice (1953) and 
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described by Richtmyer (1957). Let us divide our x-domain into a number of discrete 
levels xo, xi, x2..., where x o = 0 and the remaining levels are uniformly spaced, with 
separation 6x. At x,, the derivatives of a function f may be approximated as follows: 

d f  (f)~+x - ( f ) , . - i  
- -  ~ (71 )  
dx 26x 

d2f  (/)m+l - 2(f)m + (f)m-1 
dx ~ ~ (6x) 2 (72) 

Here the subscripts refer to the level where f is evaluated. Using (71) and (72), a 
second order differential equation in f may be rewritten as 

Am(f).,+, + Bm(f)m + Cm(f)m-i = Din, 

If we l e t f = y . ( x ) ,  then from (30) we have 

(73) 

A,,, = 1 

B i n = -  2 + ~ -  1 - ~ ( t ~ H ( x m ) + d ~ -  x . . . .  

C , . = 1  

D~ = (6x) 2 tc~"v'~'. 
7gh. 

Our procedure in solving (73) is to let 

(74) 

(75) 

(76) 

(77) 

( f )m = O~m(f)m+* + tim, 

where ~., and fiz are new variables. Similarly 

(78) 

(f)m-1 = ~m-1 (f)m + flm-l" 

Substituting (79) into (73) we get 

(79) 

Am(f)m+l Dm - -  flm_lCm 
( f ) m - -  B m + ~ m _ l C  + B m + . m _ i C  �9 (80) 

Comparing (80) with (78) we obtain 

- A m 
~ , .  - ( 8 1 )  

Bm + am- 1 C, .  

D., - fi,,,_ a Cm 
fl~ Bm + e r a - i  Cm" ( 8 2 )  

From (81) and (82) we see that if we know % and rio we can obtain all other e,~'s 
and tiffs trivially; % and rio are obtained from the condition w = 0 at x = 0. From (47) 
this implies that 

(Y,,)I - (Yv)o + f Ho _ l_~ (y.)o = iaC2,,, o . (83) 
~x \ h,, 2] ;~gh,, ' 
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this may be rewritten 
1 i a ~ , ,  o 5x 

(Yn)o--__1 ( h ~ - - ~ ) ( Y n ) l - - ' g h ' ( 1 - - [ h ~ - -  121c~1 )"  

Comparison of (84) with (78) yields 

1 

1 -  ~ -  5x 

(84) 

(85)  

(Y.)M- 2 = ~M- 2 (Yn)M-1 + tiM-2 

= (y , )M - 1 .  

From (91), (90) and (89) we finally get 

(Y,)M = (1 -- C~M_ 1 [2i25x + C~M_2]) " (92) 

Thus for an atmosphere for which dH/dx and J are zero above some level, our 
integration is completed. A similar method could be devised for other situations. 
There remains the technical matter of choosing 5x. Referring to (30) we see that if the 
quant i ty  2 2 given by +[4h~(tcH+dH/dx) - 1] is positive and 'sufficiently' slowly 
varying, we can interpret 2 as a wave number and 27:/2 as a wavelength (in units of  

(90) 

(91) 

N o w  

and 

- iaf2,,  o bx  

We now merely have to know what y,  is at some high level, and (79) will give its 
value at all lower levels. The upper boundary condition permits us to do this. How it 
is done is most easily seen for an atmosphere for which dH/dx and J are zero above 
some level. From (49) and the discussion of p. 116, we have that 

y, = Ae i~x (87) 

above this level; here A is some constant and 

'tcH 1 
2- -  ~/hd 4" 

From (87) 
dy,/dx = i2y,. (88) 

Let m = M correspond to our top level. Applying (88) at level M -  1 we obtain 

(y , )M - (Y , )M-2  
= i2 (Y,)~t-1. (89) 

23x 
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scale height). We have found that better than 1~ accuracy for the integration is 
obtained by choosing 

6x = (minimum value of 2rc/2(x)) x 10 -2 . (93) 

Similar considerations are appropriate to the case where 22 <0. 'Slow' variation of 
22 does appear to be a strong constraint. 

The method of integration described above is extremely efficient despite the high 
resolution implied by (93). Dividing the interval 0 ~< z ~< 200 km into 2000 subintervals 
O.e., 6x~O.1 km/H(x)), we are able to integrate (30) on a CDC-6600 computer in 
less than one sec. 

3.3.C. O U T L I N E  OF OVERALL PROCEDURE 

In this section we show how the solutions of Equations (30) and (51) fit into a general 
computation of tidal fields. Let there be some excitation, J and/or f2, with frequency 
o- and wave number s. We wish to compute the atmospheric response. Our first step 
is to find the roots of (69) and (70), thus obtaining {hn)aU n ('all n' is only in principle - 
in practice we settle for a finite number). Given this, we then solve (64) and (63) for 
{C,,,,}all m. In general all C,,m, rn>s (for even Hough functions) or m>s+ 1 (or odd 
Hough functions) are uniquely related to C,,s (or C,,~+1). However, C,, s (or C,,~+I) 
may be arbitrarily chosen. Thus the Hough functions obtained from (59) are deter- 
mined only to within an arbitrary factor. We similarly use (41) and (42) to obtain 
{U,(p)} and {V,(/~)) - also to within arbitrary factors.* The next is to expand y , s  
and/or fF  's in terms of (0~' ~}, and this requires a specification of the arbitrary 
factors. We now outline how this is done. 

It may be shown (cf. Flattery, 1967) that the functions {O,}all, are orthogonal. 
Thus 

1 

f O. (p) O., (/~) d# = ( F . )  2 (~..', (95) 
- 1  

where 
6. . ,=0 if nCn' 

= 1  if n = n ' ,  

and F. is an undetermined factor. 
If we set C.,~ (or C.,~+1) equal to one, then (63) and (64) determine the remaining 

C.,m's, and (59) gives O.. Given the orthogonality of the associated Legendre 
Polynomials, we then have (here P~ signifies the N~ of p. 42) 

1 1 

- 1  - 1  

* T h i s  s tep  r equ i res  the  use  o f  t he  f o l l o w i n g  p r o p e r t y  of  Pn s 

(1 - -  #2) dPns( / t )  = _ n (n  --  s § 1) pn+l s + (n + 1) (n + s) p~_ls" (94) 

d p  2n + 1 2n + 1 
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(Whittaker and Watson, 1927). Because 

1 

f 2 (m + s) 
(P~ (/l)) z d# = 2m + ~  (m - s) '  (97) 

- 1  

(96) becomes 

1 

f ~ 2 (re+s)! (98) 
(O n (#))2 d# = m=s (Cn" m)22m + 1 (m -- s ) "  

- 1  

If normalized associated Legendre Polynomials (P., s in the notation of p. 41) are used, 
so that for s > O, 

pT.(p) = \ /2m21(m - s) ' 
- ( r o T s ) !  

in which case 

o .  = c . , m P ~ ( # )  
/ t l = s  

and 

Similarly 

P~(#), (99) 

(100) 

• /  2 (m + s)! (101) 
Cn, m = C",m 2re_it_ 1 (w/_ s) [" 

= ~ ((?~.q2. (102) (F.~._) , - . ,  m. 
m = s  

If we choose to normalize O. then we define 

and 

satisfies 

C n ,  m 
C., ,. - (103) 

F.  

O. = ~ C.,., P-~ (#) (104) 
m = $  

1 

f (o.(#))2 d# = 1. (105) 
- 1  

From (102) and (103) we see that the normalization of O, requires the knowledge of 
all the coefficients in the associated Legendre Polynomial expansion of O,. Thus the 
truncation of the series in (102) will lead to small errors in C,, m. In practice this is 
not a serious problem, and we always use the normalized Hough Functions - 
omitting the overbar. If  we expand some function g (p) thus: 

g (#) = E g. O. (#), (106) 
tl 
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then 
1 

g, = f g (/z) O, (/t) d/~ ; (107) 

- 1  

in particular, if 

g (/~) -- P~ (#), (10S) 
then 

e, = C,,m. (109) 

Having normalized the Hough Functions and expanded J and/or f2, we can now 
solve (30) in order to obtain {yn(x)}. Finally we use Equations (31)-(44) to evaluate 
u, v, w, 5p, 60, and fiT. 

3.4. Sources of Excitation 

To apply the procedure described in Section 3.3.C. we need to know the excitations 
f2 and J. As already mentioned, these result from the rotation of the earth within 
gravitational tidal fields and radiational fields respectively. Tidal fields are determined 
by well known geometric considerations, thermal fields involve such uncertain factors 
as turbulence and atmospheric composition. 

3.4A. G R A V I T A T I O N A L  E X C I T A T I O N  

This is primarily due to the gravitational potential of the moon and secondarily to 
that of the sun. In analysing this excitation we follow the very lucid treatment of 
Lamb (1932). Consider Figure 3.1 where O and C denote the centers of the earth 

Fig. 3.1. Geometry for calculation of tidal potentials; O is the earth's center, C is the center of the 
disturbing body (moon or sun). After Lamb (1932). 

A=/__NOC, O=/NOP=cola t i tude  of P, where N denotes the north pole. The 
potential of the attraction of C at point P is yM/L, where M denotes the mass of C 
and y the gravitation constant. This may be rewritten 

~M 
~r ~--- (D  2 _ 2aD cos O + a2 )  1/2" (110) 
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I t  is the acceleration at P relative to the earth that  produces tides. The potent ia l  

associated with the acceleration of  the ear th as a whole is 

M 
D~ a cos O .  

Subtract ing this f rom (110) we get 

?M ? M  
~c~tidal ~" (D 2 -- 2aD cos O + a2) 1/2 D2 a cos O .  (111) 

Expanding  (111) in powers  of  (a/D), and retaining only the first term, we get 

3 yMa 2 
[2tidal~ 2 D 3 ( 1 _  COS 2 0 ) .  (112) 

Let  q~ be the longitude of  P, measured eastward f rom some fixed meridian,  and let 
be the hour  angle of  C west of  the same meridian. Then 

cos O = cosA cos0  + sinA sin0 cos(~ + qS), (113) 

and 
- c o s  2 o )  =  (cos2 A - ( c o s 2  0 - 1 )  

+ i sin 2A sin 20 cos (~ + ~b) 

+ �89 sin 2 A sin 2 0 cos2 (~  + ~b). (114) 

N o w  
A ~ 7r/2 + s s i n a l t  (115) 

and 

c~ = a f t .  (116) 

I f  C is the m o o n  then 

a L = 2~/1 lunar  m o n t h ,  (117) 

and if C is the sun 

a s = 2rc/l year .  (118) 

In  bo th  cases 

2~ 
0" 2 - -  O ' 1 ,  (119) 

1 sidereal day 

Let  us consider the three terms on the right o f  (114) in order  to see what  frequencies 
they give rise to. We only make  an approx imate  analysis, in which we assume that  
e is small. Thus 

cos2A = sin2 (e s ina l t )  ~ 82 sin 2 trlt ~ �89 - c o s 2 a l t ) .  (120) 

Since ( c o s 2 0 - � 8 9  independent  o f  time, the first te rm in 014)  is associated with 
either a lunar  fortnightly or a solar semiannual  excitation. Similarly 

sin 2A = + sin (~ + 2e sin a l  t) = - sin (2e sin a ,  t) ~ - 2e sin a l  t (121) 
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and 
sin2A cos(a  + qS) ~ - e(s in(a  + alt + ~b) = s in (a l t  - ~ - ~b)) 

or using (116) and (119) 

sin2A cos (c~ + qS) ~ - e(sin(ao t + 4)) - sin ([O'o - 2a , ]  t + qS)). (122) 

Thus the second term is associated with a sidereal diurnal excitation and an additional 
quasi-diurnal excitation with frequency (a o -2o-1). 
Finally 

s i n 2 A = c o s / ( e s i n a l t ) ~ l - e 2 s i n Z a i  t ~  1 -  + ~ c o s 2 a l t ,  (123) 

and 

~2 

+ ~-{cos (2 [o- o t +  ~b]) + cos (2([0" 0 - 2a l ]  t + q~))}. (124) 

Consequently the third term is associated with a relatively large lunar or solar 
semidiurnal term with frequency 2a2, and much smaller terms associated with the 

frequencies 2ao and 2 (ao - 2al). 
A much more  detailed and complete tidal analysis was given by Doodson  (1922), 

and was later expounded by Bartels (1957); on this basis Siebert (1961) calculated the 
following contributions to f2. 

(diurnal lunar) 

01 = - 6585. P21 (O) sin [ (a  o - 2a~)t + qS] cm2/sec 2 (125) 

(diurnal solar) 

P1 = - 3067. P~ (O) sin [(ao - 2a s) t + ~b] cm2/sec / (1.26) 

(diurnal luni-solar) 

Klm + KI~ = + 9268.P21 (O) sin(aot  + qS)cmZ/sec 2 (127) 

(large lunar elliptic semidiurnal) 

Nz = - 1518. PzZ (O) cos [(2a L - a s + v) t + 2q~] cm2/sec 2 (128) 

(semidiurnal lunar) 

M2 = - 7933. P~(O) cos [2 (a L t + q~)-] cmZ/sec / (129) 

(semidiurnal solar) 

$2 = - 3700. p2 (O) cos [2 (a~ t + qS)] cm2/sec 2 (130) 

(semidiurnal luni-solar) 

K2m + K2s = - 1005. P~ (O)cos  [2 (ao t + q~)] cm2/sec 2 . (131) 

(125)-(131) have been evaluated at r=a (see p. 77 for M2, Nz, 01). 
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3.4.B. THERMAL EXCITATION DUE TO EXCHANGE OF HEAT WITH THE GROUND 

Of all the solar radiation incident on the earth and its atmosphere system, most is 
absorbed by the ground and sea. The daily variations thus produced in the ground 
temperature are conveyed to the adjacent atmosphere by turbulence and infrared 
radiative transfer. Exactly how this occurs has been studied by Brunt (1939), Kuo 
(1968), Goody (1960), Kondratyev (1965), and others. In most of these studies the 
dynamic response of the atmosphere is neglected. In particular, the solutions obtained 
have temperature oscillations decaying with altitude. This heating can excite oscilla- 
tions that the atmosphere will transmit upwards with amplitude growing as 1/~ ~/2, 
but this is ignored. The method for estimating this omission was first developed by 
Chapman (1924a). One first calculates the transfer of the temperature oscillation, 
neglecting the large scale dynamic response. One then derives a heating function 
that would produce this oscillation. Finally, one uses this heating function in (13). 

As an example of this approach let us consider the ease where the surface temper- 
ature oscillation is transported to the atmosphere by turbulence, and where the 
turbulent transfer is modelled by eddy diffusion, the eddy conductivity being taken 
to be constant; horizontal diffusion is neglected. 
The temperature is then given by 

~T a 2 T  
. . . .  K - - -  (132) ~t OZ 2 '  

where 
T =  T g ' s ( O )  e i('t+~o) at z = 0. (133) 

Since (132) does not explicitly involve 0, we may expand T as 

T'~'s = 2 T.~'~(z)O~, "~ (O), (134) 
n 

where T. ~' s(0) is obtained from (133). Equation (132) may be rewritten 

d2T~,S 
- n  

i aT~  ' s =  K dz z , (135) 

which has the solution 

T~ ,~ = A e  -kz + Be  +k~, 

where 
(136) 

(137) 

If we assume that there is no heat flux from above, B = 0 ;  A = Tn(0 ). Thus 

T. = T~(O) e -k~ . 

If we wrote 

(13s) 

OT,,/Ot = J , , /cp,  (139) 
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then the J ,  that would give rise to (138) would be 

Jn = iaCp Tn(O ) e -kZ ei(~t+sr (140) 

(140) is then used in (27) to obtain the atmospheric tidal response to the surface 
heating. 

There has been no rigorous justification of the above procedure. However, it 
would appear to be adequate for situations where Jn dominates the advective terms 

in (13) in the boundary layer: i.e., O<<.Z<O(,/K/a). 
Chapman (1924a), Siebert (1961) and Kertz (1956a) have carried out calculations 

along the above lines. They found that surface temperature oscillations excite negligible 
migrating thermal tides in surface pressure in the absence of strong resonance 
magnification. Strong oscillations in the wind and temperature within the boundary 
layer, however, are generated. 

3 . 4 . C .  THERMAL EXCITATION DUE TO DIRECT ATMOSPHERIC ABSORPTION OF INSOLATION 

Although most insolation is absorbed at the ground, a significant amount is absorbed 
in the atmosphere by water vapor and ozone (and by O z to a lesser extent). The daily 
variation in heating due to this absorption is distributed throughout the bulk of the 
atmosphere, and is the most important of the tidal and thermotidal excitations. 

Let us consider a gas, G, whose density distribution is 0G(0, 4,, Z, t) and whose 
absorption coefficient as a function of wavelength is KG(2).* Then Ja, the heating 
due to absorption by G, is given by 

JG(Z,O, 4,,t)=Oofd)LKG(2)Io, aexp(--KG(k)foads'), (141) 

2 s 

where the first integration is over all the absorption bands of G; /o, ,=intensity of  
radiation of wavelength 2 incident on the atmosphere; S=  distance from the sun of 
the point in question. 

Ja  of course, is non-zero only during the day, that is, when 

1( 0 ~</4, /~cos-  - c ~ , /  4,re,x" (142) 

Here c~ denotes the angle between the earth's axis and the normal to the plane of the 
ecliptic (Butler and Small, 1963). Now Io,, is, by definition, a function of local time, 
i.e., Io,, = I0,, (o-t + 4,) where a = 2nil solar day. If, moreover, the time and longitude 
dependence of Q and 0G are ignored,** then 

ao(z ,o ,  4,, t) = ao(z,O, ot + 4,). 

