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A S I M P L E  G E N E R A L  P R O C E D U R E  F O R  O R T H O G O N A L  R O T A T I O N  

ROBERT I. JENNRICH 
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A very general algorithm for orthogonal rotation is identified. It is shown that when an algorithm 
parameter a is sufficiently large the algorithm converges monotonically to a stationary point of the rotation 
criterion from any starting value. Because a sufficiently large a is in general hard to find, a modification 
that does not require it is introduced. Without this requirement the modified algorithm is not only very 
general, but also very simple. Its implementation involves little more than computing the gradient of the 
rotation criterion. While the modified algorithm converges monotonically from any starting value, it is not 
guaranteed to converge to a stationary point. It, however, does so in all of our examples. While motivated 
by the rotation problem in factor analysis, the algorithms discussed may be used to optimize almost any 
function of a not necessarily square column-wise orthonormal matrix. A number of these more general 
applications are considered. Empirical examples show that the modified algorithm can be reasonably fast, 
but its purpose is to save an investigator's effort rather than that of his or her computer. This makes it more 
appropriate as a research tool than as an algorithm for established methods. 

Key words: factor analysis, quartimax, varimax, orthomax, simultaneous rotation, simultaneous diagonal- 
ization, singular value decomposition, pairwise methods, global convergence. 

1. In t roduc t ion  

Le t  A be  a fac tor  load ing  ma t r ix  and  let  Q (A)  be  the  va lue  o f  an  o r t h o g o n a l  ro ta t ion  crite- 

r ion  at  A.  C o n s i d e r  m a x i m i z i n g  Q ( A )  over  all  ro ta t ions  A o f  an  ini t ia l  load ing  m a t r i x  A, tha t  is 

ove r  all  

A = A T  

w h e r e  T is an  a rb i t ra ry  o r t h o g o n a l  mat r ix .  A n o t h e r  way  to say this  is tha t  we  w a n t  to m a x i m i z e  

the  func t ion  

f (T) = Q(AT)  (1) 

ove r  all  o r t h o g o n a l  ma t r i ce s  T.  

M o r e  genera l ly  let  f b e  an  arb i t ra ry  func t ion  def ined  on  a subse t  o f  p b y  k ma t r i ce s  wi th  p _> 

k tha t  con ta ins  all  o f  the  p by  k c o l u m n - w i s e  o r t h o n o r m a l  ma t r i ces  3 4 .  We  wi sh  to m a x i m i z e  f 

ove r  3 4 .  C o n s i d e r  the  fo l lowing  s imple  a l g o r i t h m  for  this  purpose .  

C h o o s e  c~ _> 0 and  a T in M .  

(a) C o m p u t e  G = d f / d T .  

(b) F i n d  the  s ingu la r  va lue  d e c o m p o s i t i o n  U D V  I of  G + c~T. 

(c) Rep l ace  T b y  U W  and  go  to (a) or  stop. 

Here  d f / d T  is the  m a t r i x  of  par t ia l  der iva t ives  o f  f at  T. In m o s t  m a t r i x  l anguages  step (b) 

is a s ingle  l ine  o f  code.  We  wil l  cal l  th is  ve ry  s imple  a l g o r i t h m  the  bas ic  s ingu la r  va lue  ( B S V )  

a lgor i thm.  It  m a y  no t  conve rge  to any th ing  o f  in te res t  and  in fact  m a y  no t  even  b e  defined,  bu t  

we  wil l  show that  u n d e r  very  genera l  cond i t ions  i t  is def ined,  a n d  w h e n  c~ is suff ic ient ly  large  it  
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is monotone, and convergent to a stationary point from any starting value. Unfortunately, finding 
a specific sufficiently large o~ may not be easy. For this reason we will show how to modify 
the BSV algorithm so that a specific o~ is not required. The resulting algorithm is still simple 
and monotone from any starting value, but our theory does not guarantee it will converge to a 
stationary point. In all our examples, however, it has never failed to do so. 

