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Kinetic pressure of a gas 

Here we relate the pressure of a gas to the collisions of the molecules on the walls of the 

container holding the gas. 

Consider a container that is a rectangular parallelpiped.  The dimension in the x direction is 

L. The area of the yz side is A.  The volume is therefore LA.  We focus on any molecule in the 

gas.  Its x component of its velocity is vx.  Consider a time interval, t.  What is the probability 

that a gas molecule will hit the right wall and bounce back?  We choose t to be small enough 

that the molecule is very unlikely to hit any other molecule before it hits the wall.  So l = vx t 

must be << the mean free path, mfp, of the molecules, that is, the average distance traveled by 

molecules between collisions.  

 So if the molecule is farther from the wall than l, then the molecule will not hit the wall 

within the time interval, t.  Of the molecules that have an x component of velocity equal to vx, 

half of them are moving toward the wall and half are moving away from the wall. So the 

probability of molecules hitting the wall is  

 f =
1

2

l

L
=
vx t

2L
  

f is the probability that a randomly chosen molecule with a velocity, vx, hits the wall and 

rebounds within a time interval, t. 

 

 

 

 

 

Momentum exchange 

 The figure above shows the momentum vectors of the molecule, before (p1) and after (p2) 

the collision with the wall.  The change in the momentum of the molecule as a result of the 

collision with the wall is  

 p2 - p1 = -2 px i  = -2 m vx i  

By Newton’s 3
rd

 law, the momentum impulse absorbed by the wall from the collision of the 

single molecule is equal and opposite to the change in momentum experienced by the molecule 

and is therefore  

 Ix = p1 – p2 = +2 px i  = +2 m vx i  

The expected value of the impulse, I1, is the probability of a collision by a molecule with the wall 

times the impulse associated with that collision. 

 I1 = f Ix =
vx t

2L
2mvx =

t

L
mvx

2   

I1 is the average impulse delivered by a molecule collision in the time interval, t.  Averaging 

over all molecules yields an average impulse per molecule of 

 I1 =
t

L
mvx

2   

The overbar designates an average over all molecules. 

p1 

p2 -p1 

p2- p1 
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 Multiplication by NV, the total number of molecules in the container, gives the total 

impulse, I, delivered to the right wall in time interval, t.  

 I ˆ x = NV I1
ˆ x =

NV

L
mvx

2 t ˆ x   

Since an impulse can be expressed as the average force over a time interval, t, 

 I = F t   

the average force on the wall of the container is 

 F =
NV

L
mvx

2   

The pressure on the wall is P = F /A (force per unit area), 

 P =
NV

LA
mvx

2
=
NV

V
mvx

2
= N mvx

2   

where V is the volume of the container. 

The next step is to recognize that the mean-square velocity of the molecules, v 2 , can be 

written as 

 v 2 = vx
2

+ vy
2

+ vz
2  

Assuming no bulk motion of the gas, all directions are equally likely.  Therefore, vx
2

= vy
2

= vz
2  

and v 2 = 3 vx
2  so 

 vx
2

=
v 2

3
 

So 

 P =
NV

3V
mv 2   

 PV =
1

3
NVmv

2   

but  

 PV = nVRT   

 PV = nV kBNAT   

 
1

3
NVmv

2
= NV kBT   

 
1

3
mv 2 = kBT   

 
1

2
mv 2 = K =

3

2
kBT   
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So temperature is proportional to translational energy (and only the translational energy).  We 

have successfully and quantitatively linked the macroscopic (temperature) and submicroscopic 

(kinetic energy) worlds. 

 As we will see, this is the first hint that energy is distributed such that each energy 

“degree of freedom” gets or stores  kBT.  This is a very important concept in understanding 

specific heat or heat capacity. 

 

 

IMPLICATIONS 

Let’s consider at least a couple of implications of this relation.  One basic point is the 

mean square of the velocity is proportional to T, the temperature, and inversely proportional to 

m, the mass of the molecules in the gas: 

 v 2 ~
T

m
 

This says that at the same temperature, heavier or more massive molecules move more slowly 

than lighter molecules.  Let’s think of some examples of this. 

 

Diffusion 

 Diffusion is a process that we will discuss in more detail later in the class.  Diffusion of a 

certain gas molecule in a gas depends on how fast the molecules of the diffusing gas move.  

Consider Helium which has a molar mass of 4 g and Sulfur Dioxide , SO2, which has a molar 

mass of 32 + 16 + 16 = 64 g.  So, for a given temperature, the velocity should scale as m
-1/2

.   So 

SO2 molecules should be moving about (4/64)
1/2

 = 4 times slower than the helium atoms and 

should diffuse through air about 4 times slower.  Indeed Helium gas is observed to diffuse 

through air 4 times faster than Sulfur dioxide does. 

 

Speed of sound 

 Sound involves collisions between molecules that carry the pressure (sound) wave 

forward through the gas.  Therefore, the speed of sound in a gas must be close to the thermal 

kinetic velocity of the molecules in the gas.  The speed of sound is  

 vsound =
kT

m
=

v 2

3
=

3
vrms  

 is the ratio of the specific heat of the gas at constant pressure to the specific heat at constant 

volume.  (We will go through specific heats momentarily.)  The point at the moment is the speed 

of sound scales as the square root of temperature (hotter = faster sound speed) and inversely with 

the square root of molecular mass, both of which are indeed observed. 

 

Escape velocity 

 The escape velocity is the velocity where the kinetic energy of an object just equals its 

gravitational potential energy (we’ll go through this in more detail when we talk about gravity).  

This leads to the following relation 

 
1

2
mvesc

2
= mgR  
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where R is the radius of the Earth.  Solving for vesc yields  

 vesc = 2gR  

Note that this has no mass dependence.   

Now we can ask the question, at what temperature will a given molecule have a velocity 

equal to the escape velocity.  We can set the square root of the mean square velocity equal to the 

escape velocity and solve for temperature: 

 v 2 =
3kBT

m
= 2gR  

So 

 T =
2gRm

3kB
 

Note that the temperature needed for molecular thermal velocities to be comparable to the escape 

velocity scales linearly with molecular mass.  So heavier molecules must be hotter to escape than 

light molecules.  Equivalently, at a given temperature, far more light molecules will escape from 

a planet’s gravity field than heavier ones.  This is why planets preferentially loose hydrogen. 

 

 