This will be the case in all the explicit studies to be described in Section 3.5. However, 
in Section 3.6 the effects of relaxing this assumption will be briefly discussed. Given 

�9 K~ m a y ,  in add i t ion ,  depend  o n  t e m p e r a t u r e  a n d  pressure.  
�9 * At least to the extent that they are not functions of local time. 
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(141) and (142) we may expand JG as 

" . . . .  ~z O) ~t' (143) J~ = Re o~ t , e , 
n = 0  

where t ' =  at  + (~, and the {J~' S(z, 0)} can be complex. 
The term in (143) for which n = 0  corresponds to the steady component of the 

heating. It is assumed that the atmosphere is in a state of quasi-equilibrium wherein 
there are constant (in time) cooling processes which exactly balance jo, o. 

The detailed evaluation of (141) when G is water vapor has been made by Mfigge 
and M611er (1932) and Siebert (1961). The bands involved are primarily the near 
infrared bands at .94, 1.1, 1.38, 1.87, 2.7, 3.2 and 6.3/~ (Manabe and M611er, 1961). 
When G is 03, calculations of (141) have been given by Pressman (1955), Johnson 
(1953), Butler and Small (1963) and Leovy (1964). The important absorption bands 
of 0 3 are the Hartley and Huggins bands in the ultraviolet (2000-3700 A) and the 
Chappuis band in the visible (4400-7600 A). Absorption by CO2 and 02 appear to 
be significantly less important (Green, 1965). However, no thorough investigation of 
their role in exciting thermal tides has yet been made. Preliminary studies may be 
found in Manabe and M611er (1961), Leovy (1964) and Harris and Priester (1965). 
Here we restrict ourselves to excitation by H20 and 03 absorption. 

It sometimes proves convenient to use instead of J~'~ a related function 

~jg ,  s 
. . . .  (144) 

ZG i a R  " 

~' s corresponds, approximately, By analogy with the procedure of Section 3.4.B this ZG 
to the temperature oscillation that would be produced by j ~ s  if the dynamic 
response of the atmosphere were ignored. 

As Craig (1965) points out, the precise evaluation of (141) requires detailed know- 
ledge of various factors like the distribution of ozone and water vapor and the solar 
ultraviolet spectrum - which are only roughly known at present. Thus the consider- 
ation of details of the heating and of the seasonal variations seems unwarranted at 
present, although some attempts to estimate seasonal effects have been made by 
Butler and Small (1963), Siebert (1961), Leovy (1964), and Lindzen (1967a). In view 
of this it is sufficient to consider J 's  which are separable in their latitude and altitude 
dependence; i.e., 

. . . .  (z, O) e i"t' , (145) ~ ' ~ Z  ~G 
G n = l  

where 
a, s (r, S % = f ; ' s (  z) g6 (0). (146) 

Figure 3.2 shows on the lef t f~(z)  for both H20 and 0 3. The scale forfG(z) has been 
arbitrarily chosen, and differences between fa (z)  for diurnal and semidiurnal excita- 
tions are ignored. The amplitudes of the za's are incorporated into the ga(0)'s, which 
are shown on the right side of Figure 3.2. Values corresponding to the diurnal and 
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semidiurnal excitations (n = 1 and 2) are indicated. For n = 1 the phase corresponds 
to z being a maximum at 1800 LT, while for n = 2  the phase corresponds to ~ being 
a maximum at 0300 and 1500 LT. Differences in the shape of 9G(O) for n =  1 and 2 
have been ignored. 

.~,.., [ T(dr ive) i= Vl (Z).HII (0 )  
, ~ v ~  + V 2 ( Z ) ' H 2 ( O )  

\ 

= 4 0  

20 

0 

1.81- 

"- 1.4~- a 

Lo~ 
.~ o c  

o~ 
-o2~ 

Jel- 

t 
o~ .06 I 

.,e 

0.5 1.0 1.5 - .02[ " 

Fig. 3.2. 

I I I I I 

~ 1~.24 
"6 

.12 .~_ 

.06 ~) 

t I I I ~ I I 

.052 

.024 

.016 
E 

.OOB 

l I I I J l t I 
-80  - 4 0  0 4 0  8 0  

Lo t i tude  (deg) 

Vertical distributions of thermal excitation due to water vapor (VI) and ozone (V2); 
latitude distributions for water vapor (H1) and ozone (H2). After Lindzen (1968a). 

3.4.D. SUMMARY 

In the preceding sections we have briefly described various sources of  tidal and 
thermotidal excitation. It  appears that insolation absorption by ozone and water 

vapor is the most important source of thermal excitation, and, in considering explicit 
solutions, we restrict our attention to these. The importance of heating due to the 
transfer of  the daily variations of  ground temperature to the atmosphere by means of 
turbulence and radiation has been estimated to be small - especially when averaged 

over both land and sea. The effects of  daily variations in cloud cover and daily 
variations in the release of  latent heat have not been evaluated. Indeed, our theoretical 
ignorance of turbulence and cloud processes makes our relegation of these processes 
to secondary importance somewhat questionable. Observational evidence is, however, 
more convincing, Heating due to surface temperature variations is markedly different 
over land and sea. As is shown in Section 3.6.A such differential heating will produce 

thermal tides that do not follow the sun. Haurwitz (1956, 1965) has analyzed surface 
pressure data from all over the world for the semidiurnal and diurnal oscillations. 
He found components that do not follow the sun (non-migrating); they are smaller 
than the migrating components. He did not consider thermotidal oscillations on a 
very small scale (geographically) including the sea breezes which are important non- 
migrating components, easily isolated. 

Gravitational excitation is in general much weaker than thermal excitation. There 
is virtually no way of isolating solar gravitational tides from solar thermal tides in the 
data. Lunar tides, with their different period, are distinguishable. Despite their small 
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amplitude, they are of great interest because their excitation is perfectly known. Thus 
we specifically describe the theory of the lunar semidiurnal tide. 

3.5. Explicit Solutions 

In this section we describe three examples of the calculations outlined in Sections 3.2 
and 3.3: (a) The solar semidiurnal thermal tide, (b) The solar diurnal thermal tide, 
and (c) The lunar semidiurnal tide. The results explain many of the observed features 
described in Chapter 2. 

3.5.A. THE MIGRATING SOLAR SEMIDIURNAL THERMAL TIDE 

For the migrating solar semidiurnal tide, s = 2  and f = a / 2 o ) = l  (neglecting the 
difference between the solar and sidereal day). The solutions of (69) and (70) giving 
the equivalent depths {h,} and the expansion coefficients {C,,,,,,} (or {C,.m} as defined 
by (103)) have been known for some time (Wilkes, 1949; Kertz, 1957; Siebert, 1961). 
The most complete solution has been given by Flattery (1967). Following his notation, 
n = 2, 4, 6 .... correspond to modes symmetric about the equator, and n = 3, 5, 7 .... 
correspond to antisymmetric modes. Tables 3.1 and 3.2 (due to Flattery) give {h'~' s} 
and -~, s {C,, m} for symmetric and antisymmetric modes respectively. 

In this review we deal only with the symmetric part of the tide. Figure 3.3 shows 
02, 04, and 06, and Figure 3.4 and 3.5 show the associated U and V functions on 
different scales. 

Fig. 3.3. 
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Fig. 3.4. The expansion functions for the latitude dependence of the solar semidiurnal component 
of u, the northerly velocity. The functions have been divided by the amounts shown. 

Fig. 3.5. 
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Our next step is to expand go3 and gH2o in terms of the Hough Functions; the re- 

sults are: 
gg~,, 2 = 0.249 KO~2 "s + 0.0645 KO~ 's + 0.0365 KO 6'" + . . .  (147) 

20) 2 gU25 = 0.0307 KO~' s + 0.00796 KO,~' s + 0.00447 KO~' ~ + " "  . (148) 

A comparison of Figure 3.3 with Figure 3.2 shows that the latitude dependence of 
O~,, 2 is quite similar to that of the g's; this corresponds to the dominance of the 
coefficients of O~' * in (147) and (148). The 022~ 2 mode is associated with an equivalent 
depth of 7852 km. For this equivalent depth, the quantity 22= �88 [4h-1 (~H+ dH/dx) 
- 1] in (30) is almost zero through most of the atmosphere - i.e., the O 2.' 2 mode is 
associated with extremely long vertical wavelengths (ca. 150 km). Thus, not only 
does the O22'~ 2 mode receive the bulk of the semidiurnal excitation, but it must also 
respond to the excitation with particular efficiency - all the main excitations contribute 
'in phase'. This immediately accounts for two of the most striking observed features 
of the migrating solar semidiurnal surface pressure oscillation (see Figure 1.4 and 
Section 2S.4A): namely, its strength and regularity; the latter results from the fact 
that the coefficients of 022~' 2 in (147) and (148) depend on the overall latitude distribu- 
tion of excitation, which does not change very much. The larger local variations in 
excitation will primarily affect the higher order, less efficient Hough modes. 

If  we confine our attention to the 022~ 2 mode, and capitalize on the fact that 
22 ~ 0, we may infer quite simply most of the significant features of semidiurnal thermal 

tide (following Green, 1965). In this case (30) becomes 

d2y220,, 2 2,o 2 
KJ~ ' - x / 2  

d x  2 ~ '  ~ 2  e (149) 
7gn2 

1 2,0, 2 from a very thin layer centered at x = x (~ Let Let j(o be the contribution to ~ 2 
y(O be the specific response excited by j(o.  Above x (~), 

y(0 = BO), (150) 

and below x (~ 

y(O = A(1)x + B~O. (151) 

The lower boundary condition (47) implies that 

o r  

(H ~) Bii) ~ A(1 O+ h ~ 2  = , 

B ~  ~ - 2 A  1 . (152) 

Thus, below x (~ 

y " ) =  A~ ~ (x - 2). (513) 
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Near  x (~ (149) has a par t icu lar  solut ion for  which 

d .  (1) ~c - x , ) / 2  Ypart ~ _ _ - -  C j(i) d x  
d x  7gh22,o, 2 J 

-oo 
In tegra t ing  (154) we get 

part ~'~ ~ e-x(O/2 j ( i )  d x  x .  

Near  x (~ 

(154) 

(155) 

�9 (o A T ) ( x  - 2). (156) y(i) ,.~ Ypart "[- 

A 1 and B 2 are de te rmined  by requir ing tha t  solut ions for the var ious  regions match :  

and  

A ]  i) ~ ygh2,O, 2 e -X" ) /2  j ( i )  d x  , (157) 

- o o  

oo 

B~2 i) ~ 2~o, 2 e J x (i) " 
7 g h 2  

-oo 

(158) immedia te ly  tells us tha t  a b o v e  the  m a j o r  s o u r c e s  o f  e x c i t a t i o n ,  the cont r ibu t ions  

f rom exci tat ions below x = 2  will be 180 ~ out  o f  phase with the cont r ibu t ions  f rom 

exci tat ions above  x =  2. This inference by Green  (1965) has been comple te ly  conf i rmed 

by the more  deta i led calculat ions o f  Lindzen (1968a). We now use the above  analysis  

to calculate  the surface pressure oscil lat ion.  F r o m  (35) 

_ e X / 2  _ 2~o, 2 ~ J Y 2  ' �9 (159) 
Po H i a  d x  Y2 ~ ~ ex/z  - 

F o r  x < x  (~ we have f rom (159), (157) and  (158) tha t  

~p(i) 1 1r 

Po 2 i a g h  2~' 2 

A t  the g round  (using h 2~~ 2 ~ H)  
oo 

_ _  ~ _ _ _  e-X(O/2 j ( i )  d x  , 
Po i ~ g H  

-oo 

(160)* 

* An implication of Equation (160) is that if the main excitation comes from above x =4 - as appears 
to be the case - then the phases of the horizontal wind components will undergo 180 ~ shifts at x = 4 
(Green, 1965; Wilkes, 1949; Butler and Small, 1963). As yet, there has been no convincing obser- 
vational test of this prediction. 
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or using (144), 

~ - e - x " ~ / 2  z (i) . (161) 
Po  g H  

- c t o  

Approximating the integral in (161) we have 

6 p  (i) 2R -(x(O/2) AZt'~ (i) (162) 
P o  ~ - g H 2  e . , 

where Az~  ~ thickness of ith layer. 
Using H =  7.6 km we have 

2R 
1.014 • l O - 3 d e g - l k m  -1 (163) 

g H  2 ~ 

Let i =  1 correspond to water vapor excitation. From Figure 3.2 we have 

x (i) ~ 1 . 5 ,  

e - ~ " ~ / 2  ~ .472, 

A z  (~  ~ 18 kin, 

z (/) ~ 0.035 K .  (164) 

From (162) and (163) we then get 

6p (~) ~ 0.302 x 10 .3 P0- (165) 

Let i = 2  correspond to ozone excitation. From Figure 3.2 we have 

x (2) ~ 6, 

e - x ( ~  ~ 0.042, 

A (2) ~ 40 km,  

z (2) ~ .5 K .  (166) 

From (162) and (163) we get 

6 p  (2) ~ 0.85 x 10-3po . (167) 

(165) and (167) are in excellent agreement with the more precise calculations of  
Siebert (1961), Butler and Small (1963) and Lindzen (1968a); (165) and (167) show 
that ozone is considerably more important than water vapor in exciting semidiurnal 
oscillations. This is because ozone excitation occurs over a greater depth than water 
vapor excitation, and at higher altitudes. 

In following Green's treatment we have ignored the variation of H with altitude. 
Indeed, it has been shown by Lindzen (1968a) that the surface pressure oscillation 
is not sensitive to temperature structure. There are, of course, various unrealistic 
temperature structures for which this is not true. In particular, Siebert (1961) con- 
sidered an atmosphere which was so cold above the tropopause that 22 became 
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negative. In this atmosphere, oscillations excited by ozone could not propagate to the 
ground. 

While the surface pressure oscillation is not particularly sensitive to temperature 
structure, the semidiurnal thermotidal oscillations in the ionosphere are. This is 
because below the mesopause, H is small and dH/dx is negative. Hence 22 is negative 
for the mode associated with h 2' 2, and energy in this mode is trapped. Lindzen (1968a) 
studied the solar semidiurnal thermal tide for the equinoctial excitations shown in 
Figure 3.2. The procedure used was that outlined in Section 3.3. Only three Hough 
modes were used: ,~2~o, 2 2o,, 2~,, 2 '-'2 , O,~ 2 and 06 . Three common temperature profiles were 
used - namely, the ARDC standard, the equatorial standard and an isothermal 
atmosphere at 260~c. These are shown in Figure 3.6. The altitude distribution of the 
amplitudes of the resulting semidiurnal zonal wind oscillations over the equator are 
shown in Figure 3.7. Note that the oscillation in the ionosphere is smallest for the 
ARDC profile, which has the coldest mesopause. The diminution of growth below 
the mesopause is slightly less than we might expect from the behavior of the O 2~' 2 
mode alone, since the higher modes are not significantly attenuated. For the most 
extreme case, the ARDC profile, the ratio/y~,O, 2/:/y2O~, 2/: /y~,  2/is l:  1.5 x 10-2: 
8. x 10 -3 at the ground, and 1 :.3:.1 at 100 km. It is clear that given a modest dis- 
tortion in the latitude distribution of excitation, the y2~O, 2 mode might play a signifi- 
cantly greater role in upper atmosphere fields. 

100 

80 
Equatorial To 

70=260~ 

60 

r 
4C 

20 

Fig. 3.6. 

O ~  
165 200 250 300 

t e m p e r a t u r e  (~ 

Different basic temperature profiles used in examining the semidiurnal thermal tide. 
After Lindzen (1968a); Minzner, Champio~ and Pond 0959). 



100 

80 

ATMOSPHERIC TIDES 

_ 60 11 

'~ jf ,J 

40 

,//" 
/ 

~ , 4  f 

/ / 

,,7" 

141 

o l  / , l !  , 
0.1 

, , J  , , , , , , , v l  , ~ t , , , , , I  
1 10 100 

amplitude of v (m/s) 

Fig. 3.7. Amplitude of the solar semidiurnal component of v over the equator for different basic 
temperature profiles; - - - ,  ARDC; ---, equatorial; , isothermal (T0=260K). 

After Lindzen (1968a). 

For a detailed description of the theoretical predictions of other semidiurnal fields 
at other latitudes the reader is referred to Nunn (1967). Given our uncertainties over 
the appropriate thermal structure, excitation and the effects of  various excitations, 
such predictions must be taken as suggestive rather than definitive. Some idea of what 
is expected may be seen in Figures 3.8 and 3.9, where the altitude distribution of the 
amplitude and phase of the migrating solar semidiurnal thermal tide's northerly 
velocity component at various latitudes are shown. For To we have taken the equato- 
rial profile of Figure 3.6. The excitations are those shown in Figure 3.2. The com- 
putational procedure was that described in Section 3.3. Particularly noteworthy in 
Figures 3.8 and 3.9, are the relatively large changes in amplitude and phase with 
height in the ionosphere. 

Before ending this section, we devote a few words to the resonance theory of the 
solar semidiurnal tide. It should be clear to the reader that given the presently known 
sources of thermal excitation, the amplitude of the migrating solar semidiurnal 
surface pressure oscillation is no surprise - nor does it depend on the atmosphere 
being highly tuned. However, it is only recently that we have come to know these 
sources of excitation. Previously it was believed that the observed oscillation was 
excited by a combination of  gravitational drive and thermal exchange with the ground 
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(Chapman,  1924a). Given this belief, the observed amplitude was, indeed, surprising 
and suggested a substantial atmospheric  amplif ication (viz. Chapter 1). This w o u l d  
occur if the O 2'~ 2 m o d e  were very close to a free osci l lation o f  the a tmosphere  - 
i.e., an oscil lation that could exist in the absence o f  cont inued excitation. N o w  if  

~ ~ , S  J,'  = (2, = 0, the solut ion to  (30) is in general zero. However ,  for the atmosphere's  
thermal structure, as we presently k n o w  it, there exists one  value o f  h for which (30) 
has a h o m o g e n e o u s  solut ion - namely  h ~  10.5 k m  (Dikii ,  1965). This is sufficiently 
far f rom h = 7 . 8 5 2  k m  to preclude a resonance.  At  the time the resonance theory was  
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developed the thermal structure of the upper atmosphere was not known. Thus 
Taylor (1936) found that for an atmosphere where dT/dz was constant, there would 
be an infinite number of h's for which (30) would have homogeneous solutions. 
Pekeris (1937) found that more 'realistic' thermal structures might still have more 
than one such h; in particular, he found that for an atmosphere with a mesopeak 
temperature of about 350 • - which we now know to be too high - one of these h's 
would be near 7852 km. For an extensive review of the resonance theory, the reader 
is referred to the monograph by Wilkes (1949). 