A number of authors have used BSV algorithms without identifying the structure dis- 
played above. The simultaneous varimax algorithm introduced independently by Horst (1965) 
and Sherin (1966) and its extension to orthomax rotation by Mulaik (1972) are BSV algorithms 
with o~ = 0. Ten Berge's (1984) singular value decomposition algorithm for simultaneously di- 
agonalizing a set of symmetric matrices in the least squares sense is also a BSV algorithm with 
o~ = 0. Kiers' (1990) algorithm for optimizing a class of matrix functions is a BSV algorithm 
using a carefully specified positive o~ as is the algorithm of Kiers, ten Berge, Takane, and de 
Leeuw (1990) for DEDICOM rotation. 

We will provide a simple general motivation for the BSV algorithm based on majorization 
and show that the algorithms mentioned above and others are in fact BSV algorithms. General 
discussions of majorization algorithms may be found in de Leeuw (1994) and Heiser (1995). We 
will derive some basic convergence properties of the BSV algorithm under the assumption that o~ 
is sufficiently large and show that such an o~ always exists. Included are some important properties 
not previously demonstrated, including convergence to a stationary point. As mentioned, we will 
show how to modify the BSV algorithm when a sufficiently large c~ is not known. Finally, we will 
look at a number of specific applications to demonstrate that the modified algorithm is simple 
to use, widely applicable, and can be reasonably efficient. It is, however, the simplicity and 
generality of the modified algorithm, rather than its efficiency, that makes it attractive. 

2. Derivation of the BSV Algorithm 

Given matrices A and B of the same size, let (A, B) = tr(AIB). This is the Frobenius 
product of A and B, and 11A 11 = (A, A) 1/2 is the Frobenius norm of A. Let 7~ be the set of all p 
by k matrices and let 

= I x  ~ R : IlXll ± v~}. 

Since for any T in jr4, II Tll = x/~,/3 contains jr4. Assume f is defined and twice continuously 
differentiable on/3. Let T be a matrix in jr4. We will view this as the current value of T and 
eventually update it. For any X in T~ let 

1 
f ( X )  = f ( T )  + (G, X - T) - ~llX - TII 2 (2) 

where G = d f / d T  is the gradient of f at T. Clearly f and f have the same value at T. It is 
shown in the Appendix that the gradient of f at T is G and hence f and f have the same gradient 
at T. It is also shown in the Appendix that if f is twice continuously differentiable on 13, then 
there is an o~ such that f _> f on/~. Thus for o~ sufficiently large 

f ( T )  _> f ( T )  (3) 

for all i? in AA. Assume (3) holds for a given o~ and assume that for some i? in AA, f ( i?)  > f ( T ) .  
Then 

f ( T )  >_ f ( T )  > f ( T )  = f ( T ) .  

Thus f ( T )  > f ( T )  implies T(T) > T(T).  In words, increasing the value of f over its current 
value increases the value of f over its current value. We will show that the BSV algorithm 
proceeds by repeatedly maximizing f over AA. Because under condition (3), f majorizes f on 
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34, the BSV algorithm is called a majorization algorithm when c~ is sufficiently large to satisfy 
condition (3). 

We turn now to maximizing f over 34. By expanding (2), one can show that for any i? in 
34 

f ( 7  a) = const + (G + c~T, i?) 

where "const" is a constant with respect to T. Cliff (1966) has shown that for any column-wise 
orthonormal matrix S and any fixed mar ix  M of the same size, (M, S) is maximized when 
S = U W  where U D W  is any singular value decomposition (s.v.d.) of M. Using this result, 

= U W  maximizes f over 3A if U D W  is a s.v.d, of G + aT .  One might proceed by replacing 
T by i ~ and repeating the procedure just described until it hopefully converges. This is the BSV 
algorithm defined in section 1. When c~ is sufficiently large it is a majorization algorithm that 
increases, or at least does not decrease, the value of f at each step. It is this that motivates the 
BSV algorithm. 

In the context of factor analysis rotation it is shown in the Appendix that 

G = A , d ~  0 .  (4) 
dA 

This result and other differentiation results we need may be obtained in a number of ways. The 
most elementary, but often the most tedious, is to express the function to be differentiated explic- 
itly in terms of the components of its argument and then compute partial derivatives. A particu- 
larly nice approach is to use differentials. This is the approach used in the matrix calculus book 
by Magnus and Neudecker (1999). We illustrate the use of differentials in the Appendix where 
almost all the gradients we need are derived. 

