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ABSTRACT

Statistical techniques have been used to study the ability of SLP, SST and a form of persistence to forecast
cold/warm season air temperatures over the United States and to determine the space-time evolution of these
fields that give rise to forecast skill.

It was found that virtually all forecast skill was due to three climatological features: a decadal scale change
in Northern Hemisphere temperature, ENSO-related phenomena, and the occurrence of two distinct short-
lived, but large-scale, coherent structures in the atmospheric field of the Northern Hemisphere. The physical
mechanisms responsible for the first two signals are currently unknown. One of the large-scale, coherent features
seems largely independent of the ENSO phenomena, while the second is at least partially related to ENSO and
may be part of a recently discovered global mode of SLP variation. Both features resemble various combinations
of known teleconnection patterns. These large-scale coherent structures are essentially stationary patterns of
SLP variation that grow in place over two to three months. The structures decay more rapidly, typically in 1
month, leading to a highly asymmetric temporal life cycle.

The average forecast skills found in this study are generally low, except in January and February, and are
always much lower than expected from studies of potential predictability. Increase in the average skills will
require new information uncorrelated with any of the data used in this study and/or prediction schemes that
are highly nonlinear. However, the concept of an average skill may be misleading. A forecast quality index is
developed and it is shown that one can say in advance that some years will be highly predictable and others
not. Use of the classical definition of “winter” in forecast work may not be advisable since each of the months
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that make up winter are largely uncorrelated and predicted by different atmospheric features.

1. Introduction

This paper uses advanced statistical techniques to
address two questions concerning short-term climate
prediction. Given information on the past space-time
history of climate fluctuations, how much of the future
variation (predictand data) can be skillfully forecast?
More interesting and important is the question, What
is the space-time evolution of the climate system that
leads to high forecast skill? The answers to these ques-
tions, which are the goals of this paper, may provide
clues to the physical processes that are responsible for
short-term predictability.

The most interesting question addressed by this pa-
per, namely, What key features of the space-time evo-
lution of the climate system lead to a successful forecast?
has not been well studied. Statistical forecast studies
have offered qualitative “scenarios” based on the sta-
tistical models to explain the results (e.g., Barnett,
1981a, 1977, 1981b). Such studies have provided only
a partial description of how the climate system changed
to give the observed forecast. Other statistical studies
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often just ignore the question of why skill was obtained.
General circulation model (GCM) studies have, to date,
been only modestly helpful in delineating the physical
processes responsible for predictive skill. They have
simulated observed climate features in what might
loosely be called a “specification” mode. For example,
given a particular distribution of SST, compute the
associated distribution of climate anomalies in the at-
mosphere (e.g., Rowntree, 1972; Blackmon et al., 1983;
Shukla and Wallace, 1983; and many others). The time
evolution of these anomalies and their relation to sub-
sequent forecast skill is only now beginning to be stud-
ied (e.g., Chervin, 1986; Lau, 1985). Finally, qualitative
forecast techniques, €.g., physical-synoptic methods,
offer descriptive scenarios to explain forecast success
(cf. Namias, 1975) but lack the quantitative rigor
needed to be definitive.

The second question, regarding levels of possible
predictive skill, has traditionally been approached in
two ways. One tack has been to estimate the amount
of climate variability (variance) associated with non-
random fluctuations of some particular variable, e.g.,
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surface air temperature. This non-noise variance is of-
ten called “potential predictability” and is obtained by
assuming some type of model to describe the observed
time series (e.g., Madden, 1976; Madden and Shea,
1978; Trenberth, 1984a, 1984b). This method generally
leads to larger estimates of possible predictive skill than
are actually observed in climate forecast experiments
(see below). This may be due, at least partially, to the
substantial assumptions attending this approach. For
example, the “non-noise” variance is assumed to be
completely predictable. Also, there may have been ne-
glect, in some studies, of the effect of artificial skill
associated with model fitting. Finally, the forecast as-
pect of the problem is treated only implicitly.

A second approach to estimating expected forecast
skill levels is to select a group of predictors a priori and
see how well they can be used to predict future climate
change. The actual selection of predictors is crucial to
this approach. Barnett (1981a) used hypothesis testing
and a physically reasoned approach to select predictor
variables for estimating the predictive skill of surface
air temperature over the United States and Europe us-
ing a number of regional indices of sea surface tem-
peratures (SST). None of these experiments used all of
the available predictor information and so may have
underestimated forecast skill. Harnack (1979, 1982),
Harnack and Lansberg (1978) and Harnack and Lan-
zante (1984) used full fields of predictors, e.g., SST, to
estimate the predictive skill. However, they generally
offered the prediction model the choice of a large set
of predictor information from which to choose and
form a hindcast model. This “predictive” approach
carries some penalty by overestimating hindcast skill
at the expense of real forecast skill, the levels of over-
estimation depending critically on statistical method-
ology used. There is an additional problem associated
with the above “prediction” approaches in that they
are rarely tested in an extensive sét of truly independent
forecast experiments (for an exception, see Dixon and
Harnack, 1986). Nevertheless, the skill levels found by
this approach are generally considerably less than found
by the time series modeling approach, as noted above.

Subsequent sections of this paper discuss first the
data and then a statistical method for obtaining max-
imum predictive skill from a set of predictor data. Ad-
vanced methods of significance testing and model in-
terpretation are also included. The mathematical de-
tails of these methods are given in the Appendix. The
general levels and distributions of skill in forecasting
surface air temperature over the United States on a
monthly and seasonal basis are discussed next. Final
sections provide insightful views of the changes in the
Northern Hemisphere oceans and global atmosphere
that lead to the estimated forecast skill.

2. Data

The data field to be predicted is-the surface air tem-
perature over the United States. Several versions of
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FIG. 1. Locations of stations/districts providing surface
air temperature predictand data.

this field have been used in the numerical experiments
described below. The simplest approach was to rep-
resent the field by 33 widely separated stations (Fig. 1)
of monthly data for the period 1931-80. These data
come from the Monthly Climatic Data for the World
and were obtained from R. Jenne at NCAR. Another
possible representation of the temperature field is to
form district averages for the areas immediately sur-
rounding the stations shown in Fig. 1. These data are
described by Diaz and Quayle (1978) and have the ad-
vantage of minimizing effects of urban growth, station
movement, etc. (cf. Douglas et al., 1982; Cayan and
Douglas, 1984). Forecasts were done with both datasets
and yielded essentially identical results. Station data
for the period 1900-29 were also used in an indepen-
dent test of model validity.

Four predictor data fields were used. The first was
the sea level pressure (SLP) field for the region 140°E
to the Greenwich meridian and 20°-70°N. The data
were on a 5° latitude by 10° longitude diamond grid.
There were a total of 280 grid points of data in this
region. The gridded data were obtained from NCAR
and had been corrected insofar as possible for the
problems noted by Trénberth and Paolino (1980).
Based on studies by the latter authors, the monthly
SLP data for the period 1931-80 were used in the sub-
sequent analysis. However, data for the period 1900-
29 were used for an independent test of model validity.
A more planetary view of the results obtained from
the limited region SLP experiments was obtained using
the near-global SLP field described by Barnett (1985).
These data cover the region from 42.5°S to 72.5°N
and the time span 1950-85 at monthly intervals on a
5° X 10° grid. Regionally averaged SST data (Fig. 2)
for the North Pacific and the North Atlantic were also
used as a predictor set. The data were obtained by pro-
cessing individual ship observations in the Marine
Deck. Monthly values for the period 1931-80 were
available for all 21 regions (see Barnett 1981, 1984, for
additional details). Finally, the air temperature data
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FIG. 2. SST from the large averaging areas shown above were used
as predictor information. SLP predictor data came from the region
20°-70°N, 140°E to the Greenwich Meridian.

were used to predict themselves, i.e., the predictand
data were represented as an autoregressive process.

3. Methods

The general approaches to model building, signifi-
cance testing and interpretation are summarized in this
section., Since most of the techniques are not well
known in oceanography/meteorology, the present dis-
cussion will be entirely qualitative, attempting to give
the reader a feel for the methods in the context of more
familiar techniques. A mathematical description of the
methodology is given in the Appendix to assist those
interested in rigor and/or a more precise description
of the approaches.

a. Model building

Canonical correlation analysis (CCA) is at the top
of the hierarchy of regression modeling approaches.
The first description of the method appeared in Ho-
telling (1936), and more recent descriptions appeared
in Anderson (1984), among others. The method has
been used in meteorology only sparingly (e.g., Glahn,
1963; Davis, 1977; Barnett, 1981a; Nicholls, 1987). The
approach may be understood as follows. The simplest
approach to statistical model building is to regress one
variable upon another. Multiple regression, the next
higher step, attempts to relate a vector of predictor data
to a single predictand variable. Stepwise multiple
regression attempts to select from a large set the most
predictively important variables to explain a single
predictand. Canonical analysis is the generalization of
all these approaches. It finds the optimum linear com-
bination of the predictor data vector that will explain
the most variance in the predictand data vector. Both
predictor and predictands are now full multidimen-
sional vectors of information.

CCA may also be understood by analogy to standard
empirical orthogonal function (EOF) analysis. The
EOF approach defines a new orthogonal coordinate
system that optimally describes variance in a single
dataset. This coordinate system is based on the eigen-
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value/eigenvectors of a covariance matrix computed
from the single dataset. CCA defines coordinate systems
that optimally describe the cross covariance between
two different datasets [ref. Egs. (A4)-(A8)]. Again, this
is expressed as an eigenvalue problem. Now, however,
eigenstructure is obtained from the product of the cross
covariance matrix between two datasets and its trans-
pose [ref. (A7)]. Since this product matrix describes the
hindcast skill (regression coefficients squared), its ei-
genstructure maximizes this skill. Again, by analogy,
the eigenvalues in an EOF analysis represent the rel-
ative variance associated with each dimension in the
new coordinate system. In CCA, the resulting eigen-
values, denoted by uy, are called canonical correlation
coefficients and represent the levels of correlation be-
tween patterns of predictor variables and patterns of
predictand variables (A11). The sum over all k of the
wi is the hindcast skill of the model. In standard EOF
analysis, the same sum is just the total variance of the
dataset.

The strengths of CCA are its ability to operate on
full fields of information and to objectively define the
most highly related patterns of predictors (Y') and pre-
dictands (7). By including both space and time lag
information in the predictor field [e.g., (A1)], it is thus
possible to define both the space and time evolution
of the predictor data that best predicts an associated
pattern of T-variability. These abilities of CCA allow
us to fulfill one of the goals of this paper.

There are several potential drawbacks to CCA. In
highly intercorrelated data fields the estimation of the
inverse matrices needed in CCA may be impossible
since the matrices may be degenerate. However, one
can overcome this problem by first orthogonalizing the
Y and T data [Eq. (A2)] and then using the orthogonal
variates as input to the CCA analysis. This step also
allows one to prefilter the data to eliminate noise and
invoke the principal of parsimony so vital to statistical
modeling.