3.5.B. THE SOLAR DIURNAL THERMAL TIDE 

For this thermal tide s = 1 and f =  o-/2co = �89 (again neglecting the difference between 
the solar and sidereal day). The complete solutions of (69) and (70) for these param- 
eters have only recently been obtained (Lindzen, 1966a; Kato, 1966; Flattery, 
1967). The most extensive solutions are again to be found in Flattery (1967). 

-~o, 1 Tables 3.3 and 3.4, taken from his work, show {h, ~' l} and {C,, m} for symmetric 
modes. Tables 3.5 and 3.6 give these for antisymmetric modes. The reader will notice 
that we now have both positive and negative equivalent depths. Following Flattery's 
notation, n =  1, 3, 5... and n=  - 2 , - 4 . . .  correspond to symmetric modes; n=2 ,  4, 
6... and n = - 1 , - 3 , - 5 . . ,  correspond to antisymmetric modes. The negative 
indices are used for modes with negative equivalent depths. O~_'~, OZ'4 ~, O]" 1, 07'  1, 
and 0~" i are shown in Figure 3.10. The corresponding U and V functions are shown 
in Figures 3.11 and 3.12. 

The existence of negative equivalent depths may, at first, seem puzzling. However, 
their existence is readily understood in terms of the theory of internal gravity waves 
on a rotating plane where the rotation vector and gravity are parallel (viz. Eckart, 
1960) - atmospheric tides may, in fact, be looked upon as global internal gravity 
waves resulting from a particular excitation. We know that internal gravity waves 
will propagate vertically in a rotating, planar fluid only if their period is greater than 
the Brunt-VNsN~ period (ca. 5 rain) and less than (twice the rotation rate/(2~)-1). 
Now the earth is not a plane, and twice the vertical component of its rotation rate 
varies from zero at the equator to _ 2 ~o at the poles. At _ 30 ~ latitude, twice the 
rotation rate equals o.  Extrapolating from the results for a rotating plane we would 
expect diurnal oscillations to propagate vertically equatorwards of + 30 ~ and to be 
trapped near the levels of excitation polewards of + 30 ~ If  we look at Equation (30) 
we see that negative h's are associated with vertical trapping while sufficiently small 
positive h's are associated with vertical propagation. Reference to Figure 3.10 shows 
that the Hough Functions associated with negative h's have their largest amplitudes 
equatorwards of _+ 30 ~ Thus our intuitive extrapolation of gravity wave theory 
is shown to be approximately correct.* The above reasoning also explains the absence 
of negative h's for f =  1 (i.e., semidiurnal tides). Finally it is important to notice the 
size of the positive h's: they are very small. Hence 2 2 will in general be large, and this, 

* It appears that the high latitude trapping mechanism described here is also basic to the trapping 
of large scale, long period waves as described by Charney and Drazin (1961). 



T
A

B
L

E
 

3.
3 

.~
 

4~
 

E
x

p
an

si
o

n
 c

oe
ff

ic
ie

nt
s 

re
la

ti
ng

 n
o

rm
al

iz
ed

 H
o

u
g

h
 f

u
n

ct
io

n
s 

O
(L

,M
) 

an
d

 n
o

rm
al

iz
ed

 a
ss

o
ci

at
ed

 L
eg

en
d

re
 f

u
n

ct
io

n
s 

P
(L

,N
).

 S
y

m
m

et
ri

c 
g

ra
v

it
at

io
n

al
 

m
o

d
es

 (
in

de
x 

M
 p

os
it

iv
e)

 w
it

h
 w

av
e 

n
u

m
b

er
 L

 =
 1

 a
n

d
 p

er
io

d
 S

1 
=

 2
4.

00
00

 m
ea

n
 s

o
la

r 
h

o
u

rs
. 

A
ls

o
 s

h
o

w
n

 a
re

 e
q

u
iv

al
en

t 
d

ep
th

s 

O
 (

1,
 1

) 
O

(1
,3

) 
O

(1
,5

) 
O

(1
,7

) 
O

(1
,9

) 
, 

O
(1

, 
11

) 
O

(1
,1

3
) 

O
(1

,1
5

) 

P
(I

, 
1)

 
0.

28
27

10
 

--
0.

07
34

23
 

0.
03

68
99

 
0.

02
30

99
 

--
0.

01
61

81
 

0.
01

21
40

 
0.

00
95

41
 

--
0.

00
77

53
 

P
(1

, 
3)

 
--

0.
63

82
29

 
0.

15
68

72
 

0.
07

82
75

 
--

0.
04

88
91

 
0.

03
42

14
 

--
0.

02
56

57
 

--
0.

02
01

57
 

0.
01

63
77

 
P

(1
, 

5)
 

0.
62

05
21

 
--

0.
06

06
53

 
0.

02
44

23
 

0.
01

41
15

 
-0

.0
0

9
5

2
9

 
0.

00
70

09
 

0.
00

54
43

 
--

0.
00

43
89

 
P

(1
, 

7)
 

--
0.

33
64

08
 

--
0.

23
66

76
 

0.
13

14
17

 
0.

08
44

83
 

--
0.

05
98

35
 

0.
04

51
46

 
0.

03
55

96
 

--
0.

02
89

86
 

P
(1

, 
9)

 
0.

11
70

21
 

0.
51

20
74

 
--

0.
23

79
08

 
--

0.
14

41
05

 
0.

09
93

67
 

0.
07

39
14

 
--

0.
05

77
88

 
0.

04
68

02
 

P
(1

,1
1

) 
--

0.
02

83
32

 
--

0.
58

06
40

 
0.

15
23

07
 

0.
06

88
01

 
--

0.
04

02
06

 
0.

02
70

50
 

0.
01

98
24

 
--

0.
01

53
68

 
P

(1
, 

13
) 

0.
00

50
42

 
0.

45
98

78
 

0.
10

37
30

 
0.

10
98

30
 

--
0.

08
85

15
 

0.
07

05
77

 
0.

05
72

95
 

--
0.

04
74

77
 

P
(1

,1
5

) 
--

0.
00

06
86

 
--

0.
27

88
98

 
--

0.
37

43
32

 
--

0.
24

82
76

 
0.

17
13

13
 

--
0.

12
64

02
 

--
0.

09
80

89
 

0.
07

89
82

 
P

(1
,1

7
) 

0.
00

00
74

 
0.

13
55

52
 

0.
51

71
92

 
0.

22
13

85
 

0.
11

56
14

 
0.

07
04

86
 

0.
04

77
70

 
--

0.
03

48
47

 
P

(1
, 

19
) 

--
0.

00
00

06
 

--
0.

05
43

46
 

--
0.

49
98

83
 

--
0.

02
63

81
 

--
0.

05
61

72
 

0.
06

74
86

 
0.

06
36

10
 

--
0.

05
67

92
 

P
(I

, 
21

) 
0.

00
00

00
 

0.
01

83
33

 
0.

38
18

00
 

--
0.

22
96

16
 

0.
22

19
97

 
--

0.
17

60
40

 
--

0.
13

93
27

 
0.

11
27

18
 

P
(1

,2
3

) 
0.

 
--

0.
00

52
83

 
--

0.
24

24
94

 
0.

42
20

33
 

--
0.

25
97

34
 

0.
15

75
75

 
0.

10
27

52
 

--
0.

07
17

11
 

P
(1

,2
5

) 
0.

 
0.

00
13

16
 

0.
13

17
28

 
0.

48
78

82
 

0.
13

53
77

 
--

0.
01

10
50

 
0.

03
03

56
 

--
0.

04
33

17
 

P
(I

, 
27

) 
0.

 
--

0.
00

02
86

 
--

0.
06

23
18

 
0.

43
99

94
 

0.
08

70
35

 
--

0.
16

85
19

 
--

0.
16

10
15

 
0.

13
94

25
 

P
(1

,2
9

) 
0.

 
0.

00
00

55
 

0.
02

60
07

 
--

0.
33

20
74

 
--

0.
30

25
85

 
0.

26
35

04
 

0.
18

64
88

 
--

0.
13

18
60

 
P

(1
, 

31
) 

0.
 

--
0.

00
00

09
 

--
0.

00
96

67
 

0.
21

70
09

 
0.

43
23

06
 

--
0.

21
31

37
 

--
0.

07
92

05
 

0.
01

59
59

 
P

(1
,3

3
) 

0.
 

0.
00

00
01

 
0.

00
32

26
 

--
0.

12
52

91
 

--
0.

45
44

10
 

0.
04

17
38

 
--

0.
09

65
55

 
0.

12
80

07
 

P
(1

,3
5

) 
0.

 
--

0.
00

00
00

 
--

0.
00

09
72

 
0.

06
47

71
 

0.
39

44
55

 
0.

17
08

11
 

0.
23

40
46

 
--

0.
19

64
74

 
P

(1
,3

7
) 

0.
 

0.
 

0.
00

02
66

 
--

0.
03

02
73

 
--

0.
29

63
49

 
--

0.
34

22
82

 
--

0.
25

40
71

 
0.

13
79

26
 

P
(1

,3
9

) 
0.

 
0.

 
--

0.
00

00
67

 
0.

01
28

87
 

0.
19

75
76

 
0.

42
68

01
 

0.
14

57
42

 
0.

01
61

57
 

P
(1

,4
1

) 
0.

 
0.

 
0.

00
00

15
 

--
0.

00
50

26
 

--
0.

11
87

25
 

--
0.

42
29

11
 

0.
04

02
47

 
--

0.
17

70
29

 
P

(1
,4

3
) 

0.
 

0.
 

--
0.

00
00

03
 

0.
00

18
04

 
0.

06
49

90
 

0.
35

84
27

 
--

0.
22

93
62

 
0.

25
70

43
 

P
(1

,4
5

) 
0.

 
0.

 
0.

00
00

01
 

--
0.

00
05

99
 

0.
03

26
62

 
--

0.
26

88
38

 
0.

36
22

32
 

--
0.

21
66

77
 

P
(1

,4
7

) 
0.

 
0.

 
--

0.
00

00
00

 
0.

00
01

84
 

0.
01

51
62

 
0.

18
19

57
 

--
0.

41
44

74
 

0.
07

59
80

 
P

(1
,4

9
) 

0.
 

0.
 

0.
00

00
00

 
--

0.
00

00
53

 
--

0.
00

65
32

 
--

0.
11

25
37

 
0.

39
45

42
 

0.
10

68
33

 
P

(1
,5

1
) 

0.
 

0.
 

0.
 

0.
00

00
14

 
0.

00
26

22
 

0.
06

41
65

 
--

0.
32

89
83

 
--

0.
26

92
53

 
P

(1
, 

53
) 

0.
 

0.
 

0.
 

--
0.

00
00

04
 

--
0.

00
09

84
 

--
0.

03
39

49
 

0.
24

66
73

 
0.

37
03

48
 

P
(1

, 
55

) 
0.

 
0.

 
0.

 
0.

00
00

01
 

0.
00

03
46

 
0.

01
67

54
 

--
0.

16
89

54
 

--
0.

39
93

20
 

P
(1

,5
7

) 
0.

 
0.

 
0.

 
--

0.
00

00
00

 
--

0.
00

01
55

 
--

0.
00

77
43

 
0.

10
68

23
 

0.
36

92
44

 
P

(1
, 

59
) 

0.
 

0.
 

0.
 

0.
00

00
00

 
0.

00
00

36
 

0.
00

33
63

 
--

0.
06

28
16

 
--

0.
30

43
03

 

S
u

m
 o

f 
sq

u
ar

es
 

0.
08

77
71

 
0.

44
29

66
 

0.
38

97
10

 
0.

20
13

19
 

0.
37

41
47

 
0.

36
88

54
 

0.
25

26
89

 
0.

34
07

12
 

0.
35

67
04

 
0.

26
85

14
 

0.
31

12
21

 
0.

34
49

35
 

0.
27

66
29

 
0.

27
88

17
 

0.
32

41
06

 
0.

28
60

31
 

0.
24

96
48

 
0.

28
23

86
 

0.
28

94
72

 
0.

24
28

63
 

0.
22

59
34

 
0.

25
13

75
 

0.
25

15
02

 
0.

21
09

00
 

0.
17

97
84

 
0.

18
48

51
 

0.
19

91
59

 
0.

18
82

82
 

0.
14

78
12

 
0.

09
65

57
 

(3
 

z z (b
 z>
 

z 



Ta
bl

e 
3.

3 
(c

on
tin

ue
d)

 

0 
(1

, 
1)

 

P 
(1

, 
61

) 
O

. 
P

(1
, 

63
) 

O
. 

P 
(1

, 
65

) 
O

. 
P 

(1
, 

67
) 

O
. 

P 
(1

, 
69

) 
O

. 
P 

(1
,7

1)
 

O
. 

P 
(1

, 
73

) 
O

. 
P 

(1
, 

75
) 

O
. 

P 
(1

,7
7)

 
O

. 
P 

(1
, 

79
) 

O
. 

P
(I

, 
81

) 
O

. 
P 

(1
, 

83
) 

O
. 

P 
(i

, 
85

) 
o.

 
P 

(1
, 

87
) 

O
. 

e 
(1

, 
89

) 
O

. 
P 

(1
, 

91
) 

O
. 

P 
(1

, 
93

) 
O

. 
P 

(1
,9

5)
 

O
. 

P 
(1

, 
97

) 
0.

 

0 
(1

, 
3)

 
0 

(1
, 

5)
 

0 
(1

, 
7)

 
0 

(1
, 

9)
 

0 
(1

, 
11

) 
0 

(1
, 

13
) 

0 
(1

, 
15

) 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

--
0.

00
00

11
 

--
0.

00
13

77
 

O
. 

0.
00

00
03

 
0.

00
05

32
 

O
. 

0.
00

00
01

 
--

0.
00

01
95

 
O

. 
0.

00
00

00
 

0.
00

00
68

 
O

. 
--

0.
00

00
00

 
--

0.
00

00
22

 
O

. 
O

. 
0.

00
00

07
 

O
. 

O
. 

--
0.

00
00

02
 

O
. 

O
. 

0.
00

00
01

 
O

. 
O

. 
--

0.
00

00
00

 
O

. 
O

. 
0.

00
00

00
 

O
. 

O
. 

0.
00

00
00

 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 

S
u

m
 o

f 
sq

u
ar

es
 

0.
03

45
50

 
0.

22
82

40
 

0.
05

32
89

 
--

0.
01

78
54

 
0.

15
78

53
 

0.
02

52
36

 
0.

00
86

99
 

0.
10

15
70

 
0.

01
03

92
 

--
0.

00
40

08
 

--
0.

06
12

02
 

0.
00

37
62

 
0.

00
17

51
 

0.
03

47
06

 
0.

00
12

08
 

--
0.

00
07

27
 

--
0.

01
85

95
 

0.
00

03
46

 
0.

00
02

87
 

0.
00

94
44

 
0.

00
00

89
 

--
0.

00
01

08
 

--
0.

00
45

58
 

0.
00

00
21

 
0.

00
00

39
 

0.
00

20
96

 
0.

00
00

04
 

0.
00

00
13

 
0.

00
09

20
 

0.
00

00
01

 
0.

00
00

04
 

0.
00

03
86

 
0.

00
00

00
 

--
0.

00
00

01
 

--
0.

00
01

55
 

0.
00

00
00

 
0.

00
00

00
 

0.
00

00
60

 
0.

00
00

00
 

--
0.

00
00

00
 

--
0.

00
00

22
 

0.
00

00
00

 
0.

00
00

00
 

0.
00

00
08

 
0.

00
00

00
 

O
. 

--
0.

00
00

03
 

0.
00

00
00

 
O

. 
0.

00
00

01
 

0.
00

00
00

 
O

. 
--

0.
00

00
00

 
0.

00
00

00
 

O
. 

0,
00

00
00

 
0.

00
00

00
 

h 
(k

m
) 

0.
69

09
 

0.
12

03
 

0.
04

84
 

0.
02

60
 

0.
01

62
 

0.
01

10
 

0.
00

80
 

0.
00

61
 

,.q
 

t~
 



T
A

B
L

E
 

3.
4 

E
x

p
an

si
o

n
 c

oe
ff

ic
ie

nt
s 

re
la

ti
ng

 n
o

rm
al

iz
ed

 H
o

u
g

h
 f

u
n

ct
io

n
s 

O
 (L

, M
) 

an
d

 n
o

rm
al

iz
ed

 a
ss

o
ci

at
ed

 L
eg

en
d

re
 f

u
n

ct
io

n
s 

P 
(L

, N
).

 S
y

m
m

et
ri

c 
ro

ta
ti

o
n

al
 m

o
d

es
 

(i
nd

ex
 M

 
ne

ga
ti

ve
) 

w
it

h
 w

av
e 

n
u

m
b

er
 L

 -
- 

1 
an

d
 p

er
io

d
 S

1 
=

 2
4.

00
00

 m
ea

n
 s

o
la

r 
h

o
u

rs
. 

A
/s

o
 s

h
o

w
n

 a
re

 e
q

u
iv

al
en

t 
d

ep
th

s.
 