The quartimax criterion (Neuhaus & Wrigley, 1954) can be written in the form 

1 
e ( A ) -  (5) 

where the )~ir are the components of A. Differentiating gives 

dQ = A3 
dA 

where A 3 is the element-wise cube of A. Thus for quartimax rotation 

G = A/A 3. 

We show in section 5 that for quartimax rotation ce = 0 is sufficiently large to satisfy, 
condition (3). The MATLAB computer code for the quartimax BSV algorithm with c~ = 0 is as 
follows: 

for iter = 0:5 

L = A.T; 

G = A'*(L.~3); 

[U,S,V] = svd(G); 

T = U*V'; 
end 

Clearly this is simple. To illustrate this algorithm we applied it to a random rotation of a 100 
by 10 loading matrix with perfect simple structure to see if it could recover the perfect simple 
structure. A loading matrix has perfect simple structure when it has at most one nonzero element 
in each row. To show convergence, recall that for orthogonal rotation maximizing the quartimax 
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criterion is equivalent to minimizing the quartimin criterion (Carroll, 1953) 

Q*(A) = Z Zr#s()~r2, )~s 2) (6) 

where kr 2 is the r-th column of A 2 the element-wise square of A. The quartimin criterion has 
the property that Q* (A) = 0 if and only if A has perfect simple structure. Thus monitoring the 
quartimin value allows one to view convergence to perfect simple structure. Inserting code into 
the program above to output the value of Q* (A) at each iteration gave: 

Iter Quartimin 

0 77.3442 
1 56.9363 
2 26.2816 
3 5.8018 
4 0.0585 
5 0.0000 

On this example, the BSV algorithm with c~ = 0 converged to a perfect simple structure so- 
lution in 5 iterations. Assume now that an investigator wonders what would happen if the )~4 r 
in the quartimax criterion were replaced by I)~ir 13. That is, what would happen if Q(A) for the 
quartimax criterion were replaced by 

1 

Assuming it has not already been named, we will call this the cubimax criterion. For cubimax 

d Q  = A2. sign(A) 
dA 

where sign(A) is A with its components replaced by their signs ( - 1 ,  0, 1) and "." denotes the 
element-wise product. Replacing the formula for G in the computer code above by 

G = A I ( A  2 • sign(A)) 

gives a BSV algorithm for cubimax rotation. When applied to the quartimax data used above 
it converged in 5 iterations to a A with perfect simple structure. Apparently maximizing the 
cubimax criterion also recovers perfect simple structure when it exists. This can be proved ana- 
lytically, but for the author it was first discovered empirically. One might also want to compare 
cubimax to varimax (Kaiser, 1958). Again, all that is required is finding a formula for the gradi- 
ent of the varimax criterion and changing one line of code. This is done in section 6. Clearly this 
approach makes very efficient use of an investigator's time if not that of his or her computer. 

3. Convergence of the BSV Algorithm 

We would like the iterates T of the BSV algorithm to converge to a maximizer or at least to 
a stationary point of f restricted to 34. 

The strongest evidence in support of some form of convergence to date is that, as indicated, 
specific forms of the BSV algorithm have been used successfully by a number of authors. 

On the theoretical side, Sherin (1966) has observed that a fixed point of his algorithm, that 
is an orthogonal matrix T that doesn't change when his algorithm is applied to it, is a stationary 
point of f .  Ten Berge, Knol, and Kiers (1988) have shown that for the problem of simultaneously 
diagonalizing a set of symmetric matrices, the singular value decomposition algorithm of ten 
Berge (1984) is monotone provided the matrices are nonnegative definite. Here monotone means 
only that the algorithm is nondecreasing, that is f ( T )  > f ( T )  where i? is the update of T 
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produced by the algorithm. Kiers (1990) has shown that his algorithm for optimizing a class of 
matrix functions is also monotone as have Kiers, ten Berge, Takane, and de Leeuw (1990) for 
their DEDICOM algorithm. We will show that these results hold for any BSV algorithm when c~ 
is sufficiently large and we will provide some important additional results. 

It is shown in the Appendix that if g is a scalar valued function defined and differentiable 
on 13, then T in M is a stationary point of g restricted to M if and only if for some symmetric 
matrix S 

G = TS (7) 

where G = dg/dT is the gradient of g at T. The following is a basic theorem for our develop- 
ment. 