The limitation of the number of predictors is vital
to CCA. Since the method is largely a posteriori, it will
always find the best possible relation between Y and
T. Given enough predictors, CCA, like any other
regression scheme, will build a model capable of ac-
counting for large amounts of variance in 7, but this
apparent skill would be largely artificial. Unfortunately,
limiting the number of predictors/predictands in the
analysis can exclude information that is potentially
useful. An example of this problem will appear later
in the text where our objective prefiltering eliminated
an apparently predictable signal. All of this means that
testing the significance of CCA models is not particu-
larly amenable to standard methodology, e.g., a test
against the “null hypothesis.”

b. Significance testing

The procedures of section 3a place a heavy burden
on a significance test since the analysis has “stacked
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the deck” to give the best possible relation between Y
and T, i.e., there is nothing a priori about the analysis
(Lawley, 1959). The procedure we have chosen to test
the skill of the models is often called “cross validation™
(Stone, 1974, 1977; Efron, 1982; Tukey, 1958). This
idea is an old one and goes as follows: Withdraw from
Y the predictor data associated with a discrete time ¢,,
1 < v <n+ 1, and also withdraw the contemporary
predictand datum from T, and denote them by Y(x,
t,) and T(x’, t,). The remaining (Y, T) data now have
n time values and can be relabeled (Y, T"). The (Y7,
T') datasets, which are often called the training sets,
are used to construct a model, of the form (A14), for
estimating 7(x’, ¢,).

An independent test of the model, subject to the
conditions noted below, is obtained by using Y(x, 7,)
to predict T(x’, t,) via (A14). Denote this estimate of
T by T,. Note that the (Y, T), values used to obtain
T, must in no way enter the model building process.
These values are often called the testing set. One can
proceed through the available data with ¢z, = 1,2,- « -,
n + 1, thus obtaining # + 1 independent predictions
from the model (which itself will change somewhat
with every realization). The result of this repetitive ac-
tion will be a time series of predicted fields 7, and a
set of corresponding observations, denoted by 7,. Note
the apparent similarity of this approach to “jackknif-
ing,” where the same “leave one out” strategy also is
used. However, this latter approach generally deals with
estimating the significance of some statistical moment
of T,. By contrast, the “bootstrap” method (e.g., Inoue
and O’Brien, 1984) approaches the resampling/signif-
icance problem in the same philosophical way except
it differs by replacing values selected for its testing set,
i.e., a test set is constructed in which a particular pair
of variates may appear several or more times. These
and other more subtle differences in resampling sig-
nificance test methodology are discussed by Efron
(1983).

Cross validation is meaningful only if the predictors
are serially uncorrelated. Thus, in the current context,
the T should not be correlated from one year to the
next. These year-lag correlations were computed for
all of the individual months/stations and season/sta-
tions used in this study. The vast majority (88%) of the
data exhibited a nonsignificant correlation value ac-
cording to standard testing procedures, a result in
agreement with that of Madden (1976).

The major exception to the above statement oc-
curred during the summer season and summer months,
where significant one year lag correlations were found,
a result found previously by Namias (1978), van den
Dool et al. (1986) and others. However, at lags of two
and three years the number of significant correlations
dropped to the number expected by chance. The cross
validation was modified for the summer experiments
to accommodate these facts as follows: Again, a sample
denoted by (Y, T'), was withdrawn from the data for
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eventual testing. The data values on either side of z,,
1e., (Y, T),—; and (Y, T),+, were also withdrawn but
discarded completely from both the model building
and testing procedures. Hence, the test pair (Y, T), was
separated by two years from the training set and so
was largely independent of the model building/training
set. Under this circumstance, the cross-validation pro-
cedure should be reliable.

The predicted and observed data fields were next
decomposed into terciles, T, being used to estimate its
tercile limits and 7, being used to estimate its own
limits (see Appendix). Care was taken to insure that »
+ 1 was an even multiple of 3. The percent of correct
forecasts at a particular location (x'), e.g., “Above”
predicted and “Above” observed, is called the local
skill, S; [e.g., (A15)]. The significance of S; may be
determined in the normal manner from a binomial
distribution. The percent of stations across the United
States that showed significant local skill was used to
estimate the global skill [Sg; Eq. (A16) was also esti-
mated). The significance of S; again was obtained from
the binomial distribution after accounting for the cor-
relation between adjacent stations (see Appendix, and
Livezey and Chen, 1983). '

The significance testing procedure described above
is lenient, particularly in allowing 7, and T, to define
their individual tercile limits. However, we are trying
to test the forecast skills of the statistical models, and
these were not anticipated to be high. In such a situation
a measure of model skill based on, say, variance ac-
counted for would be overly harsh since one large
“miss” would doom the model. Similarly, if one ter-
ciled 7, by the tercile limits of 7,, then models that
accounted for small amounts of variance would typi-
cally tend to forecast only “normal” conditions. The
strategy used here is really designed to measure the
accuracy of the phase of the forecasts. The philosophy,
then, is similar to GCM climate studies where the
model’s climatology is used to define the model’s
anomaly field since use of the observed climatology for
this purpose could obscure' any ability the model had
to simulate variations in climate.

¢. Model interpretation

One of the prime reasons for using CCA was that it
provided two optimally defined diagnostic fields of in-
formation that show where forecast skill occurs in the
predictand data and the space-time evolution of the
predictor field that gives rise to that skill. The infor-
mation on time evolution is possible due to the con-
catenation of consecutive months of spatial fields [i.e.,
(A1)]. These canonical patterns (A12b) are obtained
by inversion of (A12a). The equations (A12a) will ap-

! This is so because the model climatology and observed climatology
are generally rather different (e.g., Barnett, 1986).
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pear superficially familiar to EOF users in that the ca-
nonical patterns appear to perform the same role in
CCA as eigenvectors do in EOF analysis. However,
while the canonical components (A4) are orthogonal,
the corresponding canonical patterns need not be.

The canonical predictor patterns (A12b) are denoted
by gj(x), where x is a dummy variable representing
both space and time [ref. (A1)]. We refer to these pat-
terns as g-maps. The g, map describes the linear com-
bination of the predictor data that will contribute the
largest fraction of hindcast skill in the predictand (T")
set, g, the next largest skill and so on. The patterns of
hindcast skill that accompany the g-patterns are called
canonical predictand patterns and are denoted by A
[ref. (A12b)]. Again, the pattern associated with the
largest fraction of predictability in the T-field is given
by #; and so on.

Interpretation of the g- and A-maps is facilitated if
they are normalized to unit vectors. This allows ready
evaluation of the relative contribution to the associated
g-map of each month in a sequence of concatenated
spatial fields. The details may be found in the Ap-
pendix.

4. Forecast skill

This section describes the results of a series of ex-
periments to estimate the skill associated with predic-
tion of monthly and seasonal surface air temperatures
over the United States. The analysis considered only
the summer and winter seasons and also the individual
months that make up these seasons, i.e., June, July
and August and December, January and February, re-
spectively. Also, the results discussed below were made
for a forecast lead of one time unit, i.e., one season or
one month. Considering that the cross-validation ap-
proach to scoring was used, the results should be good
approximation to actual forecast skills.

It is important to note here and following that the
use of the word “persistence” refers to attempts to
forecast using the three prior monthly values of air
temperature instead of only the value immediately
preceding the forecast time. This nonstandard usage
thus refers to the construction of a low order autore-
gressive model for forecasting future temperatures and
obviously includes, as a special case, the more common,
simple persistence model.

a. Seasonal forecast skill

Forecasts of winter and summer air temperature
were made from (i) persistence, (ii) SST, (iii) SLP and
(iv) all three fields combined. The results were as fol-
lows:

Persistence. The temperature data for the three in-
dividual months preceding the season of interest were
selected a priori as predictors. Thus, for example, 7-
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field data for March, April and May were used to pre-
dict “summer.” The tercile skill scores for this exper-
iment are given in Table 1, while the strongest result
is shown in Fig. 3a. Persistence (as defined above)
clearly does a moderately good job of predicting sum-
mer temperature but not winter values. Numerous
prior studies have obtained similar results based on
hindcast studies. The current results, based on forecast
skills, show that scores in the low 40s are common
over nearly 75% of the country during summer (Fig.
3a). Over the lower half of the country the local scores
are significant at the 5% level. Using (A17) we found
typical values of g, = 6 for the summer, i.e., there were
only 6 spatial degrees of freedom in the full 33 station
set. However, even after accounting for this fact, the
global skill (:S;) was still significant at over 99.9%. These
impressive results must be tempered by the fact that
the actual local scores themselves are only 10-20 per-
centage points above those expected by a stochastic
forecaster (33%). Note also that the pattern of predictive
skill does not correspond well with the main patterns
that account for most of the air temperature variance
in summer (e.g., Diaz, 1981, Fig. 4), although there is
no reason a priori to expect it should.

SLP predictors. The SLP data for the three individ-
ual months preceding the season of interest were used
as predictors. The lag of three months was selected a
priori in order to exceed typical decorrelation times
for midlatitude SLP variations. The analysis, via the
g-maps, will show if this was an appropriate lag to con-
sider. The tercile skill scores for the experiment are
shown in Table 2. The results are unencouraging to
say the least. None of the winter scores exceed 38%, a
value significant at only the 22% level. The results for
summer are only slightly better, with three scores ex-
ceeding the 10% significance level; but just that many
would have been expected by chance, given that fore-
casts were made for 33 stations. With typical summer
values of g, = 6, it is clear that the S associated with
SLP predictor data is not statistically meaningful. These
results are in general agreement with those found earlier
(e.g., Barnett, 1981a).

SST predictors. In this set of experiments, the SST
for the three individual months prior to the predictand
season and two seasons prior to predictand season were
used as predictors. For example, SST data from sum-
mer, September, October and November were used to
forecast winter. Again, these lag intervals were selected
on an a priori basis largely from the decorrelation times
of SST.

The most successful forecasts were for summer (cf.
Table 3), with the spatial distribution of skill (Fig. 3b)
being different from that expected by chance at the
95% level. The winter forecast skill (not shown) was
confined to the southeastern corner of the country and

to the northern plains. This was essentially the same

result found by Barnett (1981a), although the areal dis-
tribution of skill is somewhat smaller than found in
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TABLE 1. Skill scores* given as a percentage of correct tercile forecasts, obtained using a measure of persistence
to predict station temperatures in the month/season shown. A value of 33% is expected by chance.