0
(1

, 
--

2
) 

0
(1

, 
--

4
) 

0
(1

, 
--

6
) 

0
(1

, 
--

8
) 

0
(1

, 
--

1
0

) 
0

(1
, 

--
1

2
) 

0
(1

, 
--

1
4

) 
0

(I
, 

--
1

6
) 

S
u

m
o

f 
sq

u
ar

es
 

L P
(1

, 
1)

 
0.

89
67

64
 

--
0.

27
04

54
 

--
0.

13
52

99
 

0.
08

34
46

 
0.

05
77

10
 

--
0.

04
28

76
 

0.
03

34
45

 
--

0.
02

70
20

 
0.

90
96

17
 

P
(1

, 
3)

 
0.

44
01

82
 

0.
47

01
11

 
0.

26
71

39
 

--
0.

17
03

24
 

0.
11

93
85

 
0.

08
92

98
 

0.
06

99
24

 
0.

05
66

28
 

0.
54

54
60

 
P

(1
, 

5)
 

0.
04

52
88

 
0.

77
10

88
 

0.
11

15
06

 
--

0.
01

42
42

 
--

0.
00

63
43

 
0.

01
09

11
 

0.
01

13
17

 
0.

01
05

74
 

0.
60

96
63

 
P

(1
, 

7)
 

0.
00

20
67

 
0.

32
63

06
 

0.
61

57
73

 
0.

38
32

44
 

-0
.2

5
2

5
3

5
 

0.
18

05
76

 
0.

13
71

24
 

--
0.

10
87

17
 

0.
75

95
36

 
P

(1
, 

9)
 

0.
00

00
54

 
0.

06
87

07
 

0.
64

74
10

 
0.

08
00

47
 

0.
18

55
37

 
0.

18
19

76
 

--
0.

16
01

64
 

0.
13

80
81

 
0.

54
25

26
 

P
(1

, 
11

) 
0.

00
00

01
 

0.
00

88
38

 
0.

30
30

72
 

--
0.

61
93

16
 

0.
33

90
49

 
0.

17
01

43
 

--
0.

08
62

21
 

0.
04

34
92

 
0.

62
87

12
 

P
(I

, 
13

) 
O

. 
0.

00
07

73
 

0.
08

62
41

 
--

0.
57

62
03

 
0.

19
60

00
 

--
0.

30
36

30
 

0.
27

35
42

 
- 

0.
22

67
85

 
0.

59
63

11
 

P
(1

, 
15

) 
O

. 
0.

00
00

49
 

0.
01

68
74

 
0.

29
10

10
 

0.
59

89
64

 
--

0.
25

91
51

 
0.

04
46

33
 

0.
05

19
46

 
0.

51
55

79
 

P
(1

, 1
7)

 
O

. 
0.

00
00

02
 

0.
00

24
34

 
0.

09
83

62
 

--
0.

52
89

28
 

0.
26

49
95

 
--

0.
35

34
22

 
0.

28
05

27
 

0.
56

32
71

 
P

(1
, 

19
) 

O
. 

O
. 

--
0.

00
02

71
 

0.
02

43
66

 
0.

28
25

09
 

0.
57

50
80

 
--

0.
18

06
89

 
--

0.
06

99
09

 
0.

44
86

58
 

P
(1

, 
21

) 
O

. 
O

. 
0.

00
00

24
 

0.
00

46
64

 
0.

10
70

59
 

0.
49

46
14

 
0.

30
69

51
 

--
0.

36
23

68
 

0.
48

16
56

 
P

(1
, 

23
) 

O
. 

O
. 

--
0.

00
00

02
 

--
0.

00
07

15
 

--
0.

03
09

73
 

0.
27

58
70

 
0.

55
22

62
 

0.
11

27
96

 
0.

39
47

80
 

P
(1

, 
25

) 
O

. 
O

. 
--

0.
00

00
00

 
--

0.
00

00
90

 
--

0.
00

71
45

 
0.

13
36

20
 

0.
46

82
26

 
0.

33
28

84
 

0.
34

30
08

 
P

(1
,2

7
) 

O
. 

O
. 

O
. 

--
0.

00
00

09
 

--
0.

00
13

54
 

0.
03

67
68

 
0.

27
04

29
 

0.
53

15
41

 
0.

35
70

21
 

P
(1

, 
29

) 
O

. 
O

. 
O

. 
--

0.
00

00
01

 
--

0.
00

02
15

 
0.

00
97

05
 

0.
11

87
77

 
0.

44
71

03
 

0.
21

41
03

 
P

(I
, 

31
) 

O
. 

O
. 

O
. 

O
. 

--
0.

00
00

29
 

0.
00

21
43

 
0.

04
18

85
 

0.
26

58
34

 
0.

07
24

27
 

P
(1

, 
33

) 
O

. 
O

. 
O

. 
O

. 
0.

00
00

03
 

0.
00

04
04

 
0.

01
22

57
 

0.
12

29
61

 
0.

01
52

70
 

P
(1

, 
35

) 
O

. 
O

. 
O

. 
O

. 
--

0.
00

00
00

 
0.

00
00

66
 

0.
00

30
45

 
0.

04
64

42
 

0.
00

21
66

 
P

(1
, 

37
) 

O
. 

O
. 

O
. 

O
. 

O
. 

0.
00

00
09

 
0.

00
06

53
 

0.
01

47
57

 
0.

00
02

18
 

P
(1

, 
39

) 
O

. 
O

. 
O

. 
O

. 
O

. 
0.

00
00

01
 

0.
00

01
22

 
0.

00
40

27
 

0.
00

00
16

 
P

(1
, 

41
) 

O
. 

O
. 

O
. 

O
. 

O
. 

0.
00

00
00

 
0.

00
00

20
 

0.
00

09
58

 
0.

00
00

01
 

P
(1

, 
43

) 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
0.

00
00

03
 

0.
00

02
01

 
0.

00
00

00
 

P
(1

, 
45

) 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
0.

00
00

00
 

0.
00

00
38

 
0.

00
00

00
 

P
(1

, 
47

) 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
0.

00
00

06
 

0.
00

00
00

 
P

(1
, 

49
) 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

0.
00

00
01

 
0.

00
00

00
 

P
(1

,5
1

) 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
0.

00
00

00
 

0.
00

00
00

 

h
(k

m
) 

--
12

.2
70

3 
--

1.
75

81
 

--
0.

64
43

 
--

0.
32

97
 

--
0.

19
96

 
--

0.
13

37
 

--
0.

09
57

 
--

0.
07

19
 



T
A

B
L

E
 

3.
5 

E
xp

an
si

on
 c

oe
ff

ic
ie

nt
s 

re
la

ti
ng

 n
or

m
al

iz
ed

 H
o

u
g

h
 f

un
ct

io
ns

 O
 (L

, M
) 

an
d 

no
rm

al
iz

ed
 a

ss
oc

ia
te

d 
L

eg
en

dr
e 

fu
nc

ti
on

s 
P

(L
, N

)A
nt

i-
sy

m
m

et
ri

c 
gr

av
it

at
io

na
l 

m
od

es
 (

in
de

x 
M

 p
os

it
iv

e)
 w

it
h 

w
av

e 
n

u
m

b
er

 L
 =

 
I 

an
d 

pe
ri

od
 $

1 
= 

24
.0

00
0 

m
ea

n 
so

la
r 

ho
ur

s.
 A

ls
o 

sh
ow

n 
ar

e 
eq

ui
va

le
nt

 d
ep

th
s 

0
(1

, 
2)

 
0

(1
,4

) 
0

(1
, 

6)
 

0
(1

, 
8)

 
0(

1~
 1

0)
 

0
(1

, 
12

) 
0

(1
, 

14
) 

0
(1

, 
16

) 
S

um
 o

f 
sq

ua
re

s 

P
(1

, 
2)

 
0.

00
07

37
 

0.
00

03
03

 
--

0.
00

01
74

 
0.

00
01

17
 

0.
0C

00
85

 
--

0.
00

00
65

 
0.

00
00

52
 

0.
00

00
43

 
0.

00
00

01
 

P 
(1

, 
4)

 
0.

28
79

01
 

0.
11

84
32

 
0.

06
81

22
 

0.
04

55
29

 
0.

03
31

53
 

--
0.

02
55

20
 

0.
02

04
24

 
0.

01
68

25
 

0.
10

60
77

 
P 

(1
, 

6)
 

--
0.

57
74

10
 

--
0.

21
18

81
 

0.
11

85
10

 
--

0.
07

83
52

 
--

0.
05

67
51

 
0.

04
35

55
 

--
0.

03
47

95
 

--
0.

02
86

28
 

0.
40

56
28

 
P

(1
, 

8)
 

0.
60

13
51

 
0.

10
88

99
 

--
0.

04
61

82
 

0.
02

67
93

 
0.

01
80

90
 

--
0.

01
33

17
 

0.
01

03
60

 
0.

00
83

72
 

0.
37

70
15

 
P 

(1
, 

10
) 

--
0.

41
45

43
 

0.
17

17
41

 
--

0.
12

63
32

 
0.

09
04

03
 

0.
06

77
89

 
--

0.
05

29
94

 
0.

04
28

04
 

0.
03

54
70

 
0.

23
59

67
 

P
(1

, 
12

) 
0.

20
79

05
 

--
0.

44
44

06
 

0.
24

85
39

 
-0

.1
6

0
9

1
7

 
--

0.
11

49
10

 
0.

08
73

89
 

--
0.

06
93

92
 

-0
.0

56
85

6 
0.

35
72

76
 

P 
(1

, 
14

) 
--

0.
07

99
08

 
0.

55
30

20
 

--
0.

19
02

25
 

0.
09

22
52

 
0.

05
48

32
 

--
0.

03
69

13
 

0.
02

69
44

 
0.

02
07

89
 

0.
36

24
40

 
P

(1
, 

16
) 

0.
02

43
53

 
--

0.
48

70
81

 
--

0.
03

68
73

 
0.

08
56

19
 

0.
08

04
81

 
--

0.
06

89
91

 
0.

05
84

61
 

0.
04

98
42

 
0.

26
36

70
 

P 
(1

, 
18

) 
--

0.
00

60
33

 
0.

33
61

44
 

0.
30

23
89

 
--

0.
23

90
40

 
--

0.
17

62
32

 
0.

13
44

69
 

--
0.

10
64

72
 

--
0.

08
69

00
 

0.
32

96
35

 
P 

(1
, 

20
) 

0.
00

12
39

 
--

0,
19

04
55

 
--

0.
47

32
69

 
0.

24
47

72
 

0.
13

77
55

 
--

0.
08

66
72

 
0.

05
94

70
 

0.
04

35
32

 
0.

35
20

92
 

P
(1

, 
22

) 
--

0.
00

02
14

 
0.

09
10

42
 

0.
49

98
16

 
--

0.
08

42
63

 
0.

02
34

03
 

--
0.

05
04

89
 

0.
05

49
09

 
0.

05
25

34
 

0.
27

40
77

 
P 

(1
, 

24
) 

0.
00

00
32

 
--

0.
03

73
94

 
--

0.
41

63
87

 
--

0.
15

73
42

 
--

0.
19

81
45

 
0.

17
09

12
 

--
0.

14
09

96
 

--
0.

11
68

46
 

0.
30

15
39

 
P 

(1
, 

26
) 

--
0.

00
00

04
 

0.
01

33
75

 
0.

29
01

37
 

0.
36

46
61

 
0.

26
59

69
 

--
0.

17
40

93
 

0.
11

80
42

 
0.

08
41

05
 

0.
33

93
92

 
P

(1
, 

28
) 

0.
00

00
00

 
--

0.
00

42
10

 
0.

17
43

16
 

--
0.

46
50

27
 

--
0.

17
86

13
 

0.
04

57
05

 
0.

00
79

26
 

0.
02

92
64

 
0.

28
15

65
 

P 
(1

, 
30

) 
--

0.
00

00
00

 
0.

00
11

76
 

0.
09

20
12

 
0.

45
26

31
 

--
0.

02
01

94
 

0.
13

42
47

 
--

0.
14

65
92

 
--

0.
13

45
67

 
0.

27
13

69
 

P 
(1

, 
32

) 
0.

00
00

00
 

--
0.

00
02

94
 

--
0.

04
32

24
 

--
0.

36
71

64
 

0.
23

74
04

 
--

0.
25

26
64

 
--

0.
19

41
27

 
0.

14
35

62
 

0.
31

51
73

 
P 

(1
, 

34
) 

0.
00

00
00

 
0.

00
00

66
 

0.
01

82
44

 
0.

25
81

83
 

--
0.

39
09

32
 

0.
23

83
83

 
--

0.
11

03
13

 
--

0.
04

04
47

 
0.

29
04

51
 

P 
(1

, 
36

) 
0.

 
--

0.
00

00
13

 
-0

.0
0

6
9

7
0

 
--

0.
16

09
09

 
0.

44
56

28
 

--
0.

09
74

34
 

--
0.

05
67

45
 

-0
.1

05
75

4 
0.

24
84

22
 

P 
(1

, 
38

) 
0.

 
0.

00
00

02
 

0.
00

24
25

 
0.

09
01

62
 

--
0.

41
32

04
 

--
0.

10
45

27
 

0.
20

84
88

 
0.

19
36

02
 

0.
27

07
47

 
P

(1
, 

40
) 

0.
 

0.
00

00
00

 
--

0.
00

07
72

 
--

0.
04

58
79

 
0.

33
01

59
 

0.
28

78
80

 
--

0.
26

01
99

 
--

0.
16

10
95

 
0.

28
76

41
 

P 
(1

, 
42

) 
0.

 
0.

00
00

00
 

0.
00

02
26

 
0.

02
13

61
 

0.
23

39
84

 
--

0.
39

86
78

 
0.

18
57

22
 

0.
02

38
72

 
0.

24
92

11
 

P
(1

, 
44

) 
0.

 
0.

 
--

0.
00

00
61

 
--

0.
00

91
54

 
0.

14
96

37
 

0.
42

33
28

 
--

0.
02

04
15

 
0.

14
08

75
 

0.
22

19
44

 
P 

(1
, 

46
) 

0.
 

0.
 

0.
00

00
15

 
0.

00
36

28
 

--
0.

08
73

51
 

--
0.

38
01

52
 

--
0.

16
84

36
 

--
0.

24
51

44
 

0.
24

06
25

 
P

(1
, 

48
) 

0.
 

0.
 

0.
00

00
04

 
--

0.
00

13
35

 
0.

04
69

30
 

0.
30

08
92

 
0.

31
86

40
 

0.
23

81
80

 
0.

25
10

01
 

P
(1

, 
50

) 
0.

 
0.

 
0.

00
00

01
 

0.
00

04
58

 
--

0.
02

33
51

 
--

0.
21

46
61

 
--

0.
39

66
34

 
--

0.
12

51
41

 
0.

21
96

03
 

P
(1

, 
52

) 
0.

 
0.

 
--

0.
00

00
00

 
--

0.
00

01
47

 
0.

01
08

14
 

0.
13

99
73

 
0.

40
10

37
 

--
0.

04
62

66
 

0.
18

26
81

 
P

(1
, 

54
) 

0.
 

0.
 

0.
 

0.
00

00
44

 
--

0.
00

46
80

 
--

0.
08

42
23

 
--

0.
35

20
66

 
0.

21
55

60
 

0.
17

75
32

 
P

(1
, 

56
) 

0.
 

0.
 

0.
 

--
0.

00
00

12
 

0.
00

18
99

 
0.

04
70

93
 

0.
27

69
08

 
--

0.
33

64
00

 
0.

19
20

64
 

P
(1

, 
58

) 
0.

 
0.

 
0.

 
0.

00
00

03
 

--
0.

00
07

24
 

--
0.

02
46

00
 

--
0.

19
86

71
 

0.
38

93
26

 
0.

19
16

51
 

P
(1

, 
60

) 
0.

 
0.

 
0.

 
--

0,
00

00
01

 
0.

00
02

60
 

0.
01

20
57

 
0.

13
15

46
 

--
0.

37
98

00
 

0.
16

16
98

 



T
ab

le
 3

.5
 (

co
nt

in
ue

d)
 

0
(1

,2
) 

0
(1

,4
) 

0
(1

,6
) 

0
(1

,8
) 

0
(1

, 
10

) 
0

(1
,1

2
) 

0
(1

,1
4

) 
0

(1
,1

6
) 

S
u

m
 o

f 
sq

u
ar

es
 

P
(1

, 
62

) 
O

. 
P

(1
, 

64
) 

O
. 

e 
(1

, 
66

) 
O

. 
e(

1,
 

68
) 

O
. 

P
(1

, 
70

) 
O

. 
P 

(1
, 

72
) 

O
. 

P
(1

, 
74

) 
O

. 
P

(1
, 

76
) 

O
. 

P
(1

, 
78

) 
O

. 
P 

(1
, 

80
) 

o.
 

e(
1,

 
82

) 
O

. 
P

(J
, 

84
) 

O
. 

e(
1,

 
86

) 
O

. 
P 

(1
, 

88
) 

O
. 

P
(1

, 
90

) 
O

. 
P 

(1
, 

92
) 

O
. 

P 
(1

, 
94

) 
O

. 
P 

(1
, 

96
) 

O
. 

P
(1

, 
98

) 
O

. 
P 

(1
,1

00
) 

O
. 

P
(1

,1
02

) 
O

. 
P

(1
,1

04
) 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

O
. 

0.
00

00
00

 
0.

00
00

88
 

--
0

.0
0

5
5

6
3

 
O

. 
--

0
.0

0
0

0
0

0
 

0.
00

00
28

 
0.

00
24

24
 

O
. 

O
. 

--
0

.0
0

0
0

0
9

 
0.

00
10

00
 

O
. 

O
. 

0.
00

00
03

 
0.

00
03

91
 

O
. 

O
. 

--
0

.0
0

0
0

0
1

 
--

0
.0

0
0

1
4

5
 

0.
 

O
. 

0.
00

00
00

 
0.

00
00

52
 

O
. 

O
. 