Theorem 1. If c~ satisfies condition (3) and T is not a stationary point of f restricted to 34, 
then 

f (T )  > f (T )  

where i? = UV I is the update defined by the BSV algorithm. 

Proof Since T is not a stationary point of f restricted to 34, it follows from (7) and the 
fact that f and f have the same gradient at T, that T is not a stationary point of f restricted 
to M .  Thus T cannot maximize f restricted to M because if it did, it would have to be a 
stationary point of f restricted to 34 (Kaplan, 1999, p. 97). Since i? maximizes f restricted to 
M,  f (T )  > f (T) .  Using (3) and the fact that f and f have the same value at T 

f (T )  ~ f (T )  > f (T )  = f (T )  

which completes the proof. [] 

There are a number of important consequences of Theorem 1. If c~ is sufficiently large to 
satisfy condition (3), it implies that the BSV algorithm is monotone and its fixed points are sta- 
tionary points. Note also that f ( i?)  = f (T )  implies T is a stationary point. Under the assumption 
that the mapping T --+ i? defined by the BSV algorithm is continuous, it follows from Theorem 
1 and the Zangwill global convergence theory (see, e.g., Luenberger, 1984, p. 183) that indepen- 
dent of the initial value of T, any limit point of the iterates produced by the BSV algorithm will 
be a stationary point of f restricted to 34. We will show in the Appendix that this is true even if 
the mapping T --+ i? is not continuous. This is global convergence in precisely the same sense as 
that enjoyed by the well known EM algorithm (Dempster et al., 1977) which is also a majoriza- 
tion algorithm (Heiser, 1995) and arguably the best known majorization algorithm. Because 34 
is closed and bounded, the iterates produced by the BSV algorithm must have at least one limit 
point. In practice there is only one and the iterates converge to it. If there is more than one, all 
such limit points are stationary points. In either case we will simply say the iterates converge 
to a stationary point. The term global convergence used in conjunction with the Zangwill global 
convergence theory is a bit misleading. It does not mean that the iterates converge to a global 
maximizer of f restricted to M ,  but rather that the convergence is global with respect to the 
starting value. That is, from any starting value the iterates converge to a stationary point of f 
restricted to M .  

The importance of Theorem 1 is that knowing only that a fixed point of an algorithm is 
a stationary point or knowing only that the algorithm is nondecreasing does not imply any of 
the other properties of the previous paragraph. For example, knowing only that an algorithm is 
monotone does not imply that it converges to anything of interest. Its limit need not even be a 
stationary point of f restricted to M .  Thus Theorem 1 significantly extends the theoretical results 
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of the authors mentioned in the third paragraph of this section. Most importantly it implies that 
their algorithms are not only monotone, but actually converge to stationary points. 

To measure the speed o f a  BSV algorithm we need a stopping rule. For this we need a simple 
way to identify stationary points. It is shown in the appendix that T is a stationary point of  f 
restricted to A.4 if and only if 

v = I l skm(T 'G) l l  + I1(I - TT ' )GI I  (8) 

is zero. Here G is the gradient of f at T, skm(M) = ½ (M - M')  denotes the skew-symmetric 
part of  a square matrix M, and I is an identity matrix. Note that the second term on the right in 
(8) is zero when T is an orthogonal matrix. We will use v as an index to measure convergence 
and stop when v < 10 -6. 

One can generalize the BSV algorithm a bit by letting ce be a function of  T. Another gener- 
alization is to replace ce T in step (b) by T W where W is a positive definite matrix or in the case 
when T is square by W T .  In both cases W may be a function of  T. As before, if the resulting 
algorithms are majorization algorithms they are globally convergent to stationary points. This is 
shown in the appendix. Kiers and ten Berge (1992) show that for their algorithm an appropriate 
choice of  W can improve the speed of the resulting BSV algorithm. 

Note from (2) that as ce --+ oc the step ic - T --+ 0. Thus using values of  ce larger than 
necessary may slow the BSV algorithm and indeed seems to do so in one of  our examples. 