Station Summer Jun Jul Aug Winter Dec Jan Feb
Jacksonville 37 39 33 41 22 41 27 22
Charleston 35 31 41 33 37 43 25 16
Mobile 43 35 43 45 37 41 37 16
Abilene 45 33 45 37 35 47 35 22

* El Paso 41 31 33 41 31 35 33 39
Phoenix 41 47 52 39 22 27 31 33
San Diego 50 39 31 43 41 35 37 25
Asheville 45 39 43 35 41 45 25 : 31
Nashville 43 33 52 37 33 52 31 22
Little Rock 60 37 43 39 37 41 37 18
Albuquerque 45 37 37 41 22 37 33 43
Washington DC 43 25 39 35 35 50 25 27
Columbus 54 33 41 41 31 47 16 25
St. Louis 39 33 37 25 35 41 "33 27
Denver 39 . 52 29 35 14 10 20 16
Sacramento 37 56 37 33 39 37 37 41
San Francisco 41 41 31 25 45 35 43 31
Blue Hill 37 35 20 18 31 31 20 37
Chicago 20 35 33 33 35 43 22 20
Detroit 20 39 43 37 35 43 16 34
Des Moines , 37 37 37 16 22 33 . 20 29
North Platte 29 47 29 29 12 : 33 18 27
Salt Lake City 58 50 61 65 69 29 43 27
Winnemucca 54 47 33 43 31 35 43 31
Toronto . 31 41 37 25 33 31 22 29
Rapid City 43 39 31 39 31 31 33 50
Sheridan 41 | 45 29 35 33 39 29 31
Boise 41 35 37 43 39 29 54 22
Portland 31 18 39 31 33 31 45 29
Duluth 37 20 31 27 27 29 39 29
Bismarck . 41 37 25 47 25 41 20 29
Helena 43 33 25 35 37 31 45 39
Spokane 48 31 52 37 48 41 45 37
Average 41.2 37.5 37.3 35.9 33.3 '37.5 31.5 28.9

* Values greater than 41, 44 and 48 are significant at the 0.10, 0.05 and 0.01 levels, respectively.

that study; a result likely due to the different meth-
odology used here.

The surprising result of this experiment was the un-
expected skill found for summer forecasts. This result
was robust to changes in the data omission window of
the cross-validation testing. Note the magnitude and
spatial distribution of skill are quite similar to those
found in the persistence experiment. Similar results
have not been found by others (e.g., Barnett, 1981a;
Harnack, 1979, 1982). The techniques used here and
length of datasets are considerably different from those
used previously, and this must partially explain the
difference. However, the skill seems to originate from
a genuine geophysical signal that earlier studies did not
detect. A more complete discussion is deferred to sec-
tion 5.

Mixed predictors. This experiment combined the
predictors from the previous three experiments in an

attempt to see if forecast skill was due to a single cli-'

matic signal common to all predictor fields or to signals

that were unique to a specific field or fields. If the former
case were true, then the mixed predictor experiment
would score no better than an experiment using only
one field as a predictor. If the latter situation were true,
then the mixed predictor experiments would have ap-
preciably higher skill than any single predictor exper-
iment. .

The mixed experiment was set up as follows: In each
single predictor experiment the input data field was
decomposed according to (A2) and p principal com-
ponents used as predictors. The principal components
so retained from each of the prior experiments (per-
sistence, SLP and SST) were then considered equivalent
to a raw predictor field (Y) and the procedures of the
Appendix invoked. Thus, the mixed predictor Y-field
was composed of 5 SLP, 5 T and 6 SST principal com-
ponents so the dummy index x = 1, 2,- - -, 16 [cf.
(A1)]. These 16 series embody all the lag information
associated with each individual input field (see preced-
ing subsection for definitions).
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Summer skill from Persistence
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FIG. 3. The upper panel shows the summer surface air temperature
forecast skill obtained from persistence. The small numbers refer to
the percent of correct forecasts. The hatching indicates statistical sig-
nificance at the 10%, 5% and 1% levels, the significance increasing
with the density of the hatching. The contour intervals of local skill
associated with these levels are 41, 44 and 48, respectively. The center
and lower panels show the forecast skills from SST and the mixed
predictor experiments, respectively. The average value of local skill
in percent for each experiment (S¢) is shown in the lower left-hand
corner of each panel.

T. P. BARNETT AND R. PREISENDORFER

1831

The results of the mixed predictor experiments are
given in Table 4 and the best result shown in Fig. 3c.
Winter scores are negligible. Apparently, the lack of
correlation between the prior air temperature and SLP
and subsequent winter 7-values overwhelm the modest
correlation associated with the prior SST data. This
latter information was apparently diffused in the de-
composition (A2) while the former predictor data were
included in the model fitting procedure to the detriment
of the forecast skill. Attempts to prefilter the predictors
(i.e., select p < 16) did not appreciably affect the results.

The distribution of summer forecast skill (Fig. 3c)
is similar to that obtained in the persistence and SST
experiments (Figs. 3a, b). The main difference is the
loss of some skill in the Mississippi Valley and the
Northern Plains. All in all, the mixed predictor exper-
iment procedure produces essentially the same results
described above. Further, the persistence and SST pre-
dictors produced nearly the same spatial patterns of
skill. One may conclude, therefore, that the forecast
skill is due to a signal whose temporal properties are
common to both the SST field of the Northern Hemi-
sphere and the 7T-field over the United States. The na-
ture of that signal will be discussed in section 5.

b. Monthly forecast skill

Forecasts for the individual months that make up
summer and winter were made with the same set of
predictors noted in section 4a. In this case, the SLP or
air temperature data for the three months immediately
preceding the month of interest were used in the model,
e.g., November, December and January data were used
to forecast February. The SST forecast experiments
used both the preceding three months (as above) and
the seasonally averaged data for the season prior to
those months, e.g., summer, September, October and
November SST data to predict December air temper-
ature. :

1) WINTER MONTHS

Persistence. The results (Table 1) show that Decem-
ber has the highest forecast scores while February has
the lowest scores. In the former month, the skills are
highly significant, but again low in magnitude over the
eastern third of the country (Fig. 4). However, the fail-
ure of the forecast model in January and February
means that, on average, the three months that make
up “winter” are largely uncorrelated with each other.
This fact will be revisited in section 5b.

While most of the results shown in Fig. 4 are what
would be expected from earlier studies of persistence
(e.g., Namias, 1978; Barnett, 1981a; van den Dool et
al., 1986), there is one glaring difference. The current
results suggest that the stations immediately along the
West Coast, particularly San Diego and San Francisco,
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TABLE 2. Skill scores* given as a percentage of correct tercile forecasts, obtained using Northern Hemisphere SLP
to predict station temperatures in the month/season shown. A value of 33% is expected by chance.

Station Summer Jun Jul Aug Winter Dec Jan Feb
Jacksonville 36 40 58 38 30 42 48 51
Charleston 38 28 34 36 ) 34 51 51 46
Mobile 28 36 38 44 28 48 57 51
Abilene 40 36 30 38 38 . 40 36 44
El Paso ' 34 .36 34 20 34 30 14 12
Phoenix 26 34 34 28 30 44 42 ) 36
San Diego 48 26 40 32 36 30 55 38
Asheville 34 44 48 30 28 38 59 44
Nashville 32 30 36 40 32 48 57 51
Little Rock 38 24 34 26 30 34 . 53 48
Albuquerque 34 44 34 24 36 26 26 44
Washington DC 30 . 30 42 36 24 36 59 30
Columbus 30 28 34 30 26 36 53 42
St. Louis 20 28 30 38 26 44 44 51
Denver 20 30 26 26 22 20 34 36
Sacramento . 16 30 36 32 30 40 44 46
San Francisco 30 16 34 30 32 40 55 44
Blue Hill 34 46 30 40 34 42 59 24
Chicago 24 40 34 20 34 46 51 40
Detroit 44 40 26 36 34 47 57 36
Des Moines 40 38 34 36 24 51 28 . 24
North Platte 24 . 42 32 26 38 40 34 36
Salt Lake City 62 28 22 46 24 61 : 44 68
Winnemucca 26 32 28 38 26 48 57 40
Toronto 32 34 28 32 26 40 61 38
Rapid City 30 42 28 30 28 . 32 38 44
Sheridan 38 34 26 34 36 42 40 44
Boise 32 30 34 46 38 40 51 34
Portland 26 34 28 32 38 38 44 44
Duluth 48 51 30 40 38 40 38 30
Bismarck 32 44 22 34 30 36 36 40
Helena 40 36 30 36 28 34 40 38
Spokane 30 34 24 40 30 28 46 44

* Values greater than 41, 44 and 48 are significant at the 0.10, 0.05 and 0.01 levels, respectively.

are poorly correlated in time. On close inspection this
result did not hold up and was found to be due to a
shortcoming of the experimental design in the present
study. The problem was alluded to in section 3a and
will be discussed in more detail in section 7. The prob-
lem did not affect the general pattern of results shown
in Fig. 4a.

SLP predictors. The monthly scores for the winter
season were the highest found in this study (see Table
2, Fig. 4). Significant local scores (10%) existed at nearly
two-thirds of the stations during February. During
January one half of the stations had local skill scores
whose significance was in excess of 1%. Taking into
account the spatial correlation between the stations [Eq.
(A17)] showed there were only 4 or 5 degrees of free-
dom in the 33 station set during the winter months.
Nevertheless, the probability of obtaining the above
spatial distribution of local skills by chance is less than
0.01%. In all three months, but particularly January,
the numerical value of the scores was high enough to
. be practically useful. Note also that the spatial distri-
bution of forecast skill now closely resembles a natural

mode of variance in the temperature field (e.g., Diaz
and Fulbright, 1981, Fig. 1).

The general pattern of skill across the country
showed maxima in the eastern and western thirds of
the country. The minimum in the central portion of
the United States is similar to the result previously
found by Barnett (1981a), Preisendorfer and Mobley
(1984) and others for winter season prediction studies.
The exception to this statement occurred in February
when a number of significant local scores were apparent
in the central portions of the country.

SST predictors. SST data from the 21 regions shown
in Fig. 2 were used to predict air temperatures for De-
cember, January and February. In each case, the SST
for each of the preceding three months and summer
season were used as predictors (cf. discussion of winter
season predictor set). The results are listed in Table 3,
and the best case is illustrated in Fig. 4c.

Both December and February had global skill levels
that were significant at the 5% level. During January
five stations had a significant local skill score. Essen-
tially, the SST were not of as much help in forecasting
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FIG. 4. Examples of surface air temperature forecast skill obtained for specific months during the winter secason
from different predictors. The conventions are identical to those described for Fig. 3.

air temperature anomalies during this month as during
the other cold season months.

The spatial distribution of skill during February (Fig.
4c) is centered along both the eastern and western parts
of the country in a pattern reminiscent of the distri-
butions found in the SLP experiment (above) and by
carlier workers. The distribution of skill in December
was rather different with the majority of skill located
in the eastern third of the country, particularly the up-
per Mississippi Valley. The high skill region located in
the western United States during February largely dis-
appears in December, although local scores are typically
only a few percentage points below the 10% significance
level. A distinct minimum in skill is evident in the
central portion of the country in both months.

Mixed predictors. This experiment used the prin-
cipal components of the individual predictor fields as
basic input, e.g., as the Y-field. The procedure is as
described in the section on seasonal forecast skill. The
results are listed in Table 4 and the strongest result
shown in Fig. 4d.

The spatial distributions of skill are highly significant
in January and February (5%) and marginally signifi-
cant in December (10%). The strongest result again
occurs in January (Fig. 4d) and bears a strong quali-
tative resemblance to the results obtained from the SLP
field alone. Yet, the mixed predictor experiment gen-
erally had numerically lower local skill scores than the
SLP experiment, particularly when p = 16, i.e., no pre-
filtering of the input predictor set. It is concluded that
the additional predictor information (SST, persistence)
carried no information that was not already in the SLP
field.