--
0

.0
0

0
0

0
0

 
--

0
.0

0
0

0
1

7
 

O
. 

O
. 

O
. 

0.
00

00
06

 
O

. 
O

. 
O

. 
--

0
.0

0
0

0
0

2
 

O
. 

O
. 

O
. 

0.
00

00
01

 
O

. 
O

. 
O

. 
--

0
.0

0
0

0
0

0
 

O
. 

O
. 

O
. 

0.
00

00
00

 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 
O

. 

--
0

.0
8

1
0

4
0

 
0.

32
78

57
 

0.
11

40
89

 
0.

04
67

34
 

--
0

.2
5

6
7

3
0

 
0.

06
81

00
 

--
0

.0
2

5
3

4
6

 
0.

18
50

97
 

0.
03

49
04

 
0.

01
29

76
 

--
0

.1
2

4
0

9
6

 
0.

01
55

68
 

--
0

.0
0

6
2

9
1

 
0.

07
79

15
 

0.
00

61
10

 
0.

00
28

95
 

--
0

.0
4

6
0

5
8

 
0.

00
21

30
 

--
0

.0
0

1
2

6
8

 
0.

02
57

40
 

0.
00

06
64

 
0.

00
05

29
 

--
0

.0
1

3
6

4
6

 
0.

00
01

86
 

--
0.

00
02

11
 

0.
00

68
81

 
0.

00
00

47
 

0.
00

00
80

 
--

0
.0

0
3

3
0

9
 

0.
00

00
11

 
--

0
.0

0
0

0
2

9
 

0.
00

15
20

 
0.

00
00

02
 

0.
00

00
10

 
--

0
.0

0
0

6
6

8
 

0.
00

00
00

 
--

0
.0

0
0

0
0

3
 

0.
00

02
82

 
0.

00
00

00
 

0.
00

00
01

 
--

0
.0

0
0

1
1

4
 

0.
00

00
00

 
--

0
.0

0
0

0
0

0
 

0.
00

00
44

 
0.

00
00

00
 

0.
00

00
00

 
--

0
.0

0
0

0
1

7
 

0.
00

00
00

 
--

0
.0

0
0

0
0

0
 

0.
00

00
06

 
0.

00
00

00
 

O
. 

--
0

.0
0

0
0

0
2

 
0.

00
00

00
 

O
. 

0
.0

0
0

0
0

i 
0.

00
00

00
 

O
. 

0.
00

00
00

 
0.

00
00

00
 

O
. 

0.
00

00
00

 
0.

00
00

00
 

O
. 

--
0

.0
0

0
0

0
0

 
0.

00
00

00
 

h 
(k

in
) 

0.
23

84
 

0.
07

24
 

0.
03

46
 

0.
02

02
 

0.
01

32
 

0.
00

93
 

0.
00

69
 

0.
00

54
 



T
A

B
L

E
 

3.
6 

E
x

p
an

si
o

n
 c

oe
ff

ic
ie

nt
s 

re
la

ti
ng

 n
o

rm
al

iz
ed

 H
o

u
g

h
 f

u
n

ct
io

n
s 

6
)(

L
,M

) 
an

d
 n

o
rm

al
iz

ed
 a

ss
o

ci
at

ed
 L

eg
en

d
re

 f
u

n
ct

io
n

s 
P

(L
,N

).
 A

n
ti

-s
y

m
m

et
ri

c 
ro

ta
ti

o
n

al
 

m
o

d
es

 (
in

de
x 

M
 n

eg
at

iv
e)

 w
it

h
 w

av
e 

n
u

m
b

er
 L

 =
 1

 a
n

d
 p

er
io

d
 S

1 
=

 2
4.

00
00

 m
ea

n
 s

o
la

r 
h

o
u

rs
. 

A
ls

o
 s

h
o

w
n

 a
re

 e
q

u
iv

al
en

t 
d

ep
th

s 

O
(1

,-
-1

) 
O

(1
,-

-3
) 

O
(1

, 
5)

 
O

(1
,-

-7
) 

~
9

(1
,-

-9
) 

O
(1

,-
-1

1
) 

6)
(1

, 
--

1
3

) 
O

(1
,-

-1
5

) 
S

u
m

o
f 

S
q

u
ar

es
 

P
(1

, 
2)

 
0.

99
99

97
 

0.
00

20
94

 
--

0.
00

08
96

 
0.

00
05

29
 

0.
00

03
60

 
--

0.
00

02
66

 
--

0.
00

02
06

 
0.

00
01

66
 

0.
99

99
99

 
P

(1
, 

4)
 

--
0.

00
25

56
 

0.
81

99
88

 
--

0.
35

02
27

 
--

0.
20

68
3~

 
0.

14
07

24
 

--
0.

10
37

51
 

--
0.

08
05

87
 

0.
06

49
36

 
0.

87
91

03
 

P
(1

, 
6)

 
0.

00
00

02
 

0.
55

12
33

 
0.

29
83

76
 

0.
26

15
14

 
--

0.
20

18
18

 
0.

15
77

18
 

0.
12

64
93

 
--

0.
10

39
45

 
0.

55
36

86
 

P
(1

, 
8)

 
0.

 
0.

15
22

74
 

0.
72

88
31

 
0.

24
25

49
 

--
0.

08
59

17
 

0.
02

94
45

 
0.

00
66

87
 

0.
00

31
06

 
0.

62
15

15
 

P
(1

,1
0

) 
0.

 
0.

02
37

53
 

0.
47

62
20

 
--

0.
41

34
72

 
0.

36
85

16
 

--
0.

27
76

78
 

--
0.

21
10

86
 

0.
16

54
23

 
0.

68
31

39
 

P
(1

,1
2

) 
0.

 
0.

00
24

09
 

0.
16

95
13

 
--

0.
66

08
46

 
0.

11
24

16
 

0.
07

59
72

 
0.

12
84

25
 

--
0.

13
63

29
 

0.
51

89
45

 
P

(1
,1

4
) 

0.
 

0.
00

01
72

 
0.

03
94

33
 

--
0.

43
41

26
 

0.
45

84
15

 
0.

37
72

57
 

0.
24

06
40

 
--

0.
14

77
19

 
0.

62
22

16
 

P
(1

,1
6

) 
0.

 
0.

00
00

09
 

0.
00

65
59

 
--

0.
17

65
54

 
--

0.
61

00
48

 
0.

00
98

68
 

--
0.

19
83

11
 

0.
23

58
15

 
0.

49
84

06
 

P
(1

,1
8

) 
0.

 
0.

 
0.

00
08

24
 

--
0.

05
06

50
 

--
0.

40
61

87
 

--
0.

47
45

16
 

--
0.

34
43

89
 

0.
15

51
09

 
0.

53
53

83
 

P
(I

, 
20

) 
0.

 
0.

 
0.

00
00

81
 

--
0.

01
09

68
 

--
0.

18
05

10
 

--
0.

57
08

62
 

0.
06

57
74

 
--

0.
27

52
23

 
0.

43
86

62
 

P
(1

, 
22

) 
0.

 
0.

 
0.

00
00

06
 

0.
00

18
71

 
--

0.
05

93
66

 
--

0.
38

58
00

 
0.

47
77

02
 

--
0.

29
74

00
 

0.
46

90
15

 
P

(1
, 

24
) 

0.
 

0.
 

0.
00

00
00

 
--

0.
00

02
59

 
--

0.
01

52
69

 
--

0.
18

30
18

 
0.

53
96

46
 

0.
12

11
92

 
0.

33
96

35
 

P
(1

, 
26

) 
0.

 
0.

 
0.

 
--

0.
00

00
30

 
0.

00
31

82
 

--
0.

06
64

32
 

0.
37

00
06

 
0.

47
47

65
 

0.
36

67
29

 
P

(1
, 

28
) 

0.
 

0.
 

0.
 

0.
00

00
03

 
--

0.
00

05
51

 
--

0.
01

93
42

 
0.

18
47

05
 

0.
51

40
96

 
0.

29
87

85
 

P
(1

,3
0

) 
0.

 
0.

 
0.

 
--

0.
00

00
00

 
--

0.
00

00
81

 
--

0.
00

46
58

 
0.

07
23

23
 

0.
35

72
65

 
0.

13
28

91
 

P
(1

,3
2

) 
0.

 
0.

 
0.

 
0.

 
0.

00
00

10
 

--
0.

00
09

48
 

0.
02

31
55

 
0.

18
58

82
 

0.
03

50
89

 
P

(1
, 

34
) 

0.
 

0.
 

0.
 

0.
 

0.
00

00
01

 
--

0.
00

01
66

 
0.

00
62

28
 

0.
07

73
40

 
0.

00
60

20
 

P
(1

, 
36

) 
0.

 
0.

 
0.

 
0.

 
0.

 
--

0.
00

00
25

 
0.

00
14

35
 

0.
02

67
12

 
0.

00
07

16
 

P
(1

, 3
8)

 
0.

 
0.

 
0.

 
0.

 
0.

 
--

0.
00

00
03

 
0.

00
02

87
 

0.
00

78
49

 
0.

00
00

62
 

P
(1

, 
40

) 
0.

 
0.

 
0.

 
0.

 
0.

 
--

0.
00

00
00

 
0.

00
00

51
 

0.
00

19
97

 
0.

00
00

04
 

P
(1

,4
2)

 
0.

 
0.

 
0.

 
0.

 
0.

 
--

0.
00

00
00

 
0.

00
00

08
 

0.
00

04
46

 
0.

00
00

00
 

P 
(1

, 4
4)

 
0.

 
0.

 
0.

 
0.

 
0.

 
0.

 
0.

00
00

01
 

0.
00

00
88

 
0.

00
00

00
 

P
(1

, 
46

) 
0.

 
0.

 
0.

 
0.

 
0.

 
0.

 
0.

00
00

00
 

0.
00

00
16

 
0.

00
00

00
 

P
(1

,4
8

) 
0.

 
0.

 
0.

 
0.

 
0.

 
0.

 
0.

 
0.

00
00

02
 

0.
00

00
00

 
P

(1
,5

0
) 

0.
 

0.
 

0.
 

0.
 

0.
 

0.
 

0.
 

0.
00

00
00

 
0.

00
00

00
 

h 
(k

m
) 

+
80

3.
35

6 
--

1.
81

44
 

--
0.

64
60

 
0.

32
98

 
--

0.
19

96
 

--
0.

13
37

 
0.

04
57

 
--

0.
07

19
3 



T
A

B
L

E
 

3.
7 

E
x

p
an

si
o

n
 c

oe
ff

ic
ie

nt
s 

re
la

ti
ng

 n
o

rm
al

iz
ed

 H
o

u
g

h
 f

u
n

ct
io

n
s 

O
(L

,M
) 

an
d

 n
o

rm
al

iz
ed

 a
ss

o
ci

at
ed

 L
eg

en
d

re
 f

u
n

ct
io

n
s 

P
(L

,N
).

 S
y

m
m

et
ri

c 
gr

av
it

at
io

na
l 

m
o

d
es

 (
in

de
x 

M
 p

os
it

iv
e)

 w
it

h 
w

av
e 

n
u

m
b

er
 L

 =
 2

 a
n

d
 p

er
io

d
 M

2
 =

 1
2.

42
06

 m
ea

n
 s

o
la

r 
h

o
u

rs
. 

A
ls

o
 s

h
o

w
n

 a
re

 e
q

u
iv

al
en

t 
d

ep
th

s 

0
(2

, 
2)

 
0

(2
, 

4)
 

0
(2

, 
6)

 
0

(2
, 

8)
 

0
(2

, 
12

) 
0

(2
, 

12
) 

0
(2

, 
14

) 
0

(2
, 

16
) 

S
u

m
 o

f 
sq

u
ar

es
 

P
(2

, 
2)

 
0.

96
27

08
 

0.
22

84
31

 
0.

10
58

93
 

--
0.

06
29

25
 

0.
04

26
27

 
--

0.
03

12
93

 
--

0.
02

42
43

 
0.

01
95

15
 

0.
99

79
26

 
P

(2
, 

4)
 

--
0.

26
88

77
 

0.
75

06
58

 
0.

42
19

70
 

--
0.

26
63

11
 

0.
18

52
91

 
--

0.
13

79
70

 
--

07
79

5 
0.

08
72

44
 

0.
95

73
62

 
P

(2
, 

6)
 

0.
02

99
10

 
--

0.
59

41
97

 
0.

34
20

65
 

0.
36

45
23

 
--

0.
30

13
38

 
--

0.
24

36
08

 
--

0.
19

93
54

 
0.

16
60

71
 

0.
82

13
21

 
P

(2
, 

8)
 

0.
00

17
39

 
0.

17
45

47
 

--
0.

72
32

69
 

0.
09

28
97

 
0.

11
90

28
 

--
0.

17
58

32
 

--
0.

18
17

89
 

0.
17

15
03

 
0.

66
97

62
 

P
(2

, 
10

) 
0.

00
00

62
 

0.
02

80
58

 
0.

39
58

60
 

0.
59

79
57

 
0.

36
95

96
 

0.
15

95
36

 
0.

04
01

66
 

0.
02

23
34

 
0.

67
92

10
 

P
(2

,1
2

) 
--

0.
00

00
01

 
0.

00
28

88
 

0.
11

58
00

 
0.

58
72

25
 

0.
27

09
47

 
0.

38
65

15
 

0.
31

10
63

 
0.

21
94

48
 

0.
72

59
75

 
P

(2
,1

4
) 

0.
 

--
0.

00
02

08
 

0.
02

18
74

 
0.

27
29

72
 

-0
.6

3
3

2
2

1
 

--
0.

10
46

46
 

0.
17

90
44

 
--

0.
26

07
71

 
0.

58
69

71
 

P 
(2

,1
6)

 
0.

 
0.

00
00

11
 

--
0.

00
29

31
 

0.
08

01
73

 
0.

45
49

98
 

0.
47

89
66

 
--

0.
35

22
02

 
0.

10
42

47
 

0.
57

77
81

 
P 

(2
,1

8)
 

0.
 

0.
00

00
00

 
0.

00
02

95
 

0.
01

66
72

 
--

0.
19

34
80

 
0.

57
62

13
 

--
0.

17
15

75
 

0.
36

68
83

 
0.

53
37

75
 

P
(2

, 
20

) 
0.

 
0.

 
0.

00
00

23
 

-0
.0

0
2

6
1

6
 

0.
05

71
99

 
--

0.
34

79
25

 
0.

55
46

11
 

--
0.

15
57

73
 

0.
45

61
89

 
P

(2
, 

22
) 

0.
 

0.
 

0.
00

00
01

 
0.

00
03

23
 

0.
01

26
98

 
0.

14
00

31
 

--
0.

49
13

31
 

--
0.

36
53

41
 

0.
39

46
50

 
P

(2
, 

24
) 

0.
 

0.
 

0.
 

--
0.

00
00

32
 

0.
00

22
18

 
--

0.
04

16
90

 
0.

26
54

67
 

0.
55

04
52

 
0.

37
52

13
 

P
(2

, 
26

) 
0.

 
0.

 
0.

 
0.

00
00

03
 

--
0.

00
03

15
 

0.
00

97
11

 
--

0.
10

29
83

 
0.

40
56

22
 

0.
17

52
29

 
P 

(2
,2

8)
 

0.
 

0.
 

0.
 

0.
00

00
00

 
0.

00
00

37
 

0.
00

18
35

 
0.

03
08

68
 

0.
20

29
04

 
0.

04
21

26
 

P 
(2

,3
0)

 
0.

 
0.

 
0.

 
0.

 
0.

00
00

04
 

0.
00

02
88

 
--

0.
00

74
62

 
--

0.
07

66
88

 
0.

00
59

37
 

P
(2

,3
2

) 
0.

 
0.

 
0.

 
0.

 
0.

00
00

00
 

0.
00

00
38

 
0.

00
14

97
 

0.
02

31
31

 
0.

00
05

37
 

P
(2

,3
4

) 
0.

 
0.

 
0.

 
0.

 
0.

 
0.

00
00

04
 

--
0.

00
02

55
 

-0
.0

05
76

1 
0.

00
00

33
 

P 
(2

,3
6)

 
0.

 
0.

 
0.

 
0.

 
0.

 
--

0.
00

00
00

 
0.

00
00

37
 

0.
00

12
13

 
0.

00
00

01
 

P
(2

,3
8

) 
0.

 
0.

 
0.

 
0.

 
0.

 
0.

 
0.

00
00

05
 

--
0.

00
02

20
 

0.
00

00
00

 
P

(2
,4

0
) 

0.
 

0.
 

0.
 

0.
 

0.
 

0.
 

0.
00

00
01

 
0.

00
00

35
 

0.
00

00
00

 
P

(2
,4

2
) 

0.
 

0.
 

0.
 

0.
 

0.
 

0.
 

0.
 

--
0.

00
00

05
 

0.
00

00
00

 
P

(2
, 

44
) 

0.
 

0.
 

0.
 

0.
 

0.
 

. 
0.

 
0.

 
0.

00
00

01
 

0.
00

00
00

 
P

(2
,4

6
) 

0.
 

0.
 

0.
 

0.
 

0.
 

0.
 

0.
 

0.
00

00
00

 
0.

00
00

00
 

h 
(k

m
) 

7.
07

01
 

1.
84

86
 

0.
82

54
 

0.
46

32
 

0.
29

53
 

0.
20

42
 

0.
14

95
 

0.
11

41
 

N
 

7~
 

~7
 

~7
 z 



A T M O S P H E R I C  T I D E S  1 5 1  

+1 

- |  

J 

i \ 
/ \ 

/ \ 
/ \ 

/ \ . _  

\ 
\ 
\ 

~ .  - '% 

/ \  
/ 

-90  -60 

sin 0 X cos 0 
O-1 
O-s 
O+s 
@+s 
@+7 

-30 

' '1" '. 

!j 

i 

/' \ 
/ \ 

/ 
/ \ 

-7' t 

\ 
\j 

o 

Latitude (deg.) 

