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Cloud and precipitation Droplet fall speed 
 
 
The terminal velocity of an object falling through a fluid is usually determined by a force balance 
between gravity and some drag force trying to slow the object down.  The drag force depends on 
the velocity of the particle and therefore can be solved for when the forces are equal and 
opposite.  The gravitational force is a so-called body force referring to the fact that the force acts 
on the entire body of the object.  The drag force is a surface force where the force acts on the 
surface area of the object.  There are two classes of drag force balance against the downward 
force of gravity: 

1. Diffusive or viscous  
• The surface drag force acts (more or less) along the sides of the falling object and the 

force is due to the fluid fighting against the velocity shear along the sides of the 
object 

• There are two forms of viscous force depending on the source of the viscosity: 
a. Stokes drag: molecular viscosity dominates the viscosity 
b. Eddy drag: where the drag associated with eddies dominates the viscosity  

2. Dynamic pressure  
• The drag force is the result of the molecules in front of the object colliding with the 

object 
 
Terminal velocity and Shear viscosity 

The viscous drag can be explained as follows.  An object of radius, r, falls through some 
fluid.   The viscous force acts on the sides of the sphere through shear stress which has the units 
of force per unit area like pressure.  As a result, some of the momentum of the object diffuses 
into the surrounding fluid accelerating the fluid and slowing the descent of the object.  The flux 
of momentum due to shear is defined as the shear stress, τ. 
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Its units are m2 s-1 kg m-3 m s-1 m-1 = kg m s-1 m-2 which is force per unit area or pascals, the 
same units as pressure. 

We integrate this stress over the portion of the area of the sphere that experiences drag 
due to shear and set it equal and opposite to the gravitational force on the object to determine the 
viscous terminal velocity.   
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where a is a scale factor representing the fraction of the area feeling this viscous shear force.  
The gravitational force on the falling object is 
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where the last equations are true only for spheres.  Again we have assumed the fluid is in 
hydrostatic equilibrium such that only the fraction of the density that is larger than that of the 
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fluid cases the object to accelerate downward.  We set the drag and gravitational forces to be 
equal and get 
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We then solve for the terminal velocity for viscous conditions 
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where a can now be thought of as including the shape dependence to deal with the geometric 
dependence of the shape of the falling object. a is generally less than one indicating the fraction 
of the surface area that the viscous stress works on.  (6) is known as Stokes drag. 
 

Eddy viscosity 
 For a fluid with well defined viscosity, we can apply (6) directly to calculate the terminal 
velocity.  For air, this is a bit tricky because the molecular viscosity of air is very small and will 
likely not be the limiting drag force for a macroscopic water droplet.  The falling droplet will 
create eddies around the droplet.  These eddies will have an eddy viscosity associated with them 
that will transfer momentum from the falling droplet to the surrounding air.  We can estimate this 
effect crudely as follows.  We know diffusivity, which is analogous to kinematic viscosity, is 
equal to a length times a velocity.  A simple approximate viscosity is therefore 

 

! 

" eddy ~ 2rw  (7) 

where the factor of 2 is simply to use the diameter of the droplet because it is likely a more 
relevant scale than the radius of the droplet.  Plugging this into (6) yields 
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where the factor of b accounts for the approximations in (7) and generalizing the geometry of an 
object beyond a sphere. 
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Based on measured fall speed of raindrops, b is ~0.1 which represents some combination of 
either over estimating the actual eddy viscosity and a smaller effective surface area affected by 
the eddy viscosity.  So the terminal velocity’s dependence on r in a low viscosity fluid in (10) is 
quite different from that in a high viscosity fluid (6). 

We can plug in values in (6) and (10) for air and liquid water droplets to better 
understand the terminal velocity.  Using vair ~ 2e-5 m2/s, ρair ~ 1 kg/m3, ρobj ~ 1e3 kg/m3, and r 
=1 mm, the two terminal velocities are 163 m/s and 1.3 m/s using the molecular viscosity and 
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eddy viscosity of air respectively.  Clearly the eddies exert far more drag than the molecular 
viscosity of air at the scale of raindrops. 
 