4. Removing the Requirement that ce Be Sufficiently Large 

A serious problem with using the BSV algorithm as a majorization algorithm is the necessity 
to find a specific ce that, in fact, makes it a majorization algorithm. This usually requires a detailed 
study of the specific rotation criterion used and may involve a substantial theoretical eflbrt. While 
this seems appropriate for well established rotation criteria, it is a definite handicap in developing 
and studying new ones. Moreover, each new criterion requires finding a new ce, and it is not at 
all clear how to find an appropriate ce in general. Thus, used as a majorization algorithm, the 
BSV algorithm is neither simple nor general. One may, however, get around the appropriate ce 
problem by dropping the requirement that the BSV algorithm be used only as a majorization 
algorithm. 

For example, one might simply run the BSV algorithm with an arbitrary ce and starting value 
T. If  it converges monotonically to a stationary point, one is little motivated to search out an ce 
whose use will guarantee monotone convergence to a stationary point, at least not for the problem 
at hand. 

Alternatively, one might use the following modification of  the BSV algorithm. Given any 
real ce, any Ace > 0, and any starting value T in 3A: 

(a) Run one step of the BSV algorithm using the current values of  ce and T. 

(b) If  the step in (a) increases the value of f ,  replace T by its update and go to (a). 

(c) If  the step in (a) does not increase the value of f ,  replace o~ by ce + Ace and go to (a). 

This algorithm is clearly monotone. If  during the iterations ce becomes large enough to make 
this modified BSV algorithm a majorization algorithm, it must converge to a stationary point. 
Also, if it reaches a point after which it fails to move, it must be at a stationary point. Otherwise 
ce will eventually become large enough to make it a majorization algorithm, at which point it 
must move in step (b). Convergence to a stationary point, however, is not guaranteed by our 
theory. Nevertheless, in all of  our examples this has never failed to happen. This is a common 
situation. The Fisher scoring and Newton algorithms are often modified to make them monotone, 
but the modifications used do not guarantee convergence to a stationary point. These modified 
algorithms, however, usually converge to stationary points and are extensively used. 
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The modification of the BSV algorithm described depends on two parameters c~ and Ac~. 
Their choice can effect the speed of the modified algorithm. In our examples we had no difficulty 
finding satisfactory values for these parameters. 

5. The BSV Algorithm for Quartimax Rotation 

We begin by showing that for quartimax rotation c~ = 0 is sufficient to satisfy condition (3). 
It is shown in the Appendix that if f is convex on 13, then 

7_>f 
on 13 when c~ = 0. Hence it is sufficient to show f is convex on 13. To this end note that )~4 r 

is a convex function of "~ir. Since "~ir is a linear function of A, )~4 r is a convex function of A. 
Using (5) the quartimax criterion Q(A) is a convex function of A because it is a sum of convex 
functions of A. Since A X  is a linear function of X, 

f ( X )  = Q(AX)  

is a convex function of X for all X in TC 
To demonstrate the convergence of the BSV algorithm and show that it is not painfully 

slow, we compared it to the standard pairwise (PW) algorithm (Neuhaus and Wrigley, 1954). 
Both were applied to a number of randomly generated initial loading matrices. Because for the 
most part efficiency is important only for large loading matrices, we consider only the case of 
100 by 10 matrices. Let 

A0 = I • u (9) 

where I is a 10 by 10 identity matrix, u is a 10 component column vector of ones, and ® denotes 
the Kronecker product. Then A0 is a 100 by 10 loading matrix with perfect simple structure. We 
will consider initial loading matrices that are random rotations of A0. 

Let Z be a 10 by 10 random matrix whose components are independent standard normal 
variables and let QR be a QR factorization (Golub & van Loan, 1989) of Z. Then Q is a random 
orthogonal matrix, that is one that is uniformily distributed over the group of orthogonal 10 by 
10 matrices and 

A = AoQ 

is a random rotation of At. Using this method 100 loading matrices were generated and rotated 
using the BSV and PW algorithms. Using (8) we declared these algorithms converged when 

[[skm(T'G)]] < 10 -6. (10) 

When this happens the solutions obtained are to a good approximation stationary points of 
the quartimax criterion. This happened in every case for both algorithms. Moreover, both al- 
gorithms converged to perfect simple structure solutions in every case. To measure speed the 
number of floating point operations (FLOPS) in multiples of 10,000 required for convergence 
were recorded. The mean number of FLOPS required are given in Table 1 under the heading 
Problem 1. 