-. " / "  l. '"'" 
I ~I'. t i .'] 
i ! ..".~. 

f i / 
/ 

30 60 90 

Fig. 3.10. Symmetric Hough functions for the migrating solar diurnal thermal tide. Also shown is 
sin0 cos0, the most important odd mode. After Lindzen (1967a). 

in turn,  implies tha t  the modes  associa ted with posi t ive h's will p ropaga te  ver t ical ly  

with shor t  wavelengths.  F o r  an i so thermal  a tmosphere  with T o = 2 6 0  ~ , wavelengths  

o f  28, l l ,  and  7 k m  are associated with h~' 1, h~' 1 and h~' 1 respectively (Lindzen,  

1967a). These est imates are sl ightly modif ied when more  realist ic basic t empera tures  

are considered (Lindzen,  1968a). 

Cont inuing  as in Section 3.5A we expand  g~'3 ~ and  ~. 1 9H2o in terms o f  the re levant  
H o u g h  Func t ions :  

g~; 1 = 1.6308 K0521 - 0.5128 KO~ '2  + . . .  

+ 0 .5447KO]  ~'1 - 0 .1411KO~ 'a + 0 . 0 7 2 3 K O ;  ' '1  . . . .  (168) 
(O, 1 

gu2o 0.157 KO~_'a a -- 0.055 KO~_'~ ... 

+ 0.062 KO~" ~ -- 0.016 KO~" 1 + 0.008 KO~ '  1 . . . .  (169) 

We can immedia te ly  note the absence in (168) and (169) o f  the s t rong dominance  o f  

one mode  v i s a  vis the others - in dist inct  cont ras t  to (147) and (150), The reason  
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Fig. 3.11. The expansion functions for the latitude dependence of the solar diurnal component of 
u, the northerly velocity. The functions have been divided by the amounts shown. 

After Lindzen (1967a). 
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Fig. 3.12. The expansion functions for the latitude dependence of the solar diurnal component of v, 
the westerly velocity. The functions have been divided by the amounts shown. After Lindzen (1967a). 
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for this is seen in Figures 3.10 and 3.2; no single diurnal Hough mode bears much 

resemblance to the excitation distributions, though the O~'2 ~ mode comes closer than 
any other. However, since this mode has a negative equivalent depth, it is not - in 
contrast to the O~" 2 mode -associated with a preferential atmospheric response. 
This is seen more clearly in the theoretically calculated diurnal surface pressure 
response to the excitations shown in Figure 3.2 (for an isothermal basic state). The 
results are taken from Lindzen (1967a). The oscillations excited by 0 3 are considered 
separately from those excited by HzO. 

,,(0) {1370,!,21 68.20~_'~ + 117 56~176 1 
F H 2 0  ~ - -  e ~ 1 ' 

- 13.0eTS'3~ 1 +4.11eS~176 +.. .}  e~('~ (170) 

and 
6"(~ = { 4 4 . 1 0 ~  1 - 3.40~ + 94.1e la'75~ O~' 1 

_ 3.75e16.1o~ O~O, 1 + 0.754e-6.57oi O~' t + . . .}  ei(~ot++) pb.  (171) 

We see from (170) and (171) that at least 3 modes, O~_'2 ~, O]" 1, and O~ ~, and not 
just one, are of significance in the surface pressure oscillation. We also see that 

although the OE'2 ~ mode receives most of the excitation, the O]" 1 mode plays as 
great a role in v~,n2 on'(~ and a greater role in @(o ~ This is because the O~'4 ~ mode is 
associated with a negative equivalent depth, and energy in this mode cannot propagate 
away from a source - it can only leak away. This trapping becomes increasingly great 
for the modes ~ ,10~ ,6  ~ 0 - 4 ,  _ . Thus we are not surprised that the contributions to the 
modes with negative h's from water vapor (near the ground) are larger than the 
contributions from ozone (far above the ground). However, the contributions from 
water vapor absorption to the modes with positive h's are also larger. This is due to 
the short vertical wavelengths associated with these modes. The ozone excitation is 
distributed over a very considerable depth of the atmosphere (ca. 40 kin). Thus, 
waves excited at one level can destructively interfere with waves excited at another 
level (see Buffer and Small (1963), and Lindzen (1966b), for a more detailed discussion 
of this process). For the O] ~' 1 mode (wavelength ~ 28 kin) the region of water vapor 
excitation is not sufficiently thick (ca. 18 kin) for this process to be of great importance. 
This, however, is no longer true for the O~" 1 and subsequent modes. 

The above discussion explains why the migrating solar diurnal surface pressure 
oscillation is relatively weak - namely inefficiency of response due to trapping and 
interference. It also explains why it is more irregular than the semidiurnal surface 
pressure oscillation - namely the oscillation consists in several modes, each of which 
is sensitive to relatively local variations in excitation, temperature, etc. 

It may be asked at this point whether the above implies that the migrating solar 
diurnal thermotidal fields are of secondary importance throughout the atmosphere. 
The answer is no. The reasons for this are (1) the solar diurnal excitation is very large; 
even the excitation received by the modes with positive h's alone is comparable with 
the solar semidiurnal excitation; (2) trapping and interference do not preclude an 
effective response at the levels of excitation; (3) those modes which propagate vertical- 
ly are not trapped below the mesopause. The last item suggests that diurnal thermo- 
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tidal fields will dominate semidiurnal fields in the upper atmosphere equatorwards of  

about  +40  ~ . This is seen more clearly in Figures 3.13 and 3.14, where theoretical 
predictions for the amplitude and phase of the solar diurnal northerly velocity 
component  at various latitudes are shown. The figures are taken from Lindzen 
(1967a), who used the five Hough modes shown in Figure 3.10, an isothermal basic 
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state where To=260~ and the excitations shown in Figure 3.2. Figures 3.13 and 
3.14 suggest a very rich latitude and altitude structure. A more explicit display of the 
calculated latitude structure is shown in Figures 3.15 and 3.16 where the amplitude 
and phase of the diurnal temperature and velocity fields at 85 km as a function of  
latitude are shown. The vertical structure is best seen in Figure 3.17 showing the 
migrating solar diurnal contribution to the altitude distribution of northerly velocity 
at 1200 hrs and 1800 hrs, and at _+30 ~ and _+50 ~ (Figures 3.15-17 are also taken 
from Lindzen (1967a).) We see in Figure 3.17 that at _ 30 ~ the vertical structure and 
amplitude are much greater than at _ 50 ~ - consistent with the dominance of trapped 
modes at higher latitudes. The structure and amplitude of the diurnal contributions 
above 80 km at +_ 30 ~ are both very similar to single time observations of  the total 
wind at 30 ~ (Liller and Whipple, 1954)-  thus suggesting that the migrating solar 
diurnal thermotidal winds may be the major component of  the total wind above 80 km 
at latitudes equatorwards of about 30 ~ 

Figures 3.13-17 are based on calculations for an isothermal basic state. The results 
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Fig. 3.14. 
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Latitude distribution of the phase of the solar diurnal components of the u, v, w and T 
fields at 85 km; isothermal basic state assumed. After Lindzen (1967a). 

of these calculations are in reasonable agreement with various observations (Lindzen, 
1967a; see also Section 2S.7B). This, however, is not, by itself, a justification for the 
use of an isothermal atmosphere. A weak justification consists in noting that for 
negative h's or small positive h's, 22 does not change sign anywhere in the atmosphere. 
Thus the attenuations and reflections associated with the transition between regions 
of propagation and evanescence (viz. Section 3.5.A) are not to be expected for 
diurnal oscillations. On the other hand there are normal temperature variations on 
the scale of the wavelengths of the main diurnal modes, and refraction effects would 
not be surprising. Lindzen (1968a) has investigated the effect of various basic temper- 
ature profiles on the solar diurnal thermal tide and has found very little effect on the 
surface pressure oscillation. However, more important effects were predicted for upper 
air fields. In Figure 3.18 we see several temperature profiles differing only in the lower 
atmosphere. In Figure 3.19 we see the predicted diurnal component of the northerly 
velocity as a function of altitude at 1200 hrs (local time) over 25 ~ latitude for each of 
the temperature profiles in Figure 3.18. Small changes in To appear to have an im- 
portant influence on the relative importance of the various propagating diurnal 
modes. 

3.5.C. T H E  L U N A R  SEMIDIURNAL TIDE 

For the semidiurnal lunar tide (M2) s = 2  and f =  12.0/12.4206. The solutions of (69) 
and (70) for these values have been known for some time; again, excellent tabulations 
are to be found in Flattery (1967). Following his notation, n=2, 4 . . . .  correspond to 
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symmetric modes, and, as we saw in Section 3.4.A, only symmetric modes are 
excited; {h,} and {Cn, m} for these modes are given in Table 3.7. Because of the 
substantial similarity between the O, U and V functions for the lunar and solar 

semidiurnal oscillations we have not included illustrations of  the lunar examples. 
As in the preceding cases, our first step is to expand our excitation in terms of the 

appropriate Hough functions: 

(2 = ( -  23662.0  z - 5615.04 - 2603. O 6 ' " )  sin (2(t~2t + (p))cm2/sec 2 . 
(172) 

Just as with the solar semidiurnal thermal tide, most of  the excitation goes into the 
n = 2  mode. For gravitational tides J - - 0 ,  and Equation (30) is homogeneous. The 
excitation enters only through the lower boundary condition (47). Thus for gravita- 
tional tides the drive is, in effect, concentrated at a single level - the ground. Restricting 
himself to the n = 2  mode, Sawada (1954, 1956) has computed the atmosphere's 
response to (172) for various distributions of  To. In Figure 3.20 we see various 
distributions of  To differing only in their mesopeak temperatures. In Figure 3.21 we 
see the phase and amplitude of the surface pressure oscillation at the equator for the 
various distributions of  T o. In marked contrast to the results for the solar semidiurnal 
thermal tide, the lunar semidiurnal tide in the surface pressure seems extremely 
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Fig. 3.18. 
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dependent on the precise distribution of T o . In view of the similarities in the 
equivalent depths and Hough functions for the two oscillations this difference 
is quite surprising. The difference can only arise from the difference between the 
excitations: the excitation for the lunar semidiurnal tide is a coherent drive at a 
single level, while the excitation for the solar semidiurnal thermal tide is distributed 

throughout a great depth of the atmosphere. Apparently, small changes in the 
distribution of T O change the effective height of  levels where semidiurnal tides are 
partially reflected and the degrees of  reflection. For the coherent gravitational excita- 
tion, the repeated partial reflections seem to produce significant constructive or 
destructive interference depending on the height of  the reflecting levels. For the 
distributed thermal excitation, constructive interference for waves excited at one level 
appears to be balanced by destructive interference for waves excited at another level - 
the net variation being small. 

Sawada (1956) attempted to use the sensitivity of  the lunar semidiurnal surface 
pressure oscillation to T O (z) in order to determine the annual mean distribution of 
To. Presumably it would be that To (z) for which the pressure oscillation was closest to 
the observed one (i.e., lfpl ~70  #b, phase (6p) ~72~ Thus Sawada concluded that 
T o should have a maximum value of 262.33 ~ at 50 km. Such a conclusion seems 
unwarranted on several grounds. For  example, consider an atmosphere for which 
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Solar diurnal component  of v at 1200 LST for latitude 25 ~ The different distributions 
correspond to different basic temperature profiles. After Lindzen (1968a). 

T o =const .  Restricting ourselves to the n = 2  mode, we have as the solution of (48), 

Y2 ~- Aei~Z/H, (173) 

14;  2 = - (174) 

From (47) 

A \yghz.//\ '+ h2- ' (175) 

Finally, from (35) and (172) 

F34.17/~b exp i(2(cr~t + qS) + 90~ 
6 p ~ r , . ~ m l  ~ H - - 1 - - -  - - ~ - 1 -  - "  (176) 

L J 
For T o = 230 ~ (i.e., H =  6.76 kin), (176) represents the observations quite well. Yet 
we could hardly conclude that the atmosphere is isothermal at 230~ The above 
result is of some interest, since waves will not be reflected at any level in an isothermal 
atmosphere. I t  may, therefore, be suggested that the multiple reflections producing 
Sawada's result are, on the average, unimportant. A possible reason for this will be 
given in Section 6, where we will show that the effects of  multiple reflections are 

where 
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greatly reduced when dissipation is included. Despite the mitigating role of dissipa- 
tion, dependence on To (z) is still sufficient to account for the observed variability in 
the lunar semidiurnal tide. 

As Sawada 0956) noted, atmospheric fields above 25 km are considerably less 
sensitive than surface pressure to small changes in To (z). In Figures 3.22 and 3.23 
we show the results of some of our calcuJations for tlae distribution with height of the 
amplitude and phase of the lunar semidiurnal component of the westerly wind at the 
equator as computed for the ARDC temperature profile. For comparison we also 
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show the contributions from the solar semidiurnal thermal tide - assuming the same 
temperature profile. Both are seen to vary with height in a similar manner. 

3.5.D. OTHER COMPONENTS 

We have discussed the three most important tides and thermal tides. The literature 
contains theoretical discussions of lesser components. In particular, both Butler and 
Small (1963) and Nunn (1967) discuss the solar terdiurnal thermal tide. Lindzen 
(1967c) discusses the lunar diurnal tide. A discussion of the standing solar semidiurnal 
thermal tide may be found in Stolov (1954) and Kertz (1956a). 

3.6. Shortcomings of Present Calculations 

In this section we return to a discussion of the approximations 9 to j ,  cited in Section 
3.2: namely, the effects on tides and thermal tides of surface topography, dissipation, 
nonlinearity, and mean flows. Of necessity, this section will be not so much a review 
as a discussion of conjectures and of work which has yet to be done. The amount of 
work already done on these approximations is small, and, for the most part, in- 
conclusive. However, in a few instances (such as the effect of dissipation on the lunar 
semidiurnal tide) concrete results have already been obtained. 

3.6.A. SURFACE TOPOGRAPHY 

We have, in our theoretical development, assumed the earth to be a perfectly smooth 
sphere. This led to the lower boundary condition given by Equation (46) - namely 

w = 0  at z = 0 .  

Our analysis could be extended to take account of small, smooth variations in surface 
elevation. Let ~ (O, (b) be the elevation of the surface. If this can be considered a 
perturbation about a smooth surface, then (46) can be replaced by 

w = Uhor'V~ at z = 0, (177) 

(see Charney and Eliassen (1949); Eliassen and Palm (1961), for details). Let us 
rewrite (177) as follows: 

w = e(a(O, 4))u + b(O, O)v),  (178) 

where e ~ l  and a~0(1) ,  b~0(1) .  Let our excitation have a time and longitude 
variation of the form 

e i(~+sO~ (179) 

and let 

a = ~ a,(O) e ~'~ (180) 
- -  C~9 

n z a O  

b = ~ b,(O) e ~"~. (181) 
-or~ 
n~0 
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The quantity aa/s is the speed at which the excitation travels around the earth at the 
equator. 

Let us now take our final solution to be an expansion in e, i.e., 

= I+ 

The zeroth-order solution will merely be our original solution for which Wo =0  at 
Z = O. This solution will travel around the earth at the same speed as the excitation. 
To first order in e we have 

wi = Vo(O)e"' Z a.(O)e 
n =  - o o  

n ~ O  

+1/o(0) eir i b,(O) ei('+s)z at z = 0 .  (183) 
/ 1 =  - oo 

n ~ S 0  

Thus, to first order in r we generate a set of tidal oscillations which do not trave 
with the excitation. These will create longitudinal variations in the tides. However 
to first order in r we do not affect the zeroth order solution which does travel with 
the excitation. To second order in e, both the oscillations which follow and do not 
follow the excitation are affected. Thus to second order in e we will also influence 
the resonance properties of the atmosphere (viz. Section 3.5.A). This last feature has 
been investigated by Kertz (1951). 

So far we have considered only the kinematical effects of surface topography. 
However, there may also be longitudinal variations in insolation absorbing gases 
due to the distribution of land and sea. This will be particularly important for water 
vapor (and, according to Hinzpeter (private communication), for insolation-absorbing 
aerosols), and, hence, for the diurnal solar thermal tide (viz. Section 3.5.B). In a 
more obvious sense it is also true for the most important absorber of sunlight - land 
itself. Roughly speaking, the effect of longitudinal variations in the distribution of 
insolation absorption will be to replace (143) which can be written 

J = J (z ,  O) e/"(''+0) , 

where a = 27c/1 solar day, by 

J = J (z ,  O, O)e i"('t+4~) , (184) 

where the ~b-dependence of J reflects the longitude variation in absorbing gases. 
Let 

J = Jo (z, O) -q- J1 (2, O) cos (q~ n u P1) n u J2 (z, O) cos (2qb + P2) + ' " ,  (185) 

w h e r e p ,  P2,.-- are constants; (185) can be rewritten as 

,] = Jo (z, O) + �89 J1 (z, O) (e i(4)+e~) + e -i(4)+e')) 
+ �89 O)(e i(2~'+e2) + e -'(24)+e2)) + . . . .  (186) 
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Substituting (186) into (184) we get 

d = Jo ein(~t+40 Jr- �89 PiP1 r 1)40 

-{- �89 J1 e- iPl  ei(nat+(n-1)4)) + �89 J2 eiP2 e[ (n~t+(n+ z)q;) 

+ �89 e-tPz ei(nat+(n-2)r + """ (187) 

Let us now restrict ourselves to the solar diurnal thermal tide, for which n = 1 ; (187) 
becomes 

d = Jo e~(~t+r + �89 e~P' ei(at+24) 
q- 1 J  1 e -IPl eir + 12J 2 e ie2 ei(crt+34)) 

q- �89 e -ie2 e i(r + "" .  (188) 

From (188) we see that J will include not only a component following the sun, but 
also components which are stationary, which move faster than the sun, which move 
in a direction opposite to the sun, etc. 