 
Stagnation pressure 
 Another drag effect is so-called stagnation pressure which is associated with the fact that 
molecules of the fluid directly in the path of the object essentially must get accelerated to the fall 
velocity of the object via a collision with the object.  The collisions with the fluid molecules 
yield an upward force on the falling object that is essentially a pressure.  In fact this force is 
called a dynamic (as opposed to a hydrostatic) pressure.  This pressure is approximately  
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So the upward force of the object due to the dynamic pressure is the stagnation pressure times 
the crossectional area of the object. 
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where c is another scale factor like a and b to account for the actual aeefective area on which the 
dynamic pressure works.  Setting (4) equal to (12) yields  

 

! 

c
"

2
r
2# fluidw

2 = $g
4

3
"r3 #obj $ # fluid( )  (12) 

 

! 

w
2 = g

2

3c
r
"obj # " fluid( )
" fluid

  

 

! 

w = "
2

3c
gr

#obj " # fluid( )
# fluid

$ 

% 
& 
& 

' 

( 
) 
) 

1/ 2

ˆ z  (13) 

Based on measurements, c ~ 0.1.  Note that (13) looks very similar to (10) but was derived via a 
conceptually different physical forces associated with the object falling through the air. 
 The upward force experienced by the droplet is actually the sum of these forces.   
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The plot shows the approximate fall speeds over a wide range of droplet sizes for typical 

sea level conditions.  Note that the molecular viscosity depends on the density of the air. At 
higher altitudes the molecular diffusivity increase because the mean free path between molecular 
collisions increases at lower densities.   

At smaller, cloud droplet sizes, the dominant drag force is due to molecular viscosity.  At 
larger, raindrop scales, the drag force is due to combined eddy viscosity and stagnation pressure.  
The transition between the two types of behavior occurs near a droplet radius of 200 microns.  

For typical cloud droplet sizes of ~10 microns or less the terminal velocity is quite small, 
1 cm/s or less. Reaching a 1 cm/s updraft speed requires very little acceleration.  The fractional 
temperature difference relative to surrounding air required to accelerate an air parcel to 1 cm/s 
after only 1 m of acceleration is only Δw2/(gΔz) = 10-4 /10 = 10-5 which is equal to a temperature 
difference of ~ 2.5 mK.  It’s no wonder clouds are turbulent given the temperature changes due 
to latent heat transfer via condensation and evaporation. 
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So cloud droplets don’t fall much and therefore largely stay suspended in the air.  Raindrops 
which are ~1 mm or larger with terminal velocities of several m/sec do fall out of clouds except 
in sufficiently strong updrafts.  An updraft 1K warmer than the environment needs 250 m of 
acceleration to reach velocities of several m/sec that are sufficient to hold a 1 mm droplet aloft. 
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Nonspherical droplets and polarized weather radars 
Nonspherical “drops” like ice crystals are of course more complicated and won’t be 

treated in any detail here.  Ice crystals like snow flakes can fall much more slowly that predicts 
above because they lie flat such that the stagnation pressure is much higher for a given mass 
particle because they have such large surface area on that side. 

It is also worth noting that the larger raindrops flatten as they fall so that they are no 
longer spheres.  In fact droplets larger than about 6 mm radius tend to break up as they fall 
limiting the size of liquid hydrometeors.  Polarized weather radars take advantage of the 
flattening effect to measure rain rate from the backscatter as the radar signals bounce off the 
hydrometeors and return to the radar.  By using both horizontally and vertically polarized 
signals, the horizontal signal “sees” a bigger droplet than the vertically polarized signal and so 
the backscattered horizontally polarized signal is stronger than the backscattered vertically signal 
and this difference in backscatter strength is used to get a better estimate of the rainfall rate.   

The reason is the rainfall rate is the flux of the rain drops 

 Fdrops = ρdrops wdrops = ndrops mdrop wdrop. 

The mass of a spherical droplet is 4/3 π r3 ρL.  The fall speed of a raindrop as we have just seen 
is proportional to r1/2.  So the rain rate is proportional to r3 r1/2 = r7/2.  The problem is the radar 
backscatter from a single polarization is proportional to r6 which is quite different from r7/2 and 
means that the backscatter from a few very large droplets can completely dominate the radar 
backscatter and give an unrepresentative estimate of rain rate.  The differential backscatter 
between the horizontal and vertical polarizations scales more like r4 which is much closer to r7/2 
and therefore allows much better rainfall rates to be estimated from the (“S-pol”) radars. 