2) SUMMER MONTHS

Persistence. The months of June and July have the
highest forecast skill scores from persistence. Of the
two, the results for June are probably the strongest,
particularly in the western states and Midwest (Fig.
5a). Both August and July show significant skill in the
western third of the country, thus suggesting significant



1834

MONTHLY WEATHER REVIEW

VOLUME 115

TABLE 3. Skill scores* given as a percentage of correct tercile forecasts, obtained using Northern Hemisphere and equatorial SST to
predict station temperatures in the month/season shown. A value of 33% is expected by chance.

Dec Jan Feb

Station Summer Jun “Jul Aug Winter
Jacksonville 45 37 41 41 50 31 47 47
Charleston 22 27 37 33 45 33 33 41
Mobile 37 35 29 35 43 35 37 37
Abilene 45 41 39 45 33 31 31 33
El Paso 31 31 41 41 27 45 35 20
Phoenix 56 47 68 56 18 39 31 43
San Diego 27 31 16 27 39 41 27 27
Asheville 39 31 41 35 41 35 39 41
Nashville 43 35 41 43 43 47 39 35
Little Rock 47 37 31 33 35 43 33 31
Albuquerque 41 20 37 45 33 33 29 25
Washington DC 29 31 20 27 37 41 35 41
Columbus 27 35 31 31 33 47 33 35
St. Louis 22 35 31 41 31 41 20 27
Denver 27 37 39 45 30 45 31 31
Sacramento 43 45 43 50 22 37 29 43
San Francisco 37 37 33 43 39 33 35 47
Blue Hill 27 35 35 31 31 39 39 45
Chicago 16 33 14 31 27 47 29 25
Detroit 27 37 25 29 22 43 - 37 39
Des Moines 33 C 25 31 37 39 43 27 22
North Platte 35 41 37 37 29 35 31 29
Salt Lake 66 69 68 58 20 45 65 45
Winnemucca 39 41 43 47 25 39 37 43
Toronto 31 39 20 27 25 43 35 35
Rapid City 29 35 33 31 43 31 31 31
Sheridan 33 45 37 31 39 27 31 20
Boise 35 35 29 43 25 35 33 41
Portland 45 41 45 41 29 39 22 35
Duluth 45 33 39 37 39 35 27 37
" Bismarck 29 39 31 29 43 25 31 37
Helena 37 47 43 39 41 39 29 37
Spokane 43 4] 39 37 25 ~ 47 29 46

* Values greater than 41, 44 and 48 are significant at the 0.10, 0.05 and 0.01 levels, respectively.

correlation between the three months that traditionally
make up summer. July and, to some extent, August
also show significant but low skill in the southedstern
third of the country. No semblance of this regional
skill exists for June. Given that there are only about
six effective spatial degrees of freedom for the summer
months, the associated global skills are still significant
at or considerably above the 5% level.

SLP predictors. The SLP data has little ability to
forecast monthly temperatures during the summer
(Table 2). The best result (June, Fig. 5b) shows a small
region of significant local skill in the northern plains
and at few isolated stations; these latter are likely due
to chance. However, the skill in this area/stations does
not maintain itself in subsequent months. At any rate,
the numerical scores are low enough to be of little
practical interest. .

SST predictors. In this experiment the winter SST
and SSTs for the three preceding (spring) months were
used to predict the 7-field for each summer month.
The results are given in Table 3 and the best case il-
lustrated in Fig. 5c. The global skills are significant

relative to chance for all three months, even after al-
lowing for the fact that g, ~ 6.

The spatial distributions of skill show a maximum
in the western third of the country for all three months.
However, as one proceeds from June to August the
magnitude of the skills tend to increase. Also, a lobe
of significant skill builds from the southeastern part of
the country from June through July until it joins the
high skill region in the western United States in August
(Fig. 5¢). These distributions of monthly skill are gen-
erally in accord with that obtained from the forecast
of summer season air temperature from SST (sec-
tion 4a).

Mixed predictors. The prediction experiments for
the summer months were repeated using the principal
components of the individual predictor field as de-
scribed above. The results are listed in Table 4. The
spatial distribution of skill for the most successful set
of forecasts, June, is shown in Fig. 5d. Results in July
dropped considerably but were still significant (10%)
in a global sense. By August, however, only seven sta-
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TABLE 4. Skill scores* given as a percentage of correct tercile forecasts, obtained using SST, SLP and a measure of persistence to predict
station temperatures in the month/season shown. A value of 33% is expected by chance.

Station Summer Jun Jul Aug Winter Dec Jan Feb
Jacksonville 39 - 41 37 18 29 33 45 41
Charleston 37 . 45 39 33 33 33 47 45
Mobile 35 39 37 31 33 -39 47 50
Abilene 41 39 37 27 20 39 27 41
El Paso 37 27 29 31 25 37 41 35
Phoenix 47 47 43 35 25 33 45 41
San Diego 35 35 47 35 37 27 47 39
Asheville 41 41 47 14 35 37 45 31
Nashville 33 47 52 22 31 50 41 43
Little Rock 54 27 35 10 29 47 47 41
Albuquerque 35 27 33 43 27 33 39 37
Washington DC 35 22 41 25 35 39 43 31
Columbus 41 33 37 27 27 47 37 27
St. Louis 35 20 35 37 - 22 56 39 43
Denver 35 47 35 39 22 31 27 37
Sacramento 41 47 41 47 25 33 37 41
San Francisco 41 41 41 35 27 39 47 43
Blue Hill 31 31 25 18 25 35 47 25
Chicago 25 25 37 20 20 43 41 33
Detroit . 25 27 41 25 22 39 . 52 22
Des Moines 25 41 52 37 33 39 27 45
North Platte 35 45 29 43 31 25 35 31
Salt Lake 50 52 33 31 25 35 47 41
Winnemucca 54 39 33 35 14 43 41 37
Toronto 20 29 33 18 22 33 43 27
Rapid City 33 43 39 43 35 39 37 27
Sheridan 33 52 41 47 37 25 37 33
Boise 47 37 37 29 25 33 39 37
Portland 37 41 33 31 27 39 45 35
Duluth 43 39 29 45 35 35 30 20
Bismarck 37 43 33 60 35 45 33 35
Helena 37 43 35 31 33 25 41 35
Spokane 47 37 37 31 43 25 47 39

* Values greater than 41, 44 and 48 are significant at the 0.10, 0.05 and 0.01 levels, respectively.

tions had a significant local skill score and the global
skill was significant at the 12% level.

Given the high degree of similarity between the per-
sistence experiment (Fig. 5a) and those of the current
experiment, it can be concluded that the set of mixed
predictors introduces no new information above that
already present in the recent history of the air temper-
ature field itself.

5. Origins of seasonal forecast skill

This section uses the model diagnostic features de-
scribed in sections 3¢ and A2 to determine the space-
time evolution of the climate system that gave rise to
the most successful seasonal forecasts. The results may
give important clues to the physical processes that un-
derlie extended range predictability. At the minimum,
they show clearly what features of the climate system
must be understood if we are to explain the causes of
extended range predictability.

a. Predictability due to SST

The strongest seasonal prediction result came from
attempts to forecast summier air temperature using SST
as predictors. The skill came from two very different
space-time scales of ocean variability and these are
described below.

Slightly over one half (60%) of the predictive skill
shown in Fig. 3b was associated with a more or less
uniform change in surface temperature in the tropical
and high latitude oceans. The equatorial oceans do not
substantially participate in this signal. This is illustrated
in Fig. 6 (upper), which shows the segment of the ca-
nonical predictor (g,) map associated with May. This
portion of the g-map accounted for 21% of the predic-
tive skill. The other two months and winter season
were equally as important as May. Thus, all three pre-
dictor months and the prior winter season were equally
useful in accounting for the predictive skill. Further,
the distribution of g-values for the other months and
winter were virtually identical to the values shown in
Fig. 6 (upper). Thus, the SST predictor information is
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FIG. 5. As in Fig. 4 except for specific months during the shmmer season.

" highly redundant in time; May data, say, could have
done the job by itself.
The nature of the signal shown above becomes clear

by investigating its temporal strength, u,(¢) (Fig. 7a). .

In view of (A12) and the sign of the larger g-values
(Fig. 6, upper), it is clear that u,(¢) represents a warming
of the Northern Hemisphere oceans from the early
1930s, when the data begin, to the late 1940s or early
1950s followed by a cooling until the mid-1960s or
1970s. Perhaps a slight warming then begins until the
end of the dataset. This signal is similar to the behavior
of the Northern Hemisphere surface temperature field
as described by Jones et al. (1982) and others. The
former authors’ pentad-averaged estimates of this pa-
rameter are shown in Fig. 7a. The similarity with the
u,(¢) is reasonably good, although there is a small phase
shift between the two signals (cf. Barnett, 1984) and
the extreme cold of the late 1960s is not so obvious
over the oceans. Remember, however, the predictor/
predictand data used in this study was detrended prior
to analysis. The Jones et al. data have not been de-
trended. The spatially global nature of the canonical

predictor signal and its long time scale explain why all
the important components of the g;-map were essen-
tially identical in sign and value and why they were all
equally useful predictively. The lagged ocean temper-
atures go back only six months in time; that interval
is small compared to the decadal time scale of the u,(?).

Inspection of the canonical predictand map (4;, not
shown) and u,(¢) shows that the forecast skill is asso-
ciated with decreasing temperatires in the eastern half
of the country and increasing temperatures in the
western half during the period 1950-75. This is just
the pattern of change obtained over nearly the same
time span by van Loon and Williams (1976, their Fig.
2), thus confirming the current analysis. However, the
current study now shows that these changes are asso-
ciated with a global climate change. They are not simply
local changes.

A caution is in order with regard to the preceding
discussion. The predictand signal clearly violates the
independence criteria associated with the cross vali-
dation methodology. However, it was of such low
magnitude as to be buried in the noise when the de-



SEPTEMBER 1987

MAY SST PREDICTING
SUMMER AIR TEMPERATURE

-MAP
90°N I20°E 150° 180° I50° 120° 90° 60° 30°W O°
T rrrrrJrrr T T T TTTT
60°
30°
O°F
gy~ MAP
" I20°E 150°  180° 150° 120° S0° 60° 30°W 0°
90Nl|l|||lII]II]II]II]II|I
60°
30°
o°
I W Y T O T | l'

FIG. 6. Canonical predictor maps relating prior, regionally averaged
SST to summer air temperature. The numbers represent the relative
importance of each region in producing the summer forecast skill
associated with SST (see Appendix). The upper panel shows the first
canonical map while the lower panel shows the second canonical
map.

correlation scales of the warm season temperature were
computed. Given this fact, it seems likely that the re-
sults given above are qualitatively correct but the mag-
nitude of the skill shown in Fig. 3 is somewhat inflated.

The remaining predictability (40%) during the sum-
mer season comes largely from the equatorial Pacific
(cf. Fig. 6, lower), although the equatorial Atlantic and
midlatitude North Pacific, both in antiphase with the
equatorial Pacific, contribute to the skill. In contrast
to the first canonical mode discussed above, the value
of antecedent predictor data drops as one recedes fur-
ther from the summer season.