The evaluation of the above described effects would ultimately require the evalua- 
tion of many additional Hough functions (corresponding to the generation of modes 
with different zonal wave numbers), and this may, in part, account for the fact that 
no such evaluation is to be found in the literature. (A preliminary analysis is found in 
Kertz, 1956a.) However, such evaluations would be quite straightforward. Hope- 
fully, with the aid of electronic computers, they will be forthcoming. 

3.6.B. DISSIPATION 

The theory of atmospheric tides, as we have presented it so far, has ignored all 
dissipative-type mechanisms. In the atmosphere, these are turbulence, molecular 
diffusion of heat and momentum, infrared cooling, and ion drag. Each of these 
mechanisms is associated with a time scale. For example if we were to include vis- 
cosity, Equation (8) would become 

~u 2o)vcosO 1 0 ( @  ) v - - -  - + f 2  + V 2 ,  ( 1 8 9 )  
St a 80 Oo 

2, where V,, = the  proper expression in spherical coordinates for a 'shallow' atmosphere. 
Let our tide be associated with a vertical wavelength L z and a horizontal scale LH. 
Then the order of magnitude of (V/Co) V 2 is given by the larger ofvu/Oo2z and vU/Oo L2. 
This is usually vU/~o Lz. The associated time scale is simply r = zvisc ,. 

Wilkes (1949) claims that a dissipative process will be important when Zdlss. 
<zaoo/2rc, where %d~ is the period of the tidal oscillation. This is certainly true in a 
local sense. That is to say, at any given point dissipation will be important if zai~ ' 
<zt~ae/27z. However, the tides and thermal tides we have dealt with are essentially 
waves which are excited in the mesosphere and below, and propagate upward. The 
time it takes these waves to traverse a region where dissipation occurs is also im- 
portant. Since propagating tides are rotationally influenced internal gravity waves 
of long period, some estimate of this time may be obtained from the elementary 
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theory of internal gravity waves (Hines, 1960). For long periods 

Ca = group velocity ~ ~gLZz/2~rLH, (190) 

where ag = Brunt-Vfiisfil/i frequency, L n = horizontal wavelength. 
From our earlier discussion of Hough Functions and equivalent depths, we know 

that for a given choice of a and s, decreasing positive equivalent depths lead to 

decreasing values of both Lz and Ln; it turns out that they also lead to decreasing C~. 
Let us call the time it takes a wave to traverse a region of depth D, the residence time. 

"C . . . .  ~, D / C  G . (191) 

Now for large enough D, z .... > ztiae/2Tc. Thus, it is possible that although 
Zeis~. > ~tide/2n, Zdi~s. < Z .... -- in which case dissipation will still be important. It should 
also be noted that for Zd~ .... ~r, and s all fixed, z .... will be inversely proportional to 
Lz; hence modes with shorter vertical wavelengths will be preferentially damped - 
quite apart from any dependence on L z which Zdi~ ' might have. 

Having crudely discussed the general conditions under which a dissipative process 
will be of importance, we now turn to specific processes.* 

3.6B.1. Infrared Cooling 

If  we assume that on the average there is a balance between infrared flux divergence 
and other heating and cooling processes, then any perturbation in temperature will 
lead to an increase or decrease in infrared cooling which will act so as to restore the 
original temperature. Thus, infrared cooling will tend to damp the temperature 
component of tidal oscillations - and, in consequence, the tidal oscillation as a whole. 

Now, the treatment of infrared radiative transfer is, itself, a matter of considerable 
complexity (Goody, 1964; Kondratyev, 1960). However, Rodgers and Walshaw 
(1966) have shown that, over most of the atmosphere, the infrared flux divergence is 
dominated by 'cooling to space'. That is, it depends primarily on the temperature at 
the level in question and the amount of infrared active gas between that level and 
space. This cooling can be fairly well approximated by Newtonian cooling (Lindzen 
and Goody, 1965; Leovy, 1964); in the present context this can be written: 

Infrared cooling rate due to perturbation in temperature 

a (z, O, (o) 6T, (192) 

where a = r a t e  coefficient for Newtonian cooling. Lindzen and McKenzie (1967) (see 
also Lindzen, 1968a) have shown that when a depends only on z, then the inclusion 
of Newtonian cooling in traditional tidal theory involves only a slight additional 
complication. Equation (13) becomes 

D T  g H ~ - I D r  7 - 1  
- + J - a ( z ) S T .  (193) 

Dt 4o R Dt R 

* The  approximate  adiabaticity of  tides near  the g round  was empirically demons t ra ted  by C h a p m a n  
(1932a). 
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Equation (16) becomes 

1 D p  a - ~ a Z 1r a w G = - 1 + 1 + (194) 
YP0N ~ i ~ laTH dz " 

Equation (26) remains the same, while Equation (27) becomes 

{ ( ~ Y ) a l l }  dE~s d2L~ s a a 1 

dx 2 l + i a ~  1+  Hdxx dx 

~ 1 (dH  ) a  l d H ~ ( a )  -1' 

+ ~h~ 's ~, dx + ~H + io-7 ~ / d x J  l + ~y  E~ ~ 

= 1 + ygh~, s J,, 

a dH 

Using (29) to define ~' 7, , one finds that Equations (35) and (38)-(44) remain the 
same; (37) becomes 

1 a -1 O~,SdH ygh~' e~/Z KH 
cST~ '~ = R 1 + dx it7 h,~ '~ 

1 d H ( d  H ~) 1 KJ,~'~ 1 
+ H dx  dx + Y~'~ + (196) h2, s - ~  )" 

The methods of Section 3.3.B can be applied to (195) as easily as to (27) (or (30)). 
The ease with which Newtonian cooling can be handled permits incorporating some 
of the most important features of infrared cooling. Also Newtonian cooling, as a 
dissipative process, is in many ways representative of other dissipative processes with 
comparable time scales. Its inclusion, therefore, allows some heuristic inferences to 
be made on the general role of dissipation. 

We return to the last matter explicitly in our discussion of the role of molecular 
diffusion. Turning to infrared cooling we show in Figure 3.24 a distribution of a(z) 
due to the CO2 15 p band used by Lindzen and Goody (1965). Lindzen and Goody 
also showed that the effective cooling rate coefficient was greatly enhanced by inter- 
action with ozone photochemistry. The enhanced cooling rate coefficient is also 
shown in Figure 3.24. No claim is made for the accuracy of our choice of a(z) other 
than that it represents the correct order of magnitude. 

The effect of Newtonian cooling on the solar diurnal thermal tide is discussed by 
Lindzen (1968a). The effect on all diurnal fields (including surface pressure) below 
10 km is negligible. Some idea of the effect on upper air fields may be got from Figure 
3.25 where we show the amplitude of the calculated diurnal temperature oscillation 
as a function of altitude in the absence of Newtonian cooling, and for the two distri- 
butions of a(z) in Figure 3.24. Radiation reduces amplitudes by as much as 20~; it 
also selectively damps the modes of shortest wavelength - as might be expected from 
our introductory remarks on dissipation. 
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Fig. 3.24. The altitude distribution of the cooling rate coefficient with and without photochemical 
acceleration. In the absence of photochemical acceleration, it is primarily due to infrared emission 

by CO2. After Lindzen (1968a). 

The inclusion of  the distributions of  a(z) shown in Figure 3.24 turns out to have a 
negligible influence on calculations of  the solar semidiurnal thermal tide. On the 
other hand, Newtonian cooling appears to have a profound effect on the lunar 
semidiurnal tide. This may be seen in Table 3.8, where we give the calculated ampli- 
tude of  the lunar semidiurnal surface pressure oscillation for various distributions of  
T o with and without Newtonian cooling. Newtonian cooling sharply reduces sen- 
sitivity to variations in T o. The difference in the effect o f  Newtonian cooling on the 
semidiurnal thermal tide and on the lunar semidiurnal tide is easily understood in 
terms of  the introduction to this section, and the discussion in Section 3.5.C. The 
lunar semidiurnal tide depends significantly on multiple reflections, while the solar 
semidiurnal thermal tide does not. Thus the effective depth D of  the region traversed 
by the lunar oscillation may be much greater than that traversed by the solar os- 
cillation, and from (191), "c .... (and hence the effects of  dissipation) will then be much 
greater for the lunar than for the solar oscillation. This general discussion is supported 
by the fact that the lunar semidiurnal tide in an isothermal atmosphere - where 
there are no internal reflections - is negligibly affected by infrared cooling. One 
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Effect of Newtonian cooling 

TABLE 3.8 

on the lunar semidiurnal surface pressure oscillation for different 
choices of To (z) 

Temperature model Newtonian cooling model 18pl Phase (deg) 
(see Figure 3.24) 

Equatorial standard A ~ 373/zb 320 
Equatorial standard B b 157/zb 19 
Isothermal (To = 260 ~ A 60/tb 67 
Isothermal ( To = 260 ~ B 62/zb 69 
ARDC A 4.5/2b 46 
ARDC B 39/~b 28 
ARDC (modified to have A 15/~b 287 
short cold tropopause) 
ARDC (modified to have B 44/~b 9 
short cold tropopause) 

a A: no radiative cooling. 
b B : photochemically accelerated radiative cooling. 

expects that the sensitivity of  the lunar semidiurnal tide to T o will be further reduced 

with the inclusion of  all dissipative mechanisms - not  just infrared cooling. 

3.6B.2. Molecular Viscosity and Conductivity 

The inclusion in tidal theory o f  molecular viscosity and conductivity (and turbulence 

insofar as it can be described in terms of  viscosities and conductivities) is far more 

difficult than the inclusion of  Newtonian cooling. The order o f  the differential equa- 

tions is raised and the altitude and latitude dependence of  the solutions ceases to be 

separable (Nunn,  1967). According to Nunn  (1967) the lack of  separability is due to 

the existence o f  coriolis terms in the equations o f  motion.  Thus far no thorough study 

has been made of  the role o f  viscosity and conductivity in tidal theory - mainly 

because of  these mathematical  difficulties. However,  those tidal oscillations that  

propagate  vertically are, in fact, internal gravity waves - influenced somewhat  by the 

earth's rotation. Thus, simpler calculations on the effect o f  viscosity and/or  con- 

ductivity on internal gravity waves in a plane, non-rotat ing atmosphere may, at least, 

suggest what  happens in the case of  tides.* That  molecular viscosity and conductivity 

are likely to be important  for tides - at least at sufficiently great heights - follows 

f rom the increase as 1/Q o o f  both  thermometric  conductivity and kinematic viscosity 

(viz. (189)). Thus there must  be some altitude above which raiss, due to molecular 
processes is shorter than other relevant time scales. 

The obvious first approach  to the role o f  viscosity and conductivity on internal 

gravity waves is to consider the case where the viscosity and conductivity are small 
perturbations on the adiabatic wave, and where the vertical wavelength of  the wave 
is less than the density scale height. One may then substitute the adiabatic solutions 

* Nunn (1967), in studying the effects of viscosity and conductivity on the semidiurnal and terdiurnal 
thermal tides, omitted the coriolis terms in the region where these molecular processes are important. 
His equivalent depths, however, were taken from the classical theory which includes coriolis effects. 
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into the heat and momentum diffusion terms. This approach, taken by Pitteway and 
Hines (1963), predicts the decay of waves in the direction of energy propagation - 
thus supporting the use of the radiation condition in the adiabatic theory. Similar 
results were obtained in a more complete investigation by Midgley and Liemohn 
(1966). Neither of the above mentioned studies took complete account of the effect of 
the fact that kinematic viscosity and thermometric conductivity increase as 1/~ o. 
Yanowitch (1967) studied this by considering internal gravity waves in a plane, 
non-rotating, infinite, exponentially stratified, incompressible, non-conducting fluid 
where kinematic viscosity is finite and proportional to 1/~o. He assumed that at the 
bottom of his fluid zviso, was much longer than the wave period; the excitation, 
moreover, was assumed to exist at the lower boundary. Because viscosity was small 
in the lower portion of the fluid the solutions were wavelike in z there - just as in the 
adiabatic case. However, the radiation condition did not apply. In addition to an 
upward propagating (downward phase speed) component of amplitude A, there was 
a reflected component of amplitude Ae (-2n2H/Lz),  where H is the fluid's scale 
height and L z is the vertical wavelength the wave would have in the absence of vis- 
cosity. The phase of the reflected wave is a complicated function of wave period, 
molecular viscosity, and horizontal wavelength. The reflection results from the fact 
that there must exist some level above which viscosity is important, and in the 
neighborhood of that level viscosity is a significant inhomogeneity in the fluid. 
Reflection is only important when L z ~ 2n2H. This might be the case for the main 
semidiurnal modes. For the short vertical wavelength propagating diurnal modes, 
the radiation condition appears to be essentially correct. In addition to reflecting 
waves, viscosity eventually prevented the continued growth of wave amplitudes as 
1/x/~ o. For waves with short vertical wavelengths viscosity even produced sharp 
attenuations of wave amplitudes above some level. The maximum wave amplitudes 
are found below the level where Zvisc ' ~ ~ . . . .  /2n, and the maximum amplitude is 
the amplitude the wave would have reached, in the absence of viscosity, some distance 
below the level at which the maximum occurs. Above the level where zvisc ' ~ �9 . . . .  /2n, 
the wave's phase rapidly becomes independent of height. 

Yanowitch's results, though interesting, have uncertain relevancy to atmospheric 
tides and thermal tides. Some uncertainty has been removed by Lindzen (1968b). He 
considered a fluid subject only to the approximation described in Section 3.2. The 
assumption of no dissipation, however, was relaxed in order to include Newtonian 
cooling - the cooling rate, a(z), being represented as follows: 

a (z)/ay = ~e x , (197) 

where e<< 1; (197) simulates both the decrease of Zai~. as 1/Qo, and the smallness 
of dissipation in the lower atmosphere. The results obtained using (197) were exactly 
the same as Yanowitch's as far as reflection is concerned. More surprisingly, the 
vertical distributions of wave velocity fields were also very similar. This strongly 
suggests that most of Yanowitch's results depended neither on his assumptions nor 
on the details of his dissipative mechanism, but on the fact that the dissipation rate 
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was inversely proportional to density. This further suggests that Lindzen's simple 
calculations might be used to estimate the effects on tides of dissipative processes, 
like molecular viscosity and heat conduction, which grow in importance as 1/Qo. 

Let x o be that height at which the dissipative terms are comparable to local time 
derivatives (in terms of Equation (197), eel~ 1). Then, for the gravest, propagating 
diurnal mode (n= l, viz. Section 3.5.B), 2~z2H/L~2, and Xo corresponds to z ~  110 kin. 
Lindzen's calculations suggest that above Xo, phase changes with height disappear. 
Maximum amplitudes for wind occur about 0.3 scale heights below 110 km although 
amplitudes decrease only 2~o above this altitude. The maximum amplitude is that 
which the adiabatic solution would have reached 1.6 scale heights below Xo (i.e., 
z~95 kin; viz. Figure 3.13). The above general structure appears to correspond to 
measured winds in the ionosphere (R. J. Reed, private communication). 

3.6B.3. Ion Drag and Thermal Tides in the Ionosphere 

At altitudes above 100 km the interactions of the ionized and neutral components of 
the atmosphere assume increasing importance. The complexity of these interactions 
has thus far prevented their inclusion in a complete tidal theory. However, isolated 
features of the interaction have been considered. One such feature is the dynamo 
effect. Briefly, tidal motions will blow charged particles across the earth's magnetic 
field lines, thus setting up electric fields. In the region 100-t50 kin, the atmospheric 
conductivity is high due to the differential mobility of ions and electrons (Chapman, 
1956), and these electric fields produce currents which in turn produce tidal perturba- 
tions in the magnetic field which can be measured at the ground (Chapman and 
Bartels, 1940; Chapman, 1961). There are a considerable number of theoretical 
studies of atmospheric dynamo theory (Chapman, 1919 a; Baker and Martyn, 1953; 
Kato, 1956; Maeda, 1955; and others). However, they all assume very simple models 
for tidal wind fields; none provide for the structured tidal fields described in this 
review. 

In the region of high conductivity, ions are readily advected by wind; hence the 
ions may be presumed to exert little drag on the neutral tidal winds. However, at 
greater altitudes, where the ionic gyro-frequencies are much greater than their 
collision frequencies with neutral molecules, the ions are firmly fastened to magnetic 
field lines (except insofar as they are moved by electric fields conducted up magnetic 
field lines (Martyn, 1955), and, therefore, exert a drag on neutral air motions across 
magnetic field lines. In simple cases, this drag takes the form of a Rayleigh friction; 
i.e., a term of the form - D u  should be added to the right hand side of Equation (8) 
for example. For the component of horizontal flow perpendicular to magnetic field 
lines near the magnetic equator, Lindzen (1967d) found 

D ~ 0.5 x 1 0 - 9 N i  s e c  - 1  , (198) 

where Ni= ion  number density. In the F-region N i can reach 106 cm -3, in which case 

D ~ 0.5 x 10 a sec- 1 ~ 6.86 27c/1 day. (199) 
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Such a value for D clearly establishes ion drag as an important influence on motions 
of tidal periods at F-region altitudes. Unfortunately, the inclusion of ion drag in tidal 
calculations of the sort described here has not been achieved - in some part because 
of the following complications: (a) the inclusion of ion drag (like the inclusion of 
viscosity) leads to non-separable equations; (b) the region where ion drag is likely 
to be important is also a region where molecular viscosity and conductivity are likely 
to be important; (c) Ni has a huge daily variation; (d) thermotidal oscillations above 
150 km appear to be excited not only by the upward propagation of thermotidal 
oscillations below the ionosphere, but perhaps to a greater degree by heat generated 
by the absorption of solar ultraviolet radiation by O2 near 120 km - the heat being 
conducted upwards by molecular collision (Harris and Priester, 1965); (e) electric 
fields, generated by tidal motions in the dynamo region, can induce tidal motions 
in the ions aloft. These ions will 'drag' neutral molecules along, thus inducing tidal 
motions while damping deviations from these motions. Such electrically driven 
motions can amount to as much as 40 m/sec (Martyn, 1955). 

