- 0) Rationale: why are we interested in Atmospheric Science
- 1) Introduction and Basic Concepts
 - a. Composition: gases and particles
 - b. Gravitation: Newton's law, g, satellite orbits
 - c. Mass density
 - d. Barometers and pressure
 - e. Hydrostatic equation
 - f. Gas law and temperature
 - g. Scale heights

2) Thermodynamics and Kinetic Theory of gases

- a. Temperature, Heat and Energy
 - i. Thermodynamic Definition of T
 - ii. 1st and 2nd laws of thermodynamics (entropy)
 - iii. Intro to kinetic theory temperature, heat and internal energy (forms of energy)
 - iv. Measurements of temperature demonstrations
 - v. Vertical, meridional, diurnal, seasonal, + climatic variations in Temperature
- b. Pressure, and Work
 - i. Pressure as F/A and isotropic nature
 - 1. Newton's laws
 - 2. Work-energy theorem.
 - ii. Hydrostatic approximation
 - 1. Gravitation
 - 2. Geopotential Height
 - iii. Kinetic explanation of pressure and work
 - 1. Impulse momentum Theorem
 - iv. 1st law of thermodynamics revisited
 - 1. Isothermal and Adiabatic processes
 - 2. Heat capacity at const pressure (thermodynamic equilibrium and equipartition theorem)
 - 3. Potential temperature
 - 4. Adiabatic lapse rate
 - 5. Adiabatic pressure profiles
 - v. Buoyancy
 - vi. Barometers
 - vii. Observed variations in pressure quick deference to 541a,b
- c. Humidity (Titan as an example)
 - i. Quantifying humidity
 - 1. Methods of defining humidity: specific humidity, relative humidity, etc.
 - ii. Effects on ideal gas law
 - iii. Effects on heat capacity
 - iv. Latent heat
 - v. Clausius clapeyron equation (entropy and chemical potential)
 - vi. Moist adiabatic lapse rate
 - vii. Buoyancy revisited (planetary examples)
 - viii. Distributions of humidity
 - ix. The convective heat engine
 - x. Measuring humidity
 - xi. Distributions of surface heat & moisture fluxes
- 3) Atmospheric Chemistry
 - a. Chemical reactions in the atmosphere
 - b. Equilibrium and rate equations
 - c. Kinetic theory and the frequency of 2-body and 3-body collisions
 - i. Mean free path
 - ii. Collisional cross-section

- d. Stratospheric photochemistry: Ozone + Chapman mechanism
 - i. Basics of photochemistry actinic fluxes + cross-sections analogy with kinetic theory
 - ii. Importance of nitrogen
 - iii. Importance of CFCS
- e. Tropospheric chemistry: NOx, OH and VOCs
- f. Water and why homogeneous nucleation of droplets won't happen (as segue)
- 4) Diffusion + Condensation (Under cloud physics and chemistry umbrellas)
 - a. Using kinetic theory for diffusion of species
 - b. Continuous diffusion equation and applications
 - i. Connection to heat transfer equation
 - c. Diffusion to a sphere
 - d. Heat diffusion vs. vapor diffusion
 - e. Droplet growth equation sans Köhler theory
- 5) Basic fluid mechanics
 - a. Navier-Stokes Equations (briefly)
 - b. Acoustics (briefly)
 - c. Stress tensor
 - d. Kinetic formulation for dynamic (and kinematic) viscosities as diffusion of momentum
 - e. Kinematics of fluid motion
 - f. Dimensional analysis
 - g. Reynolds's # + Stokes flow
 - h. High-Reynolds's # flow
 - i. Bernoulli's equation
 - ii. Basics of turbulence Kolmolgorov lenghtscale, power-laws
 - iii. Turbulent diffusion coefficients

6) The atmospheric aerosol + Particle mechanics

- a. Survey of aerosols in atmosphere
- b. Formality of size distributions moments, etc.
- c. 2-phase flow mechanics
 - i. Drag forces + particle motion
 - ii. Diffusion Coagulation
 - iii. Graviational and Shear-induced coagulation

7) Cloud microphysics

- a. Köhler theory + CCN
- b. Growth of a population of droplets
- c. Cloud dynamics
- d. Ice
- e. Precipitation

8) Radiation

- a. The electromagnetic spectrum
- b. Measures of radiation and solid angle
- c. Blackbody laws
- d. Transitions and lines / Broadening / Atmospheric Spectra
- e. 2-stream IR radiative transfer + greenhouse effect
- f. The sun

h.

- g. Single-Scattering
 - i. Formal Rayleigh scattering
 - ii. Mie Scattering/absorption
 - iii. Geometric approximatioin
 - Plane parallel Applications
 - i. Aerosols / Optical depth
 - ii. Clouds
 - iii. Variation of sky radiance for thin atmosphere
 - iv. 2-stream multiple scattering solutions conservative
 - v. 2-stream multiple scattering solutions non-conservative + semi-infinite atmosphere approx.

9) Radiation budget + climate a. Simple radiation budget b. Equilibrium models

- c. Convection
- d. Advection
- e. Radiative Forcing + Feedbackf. Geological records + Milankovich cycles
- g. Role of oceans
- h. Role of surface ice
- i. The true Gordian knot feedbacks with biosphere