The SST predictor pattern determined here is similar
to the first EOF of the global SST field shown by Hsiung
and Newell (1983; see also Weare et al., 1976). The
associated canonical component vector (1) is shown
in Fig. 7b and, not surprisingly, closely resembles the
first principal component shown by Hsiung and Newell
(cf. their Fig. 4). It is clearly dominated by ENSO
events, a result already suggested by Fig. 6. It is worth
noting here that the winter season forecast skill is also
associated with g-maps and u-series that resemble those
shown above. The summer forecast skill, like that of
winter, is concentrated in the southeastern third of the
country. The sense of the 4,, g, maps and the u, series
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is such that warm SST events in the equatorial Pacific
go with cooler than normal summer temperatures over
the southeast. The same relation holds for the winter
(cf. Barnett, 1981a).

In summary, about half of the summer forecast skill
is associated with multidecadal changes in the tem-
perature of the Northern Hemisphere oceans and sur-
face air temperature field. The reasons for these changes
are unknown. The remaining skill is associated with
the shorter period ENSO events but also involves
changes in SST in other ocean regions besides the
equatorial Pacific. The canonical predictor pattern as-
sociated with this forecast skill is nearly identical to
the first EOF of the global SST field.

b. Nonpredictability of winter season air temperature

None of the models discussed above did a good job
of predicting the winter season air temperature. Yet
the models for the individual months of winter did
extremely well. This apparent difference may be ex-
plained by two factors.

(i) The temperature fields for the individual months
of winter are not well correlated with each other. Thus,
forming an average of the three months is close to av-
eraging three unrelated variables together. This fact is
demonstrated in Fig. 8. Only 6 of the 33 stations
showed significant correlations between all three
months of winter, while 11 stations demonstrate no
significant correlation between any of the months of

SST TO SUMMER TEMPERATURE
+3

A)

0°A7\°°'/'\[\VH
MV W

w
S
E o °
3
%_3 pre by T e e brpa b s b g
<
w +3
=
= "Ip)
]
w
a NI
. A /\/\ A
WY VVV \/\/\IV\/
U oo v e breea s by ooy
1930 1940 1950 1960 1970
YEAR

FI1G. 7. (a) Canonical coefficient vector, u;, associated with the g;
map shown in Fig. 6 (upper). The heavy dots are pentad averages of
Northern Hemisphere surface air temperature from Jones et al. (1982).
(b) The second canonical coefficient vector, u,, associated with the
&, map shown in Fig. 6 (lower).
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MONTH~MONTH WINTER SEASON
AIR-TEMPERATURE CORRELATIONS

FIG. 8. Month-to-month air temperature correlation during the
winter season. The solid circles represent stations for which all three
winter months are significantly correlated with each other. The open
circles represent stations where two out of three winter months are
correlated. The X’s represent stations where two out of the three
winter months are not correlated. The circled X’s represent stations
where none of the three winter months are correlated. Over most of
the United States the month-to-month air temperature changes during
the winter season are unrelated. '

winter. It appears that this way of looking at persistence
within the winter season has not been done before,
although the work of Dickson (1967) is close and pro-
duced much the same result as found heré. Other per-
sistence studies (e.g., van den Dool et al., 1986) perform
substantial space-time averaging of their results and
" thus have missed conclusions drawn here. At any rate,
it seems clear that the strategy of trying to forecast a
seasonal aggregate of uncorrelated variates with a single
model will not be very successful (and it wasn’t). This
brings into question the practical usefulness of defining
a “winter” season for prediction purposes.

(ii) The results of section 4 showed that the indi-
vidual months of winter were relatively well forecast.
The discussion of section 6 will show that the key fea-
tures of the atmospheric field that gave this forecast
skill were different from month to month. Thus, no
single model will capture well the air temperature vari-
ance that is associated with the traditional definition
of winter. If one insists on predicting a traditional win-
ter average, then apparently it will be necessary to fore-
cast individually each of the winter months and then
to average those forecasts into a “winter” forecast.

6. Origins of monthly forecast skill
a. Space-time evolution of predictor patterns

The monthly skills for the winter season from SLP
predictors were the best found in this study. The g-
maps associated with this skill suggest the space struc-
ture and temporal evolution of the SLP field responsible
for the success. This is demonstrated in Fig. 9 where
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the g map, which accounts for over 80% of the January
skill (Fig. 4b), is partitioned into the months that made
up the predictor field [cf. Eq. (A1)]. Thus, the relative
predictive importance (RPI) of October, November and
December can be evaluated (see Appendix, section 2).

The results show that approximately 57% of the skill
in the January forecasts comes from SLP variations in
December alone. However; traces of the December
pattern are clearly evident in the preceding two months,
particularly over the ocean regions immediately adja-
cent to the U.S. mainland. The key pattern is a strong
low (high) pressure anomaly over the central North
Pacific Ocean, associated high (low) over the Rockies
and southwest Canada, and another low (high) over
the southeastern corner of the United States and ex-
tending to Bermuda. This is reminiscent of the Pacific-
North American (PNA) pattern (Horel and Wallace,
1981; Wallace and Gutzler, 1981). Based on Wallace
and Gutzler’s work we can conclude that the patterns
seen in the SLP data are essentially barotropic and thus
representative of the overlying troposphere. Note that
the pattern is well represented as a standing wave since
its centers of action show little movement as it develops.
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FI1G. 9. First canonical predictor maps associated with surface air
temperature forecast skill during the month of January. The per-
centages in parentheses in each panel represent the relative importance
of each month to the overall forecast skill associated with this mode.
The contours on the maps represent relative (normalized) importance
of the SLP signal to the subsequent air temperature forecast.
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The g% function, which accounts for all the remain-
ing January skill (20%), is shown in Fig. 10. It represents
a very different, yet important, distribution of SLP, as
we shall see below. Note that all three predictor months
contribute to the skill. This means the time scale as-
sociated with this pattern is much longer than the time
scale associated with g,. The higher order canonical
modes were insignificant compared to modes 1 and 2.

The first principal predictand map (k,) for January
associated with the g;-pattern is shown in Fig. 11. As
expected, it compares well with the map of January
forecast skill. The distribution of SLP that leads to the
h, pattern strongly suggests that it is just the advection
of warm/cold air masses that is largely responsible for
the observed distribution of air temperature anomalies.

The first two principal predictor patterns associated
with the February forecast skill are shown in Figs. 12
and 13. Comparing them with Figs. 9 and 10 shows
that the dominant predictor patterns for January and
February have simply reversed roles, e.g., g, for January
forecasts has become g, for February forecasts. Excep-
tions to this statement occur over the Atlantic Ocean,
but the differences are not large. The g, function for
the February forecast accounts for over 70% of the
global forecast skill for that month. January is clearly
the dominant month within this g-map, accounting
for 64% of the total skill associated with this first ca-
nonical mode. Thus the forecast skill for January and
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h—MAP SLP PREDICTION JANUARY

FIG. 11. The canonical predictand (h;) map associated with January
forecast skill. The contours show the most predictable pattern of
surface air temperature during January. Units are in standard devia-
tions.

February (and December, not shown) are due to rather
different distributions of SLP. This helps explain the
prior results in section 5b, which showed low month-
to-month correlation during the winter season.

It should also be noted that the February pattern,
whose full spatial extent is not completely resolved,
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FIG. 12. As in Fig. 9 except for February.
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FIG. 13. As in Fig. 10 except for February.

bears a resemblance to the North Pacific oscillation of
Walker and Bliss (1932) or more recently to the West
Pacific and West Atlantic teleconnection patterns dis-
cussed by Wallace and Gutzler (1981) or the tropical/
Northern Hemisphere pattern mentioned by Barnston
and Livezey (1987). Like the g, pattern for January, it
is also likely to be a barotropic feature. .

A basic property of the large-scale structures de-
scribed above is their characteristic time scale. The
rapid intensification of the g, patterns in the month
immediately preceding the January and February fore-
cast periods suggests the time scale question cannot be
well investigated with the monthly averaged SLP data
used here. However, monthly data can provide a crude
estimate of the characteristic lifetime of the large-scale
 structures. These characteristic times were estimated
as follows:

(a) A specification experiment was run where the
SLP fields for the months of November through March
were used to “predict” January air temperature.

(b) The g, map segment for January was isolated
and will be referred to as g,(0).

(c) The pattern correlation (PC) between g,(0) and
the g-patterns for the preceding and subsequent two
months was computed, e.g., (1(0)g(—1))x = PC be-
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tween January and December. The results are shown
in Table 5a.

(d) A simple significance test on the PC determined
the decorrelation time of the principal predictor pat-
terns relative to January.

(e) The same procedure was repeated for a February
specification using data from December through April
(ref. Table 5b).

The results (Table 5) show that both large-scale
structures discussed above grow to a maximum in a
space of two to three months. However, their decay
occurs within one month (e.g., February-March PC
= —(.19), leading to the notion of a total collapse of
the structure in a time that is short relative to their
growth period. This strong asymmetry suggests a highly
nonlinear mechanism is responsible for their appear-
ance in the first place.

The above results would be misleading if the struc-
tures showed propagation. The January specification
structures (not shown) appear quasi-permanent from
November to January, with the centers of action be-
ginning to shift in February and perhaps accounting
for the fall off in PC. The February structures show
high permanency over the Pacific and North America
for December-February. However, these characteristic
patterns are simply not evident in the March map and
hence the small PC value. :

An interesting feature of the monthly patterns is the
strong difference in skill they give in the specification.
December and particularly January account for the
majority of specification skill in January air tempera-
tures. However, for February specification the months
of December through February are all equally impor-

TABLE 5. The G-map Pattern Correlation (PC) between month of
specification and both antecedent and subsequent months. Relative
Predictive Importance (RPI) shows the percent of total skill contrib-
uted by the various months used in the specification.

RPI
Months PC (%)
a. January specification

Jan-Nov 0.56 6.9

Jan-Dec 0.86* 24.5

Jan-Jan 1.00* 47.0

Jan-Feb 0.55 14.0

Jan-Mar -0.70 7.6
100.0 sum

b. February specification

Feb-Dec 0.73* 24.7

Feb-Jan 0.74* 25.8

Feb-Feb 1.00* 25.8

Feb-Mar -0.19 9.6

Feb-Apr 0.18 14.1
100.0 sum

* 95%. significant assuming four degrees of freedom in the spatial
fields.
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tant. These results again attest to the spatially steady
nature of the structures.

b. Global connections

It is logical to wonder if the primary g-patterns dis-
cussed above are relatively “local,” i.e., confined to the
region immediately surrounding North America. The
answer to this question was obtained in several ways.
A prediction experiment using the near-global SLP field
as the predictor data was carried out for January air
temperatures. The resulting forecast skills (not shown)
were considerably lower than those found previously
and not highly significant in a global sense. Significant

g,~MAP GLOBAL SLP
PREDICTING JANUARY

Q° 180 0°

FIG. 14. As in Fig. 9 except the near-global SLP fields were used
as predictors of January air temperature.
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FIG. 15. (a) Reconstructed SLP pattern (relative units) associated
with large-scale moving sea level pressure patterns described by Barnett
(1985) and (b) November normalized g, map values obtained from
using near-global SLP to predict February air temperature. The per-
centage in parentheses (lower panel) indicates the relative importance
of this month to the distribution of February forecast skill. The il-
lustration suggests the importance of the near-global moving SLP
pattern to forecasts of February air temperature over the United States.

local skill was found in the southeastern section of the
country only. The associated g-maps (Fig. 14) suggested
the key predictor features noted above have only a
modest relation to global-scale variation in SLP, i.e.,
the Southern Oscillation (SO) in the Southern Hemi-
sphere. The teleconnection to higher northern latitudes
(e.g., Fig. 9¢) is similar to that described by Bjerknes
(1966). However, the correlation between u;(¢) for this
global analysis and an SO index was only —0.45. We
shall see later that the tropical connection to the Jan-
uary g, map is not strong (ref. section 7a).