The above complications explain why tidal calculations are difficult to perform 
for the thermosphere; they do not imply that thermotidal fields are unimportant in 
the thermosphere. Indeed satellite drag measurements show immense daily variations 
in thermospheric density (Jacchia, 1963; King-Hele and Walker 1961; and others). 
Taking into account ion drag and viscosity, it has been shown that, consistent with 
the above mentioned density variations, there should be daily variations in horizontal 
wind with amplitudes of about 80-200 m/sec (Geisler, 1966; Lindzen, 1967d; King and 
Kohl, 1965; and others). 

3.6C. N O N - L I N E A R  EFFECTS 

One of the assumptions introduced in Section 3.2 was that quadratic and higher order 
terms in tidal fields arising from nonlinear terms in the equations of motion could be 
ignored. The resulting equations were linear, and hence, the amplitudes calculated 
for tidal fields were proportional to the amplitude of the tidal or thermotidal excitation. 
A necessary condition, therefore, for the validity of linearization was that the excitation 
be sufficiently small. As pointed out, this was not enough. Tidal modes with sufficiently 
small positive equivalent depths are, in fact, vertically propagating internal gravity 
waves, and the fields associated with such modes (namely u, v, w, fiT, c~p/po, d~/Qo) 
grow - in the absence of dissipation - as 1/x/po. Thus, if we neglect dissipation, then 
for any excitation, however small, there will exist some height above which lineariza- 
tion breaks down. This problem was noticed by Pekeris (1951), and initial attempts 
were made at setting up a formalism for studying nonlinear effects (Pekeris and 
Alterman, 1959). However, no results were obtained. One problem is that if we attempt 
to study nonlinear effects by means of straightforward amplitude expansions then 
first order (linear) fields will grow with altitude as 1/~/Po, second order fields will grow as 
1/Po, etc. There will always be some height above which the expansion fails to converge. 

The solution to the above problem may lie in the inclusion of dissipation. As we 
have seen (Section 3.6.B.2) one effect of the increasing importance of molecular 
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viscosity (and, presumably conductivity) with height is to eliminate the (x/1/po) growth 
above some altitude. Thus amplitude expansions based on solutions to the viscous, 
conducting equations might, in fact, converge uniformly. Unfortunately, such a 
computational procedure seems to be beyond present capabilities. 

More encouragingly, the effect of dissipation may prevent fields from growing so 
large as to make nonlinear terms very important. The preliminary results in Section 
3.6.B.2 suggest this. Even if the quadratic and higher order terms are not of pre- 
ponderant importance they may have important effects. Not only will they cause 
distortions of the linearized solutions, but - in the presence of dissipation - they can 
produce steady transports of heat and momentum (Lindzen, 1967e). Detailed in- 
vestigations of these possibilities remain to be explored. 

Should nonlinearities be small, it still appears possible that tidal fields (especially 
for the short vertical wavelength propagating diurnal modes) can become unstable 
at high altitudes. Propagating tidal modes, and internal gravity waves in general, 
appear capable of wrinkling surfaces of constant potential temperature in such a 
manner as to produce static instability (Lindzen, 1968a; Hodges, 1968); they can 
also produce high shears. Tides and thermal tides might, therefore, be responsible 
for the generation of turbulence at high altitudes. Lindzen (1968a) suggests that this 
will be the case for the solar diurnal thermal tide near 90 km over the equator. 
Thermal tides, as a result, may cause the dynamic mixing of the upper atmosphere 
and, in consequence, help to determine the height of the turbopause. 

3 . 6 D .  NEGLECT OF MEAN WINDS AND HORIZONTAL TEMPERATURE GRADIENTS 

In the atmosphere, mean winds and horizontal temperature gradients accompany 
each other and are approximately related by the thermal wind equation 

g 1 1 

0z - 2co cos0 T00 a \ ~-O/P . . . .  t," ( 2 0 0 )  

(Eliassen and Kleinschmidt, 1957). Thus, in principle, one cannot deal separately 
with the effects of mean winds and of horizontal temperature gradients (or, relatedly, 
mean horizontal gradients of pressure and density). Most treatments of this matter 
are consistent in this respect; however, emphasis tends to be on one aspect or the 
other. Thus Haurwitz (1957) and Siebert (1967) emphasized the effects of meridional 
temperature gradients, while Chiu (1953), Sawada (1966) and Dikii (1967) emphasized 
the effects of wind. All the above mentioned studies suggest only small effects; 
however, these studies are also restricted to particular tidal modes and atmospheric 
models. 

Given our current capabilities, a full treatment of tides and thermal tides in atmo- 
spheres with arbitrary distributions of wind and temperature seems unlikely. How- 
ever, some heuristic comments may prove useful. In these comments we will, artificial- 
ly, consider wind and temperature effects separately. 

Some idea of whether latitude variations in T o may be important can be obtained 
by seeing if small changes in T o (z) make much difference in the calculations described 
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in Section 3.5. The results displayed in Figures 3.7, 3.19, and 3.21 suggest that such 
changes can indeed be significant; however, this by no means implies that latitude 
temperature gradients p e r  se will be important. Intuitively, it seems that for tidal 
modes which smoothly span all latitudes (like O~ '~ 2, O~_,1; viz. Figures 3.3 and 
3.10) latitude variations in To will not matter much since these modes presumably 
'see' latitude averages of T O . Higher order modes which oscillate with latitude are, 
one suspects, more sensitive to latitude variations in To. 

Insofar as tidal modes can be considered internal gravity waves, the importance 
of wind is given by the ratio of the wind speed to the tidal horizontal phase speed 
(Booker and Bretherton, 1967). For migrating tides and thermal tides, the zonal 
phase speeds are approximately given by c0a sin 0, where coa = (27r/1 day) x 6400 km = 
= 466 m/sec. Since mean winds are generally much smaller than this value, we expect 
that their effect on tides will be small (at least away from the poles where sin0=0).  

3.6E. ADDITIONAL REMARKS 

We have, in this section, discussed, from a theoretical point of view, the approxima- 
tions involved in calculations described in Sections 3.2-3.5. In addition, we must not 
lose sight of the uncertainties in the precise specification of thermal excitations. The 
question remains, as to how well the approximate calculations describe the ob- 
servations. Several aspects of this question have already been answered. The approxi- 
mate theory does quite well in predicting solar thermotidal oscillations in surface 
pressure. The theoretical description of lunar tidal oscillations, on the other hand, 
clearly requires some consideration of dissipative processes. 

In the next section, we give a detailed comparison of theoretical results with available 
data. It will be seen that the approximate theory is quite successful up to at least 95 
km for the major thermal tides. 

3.7. Comparison of Theory with Data 

It should be clear from this chapter that tidal theory is not yet able confidently to 
predict the details of seasonal variations, local effects, the behavior of tides in the 
thermosphere, etc. Significantly, however, current tidal theory has been able to 
predict the average (or typical) structure of the main migrating tides and thermal 
tides of the atmosphere below 100 km with remarkable quantitative accuracy. 
Beginning with surface pressure oscillations, we have already noted that present 
thermotidal theory predicts a solar semidiurnal oscillation almost identical to ob- 
servations with respect to both amplitude and distribution, and that the prediction 
is insensitive to details of the atmospheric structure. There is a discrepancy: inviscid 
tidal theory predicts a semidiurnal pressure maximum near 0900 local time, while 
the observed maximum occurs between 0930 and 1000 local time. There is some 
reason to believe that this phase error in the theory is due to the neglect of the in- 
fluence of the turbulent surface boundary layer. Turning to S 1 (p) we find that our 
current theory predicts oscillations whose amplitude at the equator is about two 
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thirds of the value obtained from data by Haurwitz (1965). The correspondence of 
theory with Haurwitz's empirical distribution for the migrating part of $1 (p) at 
other latitudes is shown in Figure 3.26. It is important to note that the agreement is 
best where the station density is greatest, because, where the station density is low, 
the empirical determination of the migrating solar diurnal oscillation is likely to be 
inaccurate. This is because the solar diurnal oscillation at a given station consists in 
comparable contributions from local and migrating parts, and the separation of the 
two requires data from a good many stations in each latitude belt. 

Although Butler and Small (1963) have accounted for most of the observed features 
of $3 (p) at the ground, little theoretical attention has been given to $4 (p) or to the 
non-migrating oscillations ... at least when compared with the work on the migrating 
parts of $1 (p) and $2 (p) at the ground. Similarly, little work has been done on the 
seasonal dependence of S(p). 

For L2(p) at the ground, we saw in Section 3.5.C that adiabatic tidal theory and 
annually averaged obversations agree only for certain assumed atmospheric tempera- 
ture structures (most notably isothermal atmospheres). In section 3.6.B we saw that 
the inclusion of dissipative processes in the theory sharply reduced the temperature 
dependence of the lunar semidiurnal response - bringing theoretical calculations for 
all temperature profiles closer to annually averaged observations. Even with dissipation 
there remains a significant dependence of L 2 (p) on To. This sensitivity undoubtedly 
plays a role in the seasonal variability of L 2 (p);  however, rigorous theoretical treat- 
ment of this matter must await our ability to deal with realistic latitude variations in 
To. 

Above the ground our data refers (with a few exceptions) to solar oscillations. A 
comparison of the data analysis for $2 (u) in Table 2S.9 with the theoretical calculations 
displayed in Figures 3.8 and 3.9 show rough agreement of amplitudes and phases up 
to about 30 rob. The theoretical prediction of a 180 ~ phase shift near 25 mb does not 
appear to be confirmed by the data. Rocket data does suggest a phase shift near 
50 km (viz. Figure 2S.9.2). However, the full resolution of this discrepancy remains 
to be found. Comparing Figures 3.13 and 3.14 with Table 2S.9 we see that there is 
rough agreement between theory and observation for S 1 (u) above 200 mb. Because 
non-migrating components contribute significantly to St (u) below 15 mb (viz. Section 
2S.5A), we should not expect detailed agreement. Wallace and Hartranft (1969) show 
that the relative importance of non-migrating components is much diminished above 
15 mb. Thus we might expect better agreement at altitudes above about 30 km. 
Figures 2S.13, 2S.14, 2S.16 and 2S.17 show the results of both data analyses and 
theoretical calculations for the solar diurnal oscillation in meridional wind; the 
agreement is remarkable. Moreover, Reed et al. (1969) have pointed out that the few 
systematic discrepancies shown in Figures 2S. 16 and 2S. 17 could be eliminated if the 
diurnal excitation as given by Equations (168) and (169) consisted in greater con- 
tributions from the O~'z ~ mode and smaller contributions from the O]" 1 mode. Such 
a change is entirely within the realm of possibility. Our expression for 9~'~ x (Equation 
(168)) is based on the work of Leovy (1964), which neglected the existence of an 
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ozone maximum near 60 ~ and S. The effect of such a maximum on the heating due 
to ozone insolation absorption is likely to be of the form suggested by Reed, Oard 
and Sieminski (1969). 

Going to higher altitudes, and comparing Figures 2S. 18 and 2S. 19 with Figures 3.8, 
3.9, 3.14 and 3.15 we find that theoretical calculations for diurnal and semidiurnal 
wind oscillations agree excellently in amplitude with radio meteor data for the region 
80-100 km. The data show marked variations of phase with season. The theory goes 
some way towards explaining the variation. The diurnal and semidiurnal oscillations 
above 80 km are simply gravity-type waves propagating upwards from the tropo- 
sphere and stratosphere. Seasonal variations in mean winds and temperatures cause 
changes in the index of refraction of the atmosphere through which these waves travel 
and their phase must also change on arriving in the region 80-100 kin. One may 
presume that if detailed vertical profiles of thermotidal winds were available they 
would look very similar (except for vertical displacements of phase) in each season. 
One should note that the averaging thickness of 20 km is very close to the wave- 
length of the main propagating diurnal mode. Hence, phase shifts will also produce 
spurious amplitude variations. 

Wind data inferred from dynamo calculations are also subject to problems of 
averaging. These problems, however, are unlikely to be sufficient to explain the 
disparity between the winds shown in Figure 2S.20 and theoretical calculations. That 
a disparity should exist is not surprising, because current theory still neglects viscosity, 
conductivity, and hydromagnetic processes - all potentially important in the dynamo 
region. 

Figure 2S.21 shows the inadequacy of the present theory for the thermosphere 
most clearly. Agreement between theory and observation for the diurnal oscillation 
is excellent up to 105 kin. However, the present theory fails to predict the observed 
decay of amplitude above 105 kin. 

There are certainly many important problems, both theoretical and observational, 
remaining in the area of atmospheric tides and thermal tides. However, the progress 
of the last twenty years suggests that we may face these problems with greater con- 
fidence than was previously possible. Such confidence must, of course, be muted by 
the surprises that have so long dominated the history of this field. 
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List of Symbols for Chapter 3 

In view of the large number of symbols introduced in Chapter 3 we have prepared the 
following list of symbols giving meanings and pages on which the symbol is first 
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introduced. The list is not complete; many symbols used on only a few pages are 
amitted. In addition the following superscript notation is used: 

(1) f +  means that f is also used with the subscript zero referring to the value o f f  
in the basic state (undisturbed by tidal or thermotidal oscillations). 

(2) f*  means that f appears as f "  s where a refers to the frequency of an oscillation 
and s to the zonal wave number. 

(3) f**  means thatfalso appears asf~ 's where n refers to the nth term in a Hough 
function expansion. 

(4) f*** means that f appears as f2;~n, the additional symbol rn refers to the ruth 
term in an associated Legendre polynomial expansion of the nth Hough function. 

Symbol Meaning Page 

a 

a 

c.c~ 

C** 

CG 

D 
D 

f 
F 

fo  
g 

G ~, ;I~ ~-~ 

g; ,  *~ 

he, he, h, 
H 
]1"* 

j ~ , ~  

j ; ,  **  

Kx~+K~ 

K2m+K2s 
K 
L** 
LH 
Lz 

earth's radius 112 
rate coefficient for Newtonian cooling 165 
heat capacities at constant pressure and constant volume 114 
coefficient in the expansion of Hough functions in terms of 
associated Legendre polynomials 119 
coefficient in the expansion of normalized Hough functions 
in terms of normalized associated Legendre polynomials 125 
vertical component of group velocity 165 
earth-moon or earth-sun distance 126 
ion drag coefficient 171 
a/2c0 114 
operator associated with Laplace's tidal equation 115 
vertical distribution of "co 131 
acceleration of gravity 112 

1 Dp 114 
YPo Dt 

latitude distribution of'c o 131 
metric factors for spherical polar coordinates 112 
scale height 11,3 
separation constant in separating equations for G's altitude 
and colatitude dependence; equivalent depth 115 
thermotidal heating per unit time per unit mass 113 
part of J due to absorption of radiation by gas, G 130 
diurnal luni-solar gravitational potential 128 
semidiurnal luni-solar gravitational potential 128 
eddy thermal conductivity 129 
vertical variation of G 115 
horizontal length scale for tidal field 164 
vertical wavelength scale for tidal field 164 
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M 
M~ 

N i  

O1 

P~ 

P~ 
1"1 
R 
r 

s 

$2 
T + , , , ~ .  

t 
bl+,~ ,*~ 

U * *  

V * *  

W + , * , * *  

X 
y."a, , * ~ 

2 

7 

~(A) 
6x 

0 
O * *  

O * *  

K 

2 

mass of moon or sun 126 
semidiurnal term in lunar gravitational potential 128 
large lunar elliptic semidiurnal term in gravitational potential 128 
ion number density 171 
diurnal term in lunar gravitational potential 128 
pressure 111 
associated Legendre polynomial (unnormalized - as defined 
by Whittaker and Watson, 1927) 119 
fully normalized associated Legendre polynomial 125 
diurnal term in solar gravitational potential 128 
gas constant for air 111 
distance from the earth's center 112 
zonal wave number 114 
semidiurnal term in solar gravitational potential 128 
temperature 111 
time 113 
southward velocity component 113 
expansion function for u's colatitude variation 117 
eastward velocity component 113 
expansion function for v's latitude variation 117 
vertical velocity component 
height in scale heights 113 
e-X/2L 116 

altitude 112 
dummy variables used in numerical integration of vertical 
structure equation 122 
Cp/Cv 113 
gravitational constant 126 
variation of (d) from its value in the basic state 113 
grid interval in the numerical integration of the vertical 
structure equation 122 
magnitude of horizontal gradient of surface elevation 162 
ratio of Newtonian cooling rate coefficient to 70- at the ground 
when Newtonian cooling rate is presumed to increase as e x. 170 
colatitude 113 
colatitude variation of G; Hough function 115 
fully normalized Hough function 125 
(7 - 1)/7 = 2/7 114 
vertical wavenumber when wavelength is expressed in scale 
heights 118 
cosO 118 
molecular viscosity 164 
surface elevation 162 
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~ + ,  -'~, ~ 

(7 

(70 
L 

(71 
s 

(71 
L 

(72 
s 

(72 

(To 

ZG 

Tdiss.  

Tvisc.  

Zt ide  

"L'res. 

Z 
CO 
~r'~ * ,  :~* 

density 
frequency of oscillation 
2~/sidereal day 
2~z/lunar month 
2~/year 

L 
(70 - - ( 7  1 

(7 - -  (7~  

Brunt-V~is~il/i frequency 
tcJ/i(TR: temperature change that would be produced by J in 
absence of other processes 
tCJG/i(TR; see J~ 
time scale for dissipation 
time scale for viscous dissipation 
tidal period 
residence time for a wave in a region of specified depth 
east longitude 
velocity divergence 
earth's rotation rate 
tidal gravitational potential 

111 
114 
127 
127 
127 
127 
127 
165 

131 
131 
164 
164 
164 
165 
113 
113 
113 
113 
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