The February forecast experiment was also repeated
as above on the near-global SLP set. Again, the global
skill was of modest significance. The g-patterns shown
for the limited SLP prediction experiment were found
to be stable and again apparently linked to variations
in the tropics and, particularly, the Southern Hemi-
sphere. Perhaps most striking, the shape of g, patterns
closely resemble the large-scale, moving global SLP
patterns derived by Barnett (1985) by a very different
method. This is illustrated in Fig. 15, which shows the
spatial detail of the February pattern and its clear link
to the tropics. The time sequence of the g, patterns
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(not shown) in this study also suggests the type of mo-
tion and signal-bifurcation about the equator found in
Barnett (1985). Thus, the February results suggest the
predictive skill is in part due to a global-scale SLP vari-
ation that is linked to more local changes over the
North Pacific and North America.

The suggestions posed above may be partially tested
by quantitatively answering the question: How much
of the forecast skill is due to tropical forcing and how
much is due to local forcing? The answer to this ques-
tion was obtained as follows. The SOI index was re-
gressed against the regional SLP field (20°~70°N) and
the variance associated with the SOI removed. The re-
sidual SLP field was then used in an experiment iden-
tical to the one that produced the results shown in Fig.
4. The SLP predictor field with the SO signal removed
produced an average value of local skill for January
forecasts of Sg = 42.7 (versus 46.2% previously) and a
spatial distribution of skill almost identical to that
found previously. The only noticeable difference be-
tween experiments was a modest reduction in forecast
skills in the eastern portion of the country for the SOI-
removed case. The largest reduction was 18% at To-
ronto (from 61% to 43%) but the more typical value

was 7%-10%. However, the local skills in the eastern

third of the country remained significant.

The forecast results for February showed a much
stronger loss of skill in the southeast and virtually all
skill in the central portion of the country. Both areas
now demonstrated no significant values of local skill.
However, the global skill was still statistically signifi-
cant, but only marginally. The interhemispheric con-
nections are apparently much stronger for the February
predictor pattern than for January.

We conclude that global-scale SLP phenomena as-
sociated with the SO do contribute to the forecast skill
over North America, particularly in the southeast (cf.
Barnett, 1981a). However, the use of these global pre-
dictors gives values of S; over the United States that
are generally lower than those obtained from local SLP
predictors. Thus, local changes in SLP, changes that
are uncorrelated with an SOI, are more effective pre-
dictors and capable, by themselves, of producing sig-
nificant forecast models. This statement is most true
for January forecasts. It is also true for February fore-
casts, but only in an integral sense. In this month, re-
moval of the SO signal also removes most of the pre-
dictive skill over the eastern third of the nation.

Thus, much of the forecast skill is due to large-scale
coherent structures in the SLP that generate rapidly
relative to a month and then persist for one to two
months, giving them typical lifetimes of two to three
months. The main energy in these structures is confined
to the regions over North America and its contiguous
oceans. These patterns bear similarity to known tele-
connection patterns. It should also be clear to the reader
that the monthly data used in this paper is not really
satisfactory to resolve the life history of these features.
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7. Diécussion

This section presents a brief discussion of several
aspects of this study. Its purpose is to pull together
different results and also to present some critical in-
sights to the work and analysis method.

a. Origins of predictive skill

The results of sections 5 and 6 give a relatively clear
picture of the space-time evolution of the climate fields
that leads to predictive skill. However, the results must
be tempered by the fact that two of the main features
delineated, the near-global warming trends on decadal
time scales and the extremes of the ENSO events, are
not unknown features. What is new is the relative im-
portance of large-scale coherent structures in the SLP
field to the wintertime predictive skill. Further, it ap-
pears that virtually all the forecast skill found for surface
air temperature over the United States is due to these
three phenomena.

A fundamental finding of this study has to do with
midlatitude SLP features that give rise to the forecast
skill. The first canonical predictor (g,) pattern that gave
over 80% of the January global forecast skill (Fig. 9¢)
was seen to originate mainly in December. This feature
resembled the PNA pattern. Additional studies given
here and to be reported elsewhere showed that this pat-
tern reaches maximum intensity in January and begins
to damp strongly in February. But the g, function for
January, which accounted for 20% of the skill, was
nearly identical to the g; pattern for February, partic-
ularly over the Pacific Ocean and North America.
During February, this pattern, which resembled a
combination of known teleconnection patterns, be-
came dominant and accounted for 70% of the February
forecast skill. The g» function for February forecasts
was just the g, pattern for January.

The above results raise two possibilities: (a) One can
imagine that the main January pattern (Fig. 9c) is dy-
namically transformed into the main February distri-
bution of SLP (Fig. 12c); (b) alternatively, the two pat-
terns may have nothing to do with each other and the
canonical mode switching is due only to the facts that
they tend to occur at different times of the year or in
different years and, when they do occur, persist for two
to three months. The validity of these two possibilities
was checked by simply cross correlating the S time
series for January and February. The correlation was
—0.07, an insignificant value. Thus, a successful Jan-
uary forecast is unrelated to the forecast skill expected
for February and vice versa. If (a) above was true, the
correlation should have been high, thus guaranteeing
that a good January forecast would be followed by a
good February forecast. This was not the case. Thus,
we accept (b). The above results mean there are two
separate, uncorrelated large-scale structures in the SLP
field that give the forecast skill. Further, these distri-
butions of SLP apparently represent preferred modes
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of atmospheric variability. Their occurrence is tightly
tied to the annual cycle, but their most energetic life
times are roughly equivalent, two to three months, al-
though one of the structures does persist much longer
than the other. Given only these facts, we cannot de-
termine the physical processes responsible for the main
SLP predictor signals. We can say, based on earlier
results (section 6b), that while the general state of the
climate system, e.g., ENSO or non-ENSO, may set the
stage for these regional events, the ENSO phenomena
is neither a necessary nor a sufficient condition for a
successful forecast nor for the actual occurrence of the
large-scale structures.

The results of the mixed predictor experiments sug-
gest that the precursor signals that lead to forecast skill
tend to be found in one or more of the climate predictor
fields used in this study. If there were uniquely different
skill-producing signals in the different fields, then the
mixed predictor experiments should have given higher
scores than any one of the individual field experiments.
This was not the case.

Finally, the result that certain fields should be more
useful as predictors than others depending on the na-
ture of the predictor signal seems logical. For instance,
the small, low-frequency signal associated with the de-
cadal scale changes would be expected most clearly in
the ocean due to their large thermal inertia, long time
scale and the resulting signal/noise ratio that would be
larger than that expected for, say, SLP. By the same
token, rapidly changing predictor patterns such as de-
termined for the winter months should be manifested
best in the atmosphere, as opposed to, say, the more
sluggish ocean variables.

b. Forecast skills

The scoring on the forecasts represents approxi-
mately the procedure one would follow in evaluating
the relative skills of a forecast model over approxi-
mately 50 years of pseudo-independent testing. It is
gratifying that large spatial regions of significant skill
exist. Yet the values are generally low, even considering
the liberal method of terciling (cf. section 3b). Re-
membering that the analysis methods used here are
specifically designed to get as much skill as possible
from a linear model suggests that the average ability
to forecast short-term climate change is small. Major
exceptions to this conclusion occur during the winter
months, particularly January and February. In any
event, the forecast skills estimated here are generally
much less than those expected from studies of potential
predictability. Indeed, if one is ever to approach the
optimistic expectations of these studies, then it will be
necessary to (a) find predictor data that is uncorrelated
with SST, SLP and air temperature or (b) devise a
highly nonlinear prediction scheme that is poorly ap-
proximated by any linear model or (c¢) introduce, at
least conceptually, physical-synoptic considerations
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FiG. 16. The yearly values of average local skill (Sg) associated
with the prediction of January air temperatures from regional SLP
data (heavy line). The dashed line represents the time history of the
absolute value of the first canonical coefficient vector for the January
forecast model. The correlation between the two series (r) was 0.45,
suggesting that |u;| can be used to predict the “goodness” of the
forecast itself.

which are, of necessity, highly qualitative and, in ad-
dition, make no use of the predictor/predictand rela-
tionships presented here.

The idea of averaging skill over a number of years,
the basis for the above comments, may not be a par-
ticularly meaningful measure of forecast ability in the
first place. This point of view is supported by the tem-
poral distribution of global skill obtained from forecasts
of January air temperature and the |u,(¢)| that accom-
panied each forecast (Fig. 16). The large variability in
|u;| and large relative size of the associated g, guarantee
large variations in Sg. In other words, the mean value
of Sg, by which we traditionally measure a model’s
success, gives only a partial view of a model’s ability.

In view of the correlation between || and Sg (0.45)
it is clear that the value of |u,| gives an indication of
how good a forecast to expect for each of the winter
months. Since |u,| is estimated as the forecast is made
[ref. (A3) and (A8)], it can be used to develop a forecast
quality index. Examples of how this might be done are
given for one station that had high forecast skill (To-
ronto) and one that had low skill (El Paso). Note the
local skill scores are used in this example since S; can
be misleading itself, i.e., it is obtained by averaging
over stations that had significant local scores and those
that did not.

The paired values |1,] and S; are presented in the
form of a contingency table (Table 6) where the terciles
of |uyl, called Qr, On and Q,, are used to order the
forecasts whose skill is expressed as percent correct,
percent 1-class errors (e.g., “A” forecast and “N”’ ob-
served) and so on. By way of an example, if || is in
the upper tercile (Q,) then the probability of a correct
forecast at Toronto is 75%, while if |, ] is in the middle
tercile (Qy) then the probability of a correct forecast
drops to 50% (versus 33% expected by chance.) Other
stations in the eastern third of the country had similar
results. On the other hand, at El Paso the similar prob-
abilities are 18.8% and 12.5%. The scatter in the |u;]
versus S; distribution at El Paso is indicative of a low
forecast ability situation, while the results for Toronto
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TABLE 6. Local skill vs terciled forecast quality index for a high
skill station (Toronto) and low skill station (El Paso). This table shows
the probability of obtaining a correct forecast contingent on the ab-
solute value of the canonical component vector when the latter is
partitioned into terciles, e.g., Q, refers to the upper 1/3 largest values
of |Uy|. The results suggest the idea of a time-averaged forecast skill
may be misleading.

Toronto ]
% correct 56.2 50.0 75.0
% 1-class errors . - 438 18.8 12.5
% 2-class errors 0.0 31.2 12.5
o O~ o
El Paso
% correct 25.0 12.5 18.8
% l-class errors, 50.0 37.5 25.0
% 2-class errors 25.0 500 56.2
O On 04

indicate the opposite situation. The results show that
even in the best of situations one cannot always expect
to have a good forecast. Fortunately, the development
of a forecast quality index provides a quantitative way
to put a confidence factor on a forecast.

In summary, average forecast skills are generally low.
In view of the methods and data fields used here, we
should not anticipate significantly larger values using
other linear methods. However, the skills for the winter
months are high enough to be practically useful. The
use of a forecast quality index seems a potentially pow-
erful way to estimate in advance if a forecast is apt to
be good or bad. This index also suggests that time-
averaged skills, which are commonly used in the lit-
erature, give a misleading view of one’s ability to fore-
cast specific climate events.

c. Sensitivity of results

There were a number of decisions that had to be
made in the course of carrying through the analysis
described in section 3 and the Appendix. This subsec-
tion offers brief comments on the sensitivity of the re-
sults to these decisions.

Predictor truncation limit, p. EOF filtering rules were
used to select p in (A2). If these were too stringent,
then valuable predictor information could be lost to
the analysis. We found that increasing p above the ob-
jectively determined limits quickly led to models with
no forecast skill. In these cases, the CCA used the larger
available degrees of freedom to fit the predictand data
more accurately (increased hindcast skill) but at the
expense of the forecast skill. We still cannot rule out
the possibility that some very high eigenmode of Y that
we have neglected could increase forecast skill, but we
know of no way to evaluate this possibility in a satis-
factory manner. :

Predictand truncation limit, ¢. The filtering rules were
used to estimate g in (A2). In general, this approach
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was satisfactory to resolve the large-scale skill patterns.
However, we noted at least one problem on a very
local level with this procedure. As noted in section 4bl,
one would have expected persistence to be more skillful
than it was in this study for the two stations on the
California coast. It was found that these stations dom-
inated eigenmodes 5-7 in the EOF approximation of
T (cf. A2). However, the objectively determined ex-
pansion cutoff, g, was 3. Therefore the model had no
chance to forecast the local variability associated with
these stations. Thus, the station forecast skill found in
this study must individually be thought of as lower
limits for there may be isolated, local processes that
could increase the skill at specific stations, e.g., persis-
tence near large bodies of water (Namias, 1978; Van
den Dool et al., 1986). Variation of g within reasonable
limits did not affect the large-scale patterns discussed
in sections 5-7.

Canonical mode truncation limit, ¢”. Three different
approaches to estimating g” were used and the resulting
models all gave about the same result [cf. discussion
following Eq. (A14)]. In general, all approaches gave
q" values ranging from 1 to 2. Larger values of ¢” in
(A14) gave models with rapidly declining Sg values.
Further, the value of x, was generally considerably
larger and statistically distinct from the second and
higher-order canonical correlations in most of the cases
studied. In-short, we do not feel that the results pre-
sented here were sensitive to our method of select-
ing q”.

Cross validation. Calculations showed the winter
temperature data to be uncorrelated at time lags of one
year while summer data was uncorrelated at one-two
year lags. Under these conditions, the cross-validation
techniques used here are strictly valid. As an additional
check, we repeated both the January 7 prediction from
SLP and the summer T prediction from SST using an
expanded data omission window in the cross validation.
Thus, for January, both the year before and year after
t, were omitted completely from the training and test
sets. In the case of the summer forecasts, the two years
immediately before and after 7, were similarly omitted.
In both cases, the resulting skill scores, etc., were es-
sentially the same as reported above.

A further check on the robustness of the results was
obtained by using the 1930-80 data to build a predic-
tion model relating SLP to January 7. This model was
then tested on the independent, but considerably more
problematical, dataset for the period 1900-29. Again,
the results reported above were reproduced, even in
spatial detail, with surprisingly good fidelity; Sg
= 42.1% on the early period versus Sg = 46.2% for
recent times. In summary, the cross-validation ap-
proach seems to offer a satisfactory measure of model
forecast ability and significance in the a posteriori set-
ting of CCA. - :

Spatial degrees of freedom, ¢.. The estimation of
the spatial degrees of freedom is based on a normalized
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integral of the covariance between all pairs of stations
(A17). R, Livezy (personal communication) suggested
that the correlation matrix between stations might be
more appropriate in (A17). We have used this sugges-
tion and find typical values of g, by his approach are
one to two times those obtained by use of the nor-
malized covariance in (A17). Thus, the estimates of ¢,
stated in the text are, if anything, low. Our statements
regarding spatial degrees of freedom and significance
thus tend to be conservative,

Model stability. In the process of significance testing,
a total of 48 ostensibly different models must be con-
structed. Reviewing the key model parameters (1;(%),
gi- and h;-maps, u;, etc.), we found rms variations in
the model coeflicients of less than 10% over the ensem-
ble of models for the leading two canonical modes; i.e.,
the models are stable. This means the interpretations
of section 5-7 and results of section 4 are quite stable.

Multiple tests. Forecast experiments were conducted
for six individual months and two seasons. Three dif-
ferent predictor fields were used. Given these 24 ex-
periments, one might expect one of them to show an
S value significant at the 95% level simply by chance.
A “super global” significance test aimed at this problem
was conducted. Provided one of the S; values was sig-
nificant at the 0.998 (=0.95'2%), the results of this study
can be claimed significant at the 95% level. Two values
of S; exceeded this significance level while six exceeded
0.991. If one allows that the values of g, are conservative
by a factor of 2 [see above] then 13 out of 24 values
of S are significant at the 0.998 level or above. Thus,
it appears the strongest results are not due to chance
associated with multiple tests. More importantly, the
predictor/predictand patterns for the most robust ex-
periments make physical sense in the context of recent
studies of climate dynamics. Thus, while some of the
marginally significant results may be due to chance, it
seems clear that the strongest ones represent real ocean/
atmosphere relationships.

In summary, the model building procedure and sig-
nificance testing appear robust and not sensitive to the
objective methods used to determine key model pa-
rameters. The exception to this statement is the possible
omission of local features in the T-field that could in-
crease skill at a specific station.

8. Conclusions

The predictability of surface air temperature over
the United States has been investigated with advanced
statistical techniques designed to maximize predictive
skill. The ability of a form of persistence, SST and SLP
fields to forecast temperature was investigated. The
cross-validation methods used to check the models
should give a good approximation to the actual forecast
skills expected on independent data. More important,
the procedures show which space-time features of the
climate system are responsible for the predictive skill.
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The principal results of the study were as follows:

1) Analysis of the prediction models’ performance
showed that virtually all of the forecast skill found in
this study came from three climatological features: (i)
a decadal scale change in Northern Hemisphere tem-
perature, (ii) ENSO-related phenomenon, and (iii) the
“fast” development of two different large-scale coherent
structures in the atmospheric field overlying North
America and its contiguous oceans. These structures
are quasi-stationary and have lifetimes of two to three
months. However, their growth/decay cycles are highly
asymmetric in time with the decay phase being fast
relative to one month. The horizontal advection pat-
terns associated with these structures explain their
ability to predict surface temperatures.

2) The physical mechanisms responsible for the first
two predictive signals are currently unknown, although
the ENSO phenomenon is under intense study. The
physics associated with the third signal, the large-scale
structures, are also largely unknown. One can conjec-
ture that these features are due mainly to internal at-
mospheric dynamics. This conclusion is based on their
rapid, localized growth and decay, which seems to pre-
clude an external forcing (e.g., SST), and to the fact
that they are either weakly unrelated or only related
to the other two predictive signals noted above. How-
ever, there are counter arguments that make this sug-
gestion highly speculative. In any event, it is the signals
associated with ENSO and the large-scale structures
that must be understood and modeled if advances in
short-term climate prediction are to be made.

3) The average forecast skills, while highly signifi-
cant statistically, were low in numerical value and rep-
resent only a small amount of variance (5%-20%) in
the air temperature field. The exceptions to this state-
ment occurred for individual winter months of January
and February when useful forecast skills were found.
In all cases studied, the forecast skills are considerably
below the suggested values obtained in potential pre-
dictability studies. The forecast skills were stable to
model perturbation and reproduced well on a 30-year
segment of data that was totally independent of any
other aspect of this study.

4) The predictor signals are more or less common
to all of the data fields used in this study, although they
express themselves more strongly in one field or an-
other depending on phase of the annual cycle. This
means that additional forecast skill will not be obtained
by linear techniques unless they include new infor-
mation that is mutually uncorrelated with Northern
Hemisphere SST, near-global SLP and the air temper-
ature field itself.

5) The results suggest that averaging forecast scores
over many years, like averaging over wide geographic
regions, does not provide a meaningful measure of
predictability. The expected model performance itself
can be predicted at the time a forecast is made. Under
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favorable circumstances we found successful tercile
forecasts can be expected 70%-80% of the time. Future
prediction models should offer such “forecast reliability
indices™ if their results are to be really useful, for it
appears that climate forecasts cannot be made with the
same reliability from year to year.

6) It was shown that the traditional definition of
winter is not useful for forecasting purposes. This is so
because the months that make up winter are largely
uncorrelated with each other over large portions of the
United States. Further, the nature of the atmospheric
patterns that do a good job of predicting each winter

month are themselves different from each other. Under -

these conditions no single statistical model can be ex-
pected to predict the aggregate of months normally
termed winter. '
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APPENDIX
Modeling Theory

This Appendix provides a brief review of the pre-
diction methodology used in the main body of the pa-
per and described qualitatively in section 3.

1. Data compression

A key feature of our analysis involves concatenating
spatial fields of predictor data from different times so
that one can define both the space and time evolution
of the climate system that gives rise to predictive skill.
Consider as predictors the SLP field denoted by SLP
(t, , ), where t = 1, 2,- + +, n is a year counter; 7
=1, 2, - - 12 is a month counter, e.g., 7 = 1 is for
January; and 7 =1, 2,- - - |, m s a grid-point counter
in two-dimensional space. Let us now suppose we wish
to predict some temperature field 7°(¢, 7, #) in Decem-
ber (t = 12) using SLP data from the prior three months
(September, October, November, 7 = 9, 10, 11) of year
t. The composite predictor set (¥Y’) would be defined
by
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Y(x,0
SLP(,9,7) x=1,2,---,m; n=1,-++,m
=< SLP(t,10,7) x=m+1,--2m; n=1,-++,m
SLP(t,11,n) x=2m+1,-++,3m; n=1,-+ - m
(A1)

wheret=1,2,-++-,nandx=1,2,- - +,3m = p. The
predictand field 7"(x', ) is codified in the same way
over its own (possibly distinct) domain of points x’
= 1,+++, g. We build into the ¢ index of 7'(x', f) a
forecast time lead At so that T'(x’, f) comes Af units of
time later than Y'(x, 1), foreach t = 1,- - -, n. In our
work, the truncated p, g are such that g < p. This fact
allows simplifications of the algebraic theory below
(similar simplifications. can be made if p < g).

2. Prediction equations

The predictor data Y’ and predictand data 7’ are
next detrended over the span of data being used in the
model building process and centered in time, e.g.,
{(T'(x', 1)), = 0 where { ), denotes an average over ¢
=1, ++, n. We call these new datasets Y and T, re-
spectively. Decomposing them into their truncated
principal components gives .

14
Y(x’ t) = 2 Kjl/zaj(t)ej(x) X = 1’ 29 IRy

Jj=1

q .
T, 0= ZN280f(x) x'=1,2,--+,q. (A2)

=1

The separate sets of eigenvectors ¢; and f; are found in
the usual manner and are orthonormal. Principal
component truncation rules have been employed to
find p and ¢ (Preisendorfer et al., 1981). In the following
we use (p, q) to represent these truncation limits as
appropriate. The variance and physical units are carried
by the eigenvalues «; and A;. The principal components
a;() and B;(¢) are evaluated as follows. For a;(¢)

p .
a()= 2 Y(x,0)e(x), j=1,-++,p  (A3)
x=1 .

and then normalize:
aj(t) = xj_”zaj(t), t= 1, LELER I (B

Similar calculations are done for 8;(z).

Optimal representation of T in terms of Y is obtained
by first forming the set of all linear combinations of
the «; and B; in the Euclidean vector space E,:

p q
u=Ya;r; and v= 2 BiSk
k=1

(A4)

. j=1
where r and s are by construction arbitrary unit vectors
in E, and E,, respectively. For each choice of r and s
define the correlation
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(u(@v()y,=r"Cs (AS5)

where T denotes transpose and C is the p by ¢ matrix
whose elements are

cik = {5 (OBx(E) - ~ (A6)

It can be shown that the correlation of u and v in (A5)
is maximized if r and s are, respectively, the eigenvec-
tors of the systems:

[CCT]l'j=,ujzl‘j j= 1,2,+««,p
[CTClsi=mwise k=1,2,--+,q

wherer; = [ry, ryj,* -+, r,,j]'r and similarly for s;. Matrix
theory shows that the coefficient product matrices in
(A7) have the same nonzero eigenvalues (u?) and rank
[ = min[p, g] and that the r; and the s, form ortho-
normal sets of vectors in E, and E,, respectively. Re-
membering (A4), we obtain in this way the desired
canonical component vectors:

} (AT)

14 q
u;= Za,-r,-j and Vi = Zﬂis,-k.
i=1 i=1

(A8a)

The u; and the v, each form orthonormal sets of vectors
in E,.

It follows at once from (A8a) and the orthonormality
of the a; and B that

Caiut)yy,=ry and  {BiOVLD)):= Sk (A8b)

Moreover, in deriving (A7), we find, for the case ¢
< p, that

Csy = wer

cT, . } k=1,---,g<p. (A9)
k= MiSk

The p; are the non-negative square roots of the ei-
genvalues p?, j = 1,- - -, p, coming from solutions of
(AT7). These may be arranged in descending order as
follows:

Eps=1>pg > * > Mg fgrt
=eoo=p,=0 (Al0)

where s = max[0, p + g — (n — 1)]. In our work the
truncated p and g are such thatp + g < (n — 1), s0 s
= 0; hence the nondegenerate eigenvalues are u,%, - + -,
2 : 2 s
g . The remainder, namely, u?, j =g+ 1,- - +, p, are
Zero.
From (AS), (A9) and (A10), it follows that

y’l:.o

ﬂkﬁjk j,kz 1a23° *,q

0 j=g+l++p; k=1,2,--+,q
(Al1)

for the case g < p, which is the situation under study.
Thus, the u? in (A7) are seen to be the squares of the
correlations between u; and v;, and the y; are called
canonical correlation coefficients.

The above results allow us to represent the Y and T

<uj(t)vk(t)>t = [
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datasets as linear combinations of their canonical
component vectors:

p
Y(x,0)= 2 ui(t)g;(x)
' i1 (Al2a)

q
T(x', )= 2 ve(t)hi(x")
k=1

where we define

g0 =Y (x, yu; (1)), }
hi(x')y = (IO, yor(t) ),

The canonical maps g; and h;, are vectors whose com-
ponents show the correlation at a specific location (x
or x') between Y or T and their respective canonical
component time series (j or k). The g; and h, maps as
they are defined are not unit vectors nor are they mu-
tually orthogonal. It is convenient, for ease of inter-
pretation, to deal with normalized versions of the g-
maps. If these normalized maps are denoted by g,
then

(A12b)

gj(x) = g(x)/{ Z (g0}

so that
2gr=1.

Remembering that a g’ map represents a set of data
fields “stacked” in time [cf. (A 1)], the relative predictive
importance of each data field can be easily determined.
For example, using (A1), the relative predictive im-
portance (RPI) of September data is given by

m

Z 8P
x=1

while the relative importance of November, say, is
given by

3m
> (g
x=2m+1
Given the normalization of g’, these fractional sums,
when multiplied by 100, can be thought of as percent
of predictability due to predictor data in a specific
month.

The cross correlations between, say, T and the u;are,
by (Al1) and (A12),

(XN j=1,-++,q
(T, Dy (t) ) = [ e
0 ]=q+ 1" Y 7

for ¢ < p and illustrate the weighting supplied by the
canonical correlation coefficient y;.

We wish to represent the n-dimensional predictand
vector T(x',+) = [T(x', 1), - -, T(x', n)]" by a linear
combination of the canonical component vectors u; of
the predictor dataset. Geometrically, this is accom-
plished by recalling (A11) and then projecting the T

(A13)
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vectors onto the g-dimensional vector space spanned
by the first gof the w;; j = 1,+ + -, g < p. This is done
by first forming the n X # projection matrix

q
— nT
Pu = 2 u;u;
Jj=1

which has the properties
P =P, and P,P,=P,.-
Then the least-squares estimate of T by Y is

T, -)=P,T(x',+)
ie., by (A13)
q”

T, 0= 2w Ohy(x')

j=1
x'=1---,9"<q
(A14)

As a final note, the appropriate number of ¢” < g ca-
nonical modes to retain in (A14) for the prediction 7°
can be estimated in several ways. (a) The most obvious
alternative is simply to observe the ¢” value for which
the global forecast skill, if significant, was a maximum.
This approach has an a posteriori character, but it also
does measure the forecast abilities of the model whereas
the next two methods measure the significance of the
hindcast model. (b) One could also choose to terminate
the summation (A 14) in a manner consistent with the
method used to select p and g in (A2) (cf. Preisendorfer
et al., 1981). Specifically, we select an n X pY set and
an n X ¢gT set from a population of independent, nor-
mally distributed random numbers and estimate the
i precisely as noted above for the “real” datasets. This
is done for many realizations of (¥, T'), allowing us to
build a probability distribution function for each g
expected from a “no skill” situation, i.e., Y and T un-
correlated. The y; for the actual data are compared,
for each k, with the distributions for the random case,
and the summation terminated at g” when the uj;, could
with probability 0.05 have come from the random
population. (c) Alternatively, we could use the same
Monte Carlo procedures and the “nesting strategy”
proposed by Barnett and Hasselmann (1979) on the
u to determine the model order. All three criteria pro-
duced essentially the same cutoff ¢” values, typically 1
to 2. We chose the first method, which maximized

- global forecast skill, for our present study and so used
that to guide our choice of ¢”.

t:l’cl- LA

3. Estimating forecast skill: '_I‘he strategy

The methods of “cross validation” were used to es-
timate the model’s true forecast skill. The approach
goes as follows. Suppose we have n + 1 time samples

of the raw Y and T fields. We refer to each of these .

data fields at a given time as a data map. For some
time index v, 1 < v < n+ 1, we remove the vth predictor
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and predictand data maps, denoting them by Y"(x, »)
and 7"(x', v). We next relabel, in a sequential fashion,
the remaining # time indices of the remaining data
maps. In this way we obtain at x, x’, two raw training
sets {Y'(x, tlv): t = 1,+ - -, n}and {T'(x, th): t = 1, - -,
n} indexed for each v precisely as (Y, T') in section A1
above with the removed predictor and predictand pair
indexed as Y'(x, n + 1|v) and T'(x', n + 1|»).

The procedures of section A2 are next followed ex-
plicitly to construct (train) the forecast model (A14).
This includes finding, e.g., the present magnitudes of
u;(v) and A;(x'|v) for the vth cross-validation case. This
model is then tested on the predictor/predictand map
pair that were withheld from the analysis. The proce-
dure is as follows:

(a) Remove from Y'(x, n + 1|v) and T'(x', n + 1|»)
the trend and means found for the »th (Y, T') set.
Deriote the resulting data by Y(x, n + 1|v) and T{x', n
+ 1p).

(b) Use (A3) to estimate a;(n + 1|v) where the re-
quired «;(v) and e;(x|v) are those obtained from the
current vth training set.

(c) Find the r; by means of (A7) and use (A8a) to
compute u;(n + 1{v) from a;(n + 1|p).

_(d) From (A14) and u;(n + 1|v) obtain the estimate
T(x', n + 1|v) which then can be compared directly
with the observed T(x', n + 1|»).

The above process is repeated n + 1 times, sequen-
tially omitting a single data map pair (Y”, T") each
time. The result is a series of n + 1 forecast data maps
T,, each of which can be compared directly with the
observed map T,. :

4. Estimating forecast skill: The method

There are numerous scoring methods that are avail- .
able to test the predictive skill of (A14). The cross-
validation approach gives us the opportunity to esti-
mate true model forecast, not hindcast, performance.
The skill levels were anticipated to be low. Therefore,
we chose a liberal approach to scoring that is a variation
of the standard tercile approach. First separate at each
x' the observed values of T, into three equally divided
classes (terciles), e.g., above, normal and below cate-
gories. Next tercile the T, according to its own distri-
bution of values at each x'.

The pairs of (T,, T,) for a specific predictand loca-
tion, x’, are checked to see if their respective terciles
agree, e.g., “A” forecast and “A” observed. If they do,
the forecast is correct. The total number correct (V)
is used to get the percent correct and hence the local

skill Sy (at x'):
. N,
St = lOO(n n 1) .

The significance of this number may be determined by
comparison with the Stochaster’s (the random fore-

(A15)
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caster’s) binomial distribution for its number of correct
forecasts. The average local skill, S, provides easy ref-
erence to the skill maps and is obtained by simply av-
eraging the 33 values of Sy obtained in the forecast
experiments.

In any one particular experiment there are g such
measures of local skill, one for each predictand station
x'=1,- -+, q. If all stations were independent of each
other the binomial distribution could be used again to
estimate the significance of the global skill, S, where

Sg= 100(%)
q

and N; is the number of stations that had significant
Sz . When stations are correlated with each other, one
must use other procedures, as pointed out by Livezey
and Chen (1983). Essentially, g must be replaced by
the effective number g, of independent stations, and N,
must be similarly reduced, i.e., N = Ny(q./q). One may
then use (g., N5) in the binomial distribution to esti-
mate the significance of S. Here g, would be the num-
ber of independent binomial trials and N’ the number
of successes out of those trials.
The value of g, may be estimated from

(Al16)

q q =1
> 2 leyl
' (A17)

where the prime denotes [ # j and where
Cij = <T(xia t)T(xj’ t)>l
0_[2 = <nxi9 t)2>t-
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