On this problem the BSV and PW algorithms have about the same speed. 
To see what happens when A0 does not have perfect structure, A0 was replaced by a con- 

taminated form 

A~ = A0 + .2 U 

where U is a 100 by 10 matrix of ones. Using 100 random rotations of A~ both the BSV and 
PW quartimax algorithms converged to a stationary point in every case and in every case their 
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TABLE 1. 
The average number of FLOPS in multiples of 10,000 for convergence of the quartimax BSV and PW 
algorithms for the perfect simple structure case (Problem 1), the less than perfect simple structure case (Problem 
2), and the unstructured case (Problem 3). 

P rob lem 1 Prob lem 2 Prob lem 3 

B S V  46.88 163.47 2844 

P W  53.18 102.18 896 

function values f differed by less than 10-12 The mean number of FLOPS required are given in 
Table 1 under the heading Problem 2. For this problem the PW algortihm was about 50% faster 
than the BSV algorithm. 

Using a totally random initial loading matrix both algorithms are much slower. Using 100 
initial loading matrices whose components were realizations of independent standard normal 
variables, both algorithms converged to stationary points in every case. In 89 cases the function 
values f differed by less than 10 - 1 2  and in the other cases the difference exceeded 0.4. Among 
these the function value for the BSV algorithm exceeded that for the PW algorithm 8 out of 11 
times. The average number of FLOPS in multiples of 10,000 required for convergence is given 
in Table 1 under the heading Problem 3. For this purely random loading matrix problem the PW 
algorithm is about 3 times faster than the BSV algorithm. 

In terms of the computing time required, the BSV algorithm is reasonably fast. In the totally 
random case it required roughly 30 million FLOPS. This is about 3 seconds on current desk top 
computers. Problems with structure require only a fraction of a second. 

The purpose of this section was to show that for quartimax rotation the BSV algorithm is 
not too slow to be useful, that its solutions are in fact stationary points, and that the function 
values produced are comparable to those produced by the PW algorithm. 

6. BSV Orthomax Algorithms 

The quartimax criterion is one of the orthomax family of criteria (Harman, 1960). The 
orthomax family may be written in the form 

m 

Q(A) = ( a  2, a 2 -- y a 2 ) / 4  (11) 

m 

w h e r e  A 2 is A 2 with each element replaced by the mean of the corresponding column of A 2. 

When V = 0, Q(A) is the quartimax criterion and when y = 1 it is the varimax criterion. 
It is shown in the appendix that the gradient of the orthomax criterion is 

d Q  = a .  ( a  2 - ×AT)  
dA 

which again is easy to evaluate. When Y > 0, f is no longer convex, and we cannot use the 
argument of the previous section to choose c~ = 0. We will nevertheless use this value because 
the BSV orthomax algorithm with c~ = 0 has never failed to converge to a stationary point on 
our trials. 

Using the 300 initial loading matrices from the previous section we compared the BSV al- 
gorithm for varimax rotation with the PW varimax algorithm (Kaiser, 1958). As in the previous 
section the BSV and PW algorithms converged to stationary points in every case. For the per- 
fect simple structure examples and those with structure less than perfect the converged function 
values for the BSV and PW algorithms differed by less than 10 -12 in every case. In the totally 
unstructured case the function values differed by less than 10 -1° on 86 trials and exceeded .01 on 
the others. In the latter the value for the BSV algorithm exceeded that for the PW algorithm on 5 
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TABLE 2. 
The average number of FLOPS in multiples of 10,000 for convergence of the varimax BSV and PW algorithms 
for the perfect simple structure case (Problem 1), the less than perfect simple structure case (Problem 2), and the 
unstructured case (Problem 3). 

Problem 1 Problem 2 Problem 3 

BSV 97.80 82.37 2919 

PW 76.83 194.76 1388 

out of 14 trials. The average number of FLOPS in multiples of 10,000 for the two algorithms are 
given in Table 2. 

The speeds for varimax rotation are roughly what we saw for quartimax rotation. They 
demonstrate, we believe, that for varimax rotation the BSV algorithm is reasonably efficient at 
least on the examples considered. Note, we do not claim o~ = 0 is sufficiently large to satisfy 
condition (3). In every case considered, however, using o~ = 0 gave convergence to a stationary 
point and the same function values for all of the examples with structure. 

7. Simultaneous Diagonalization 

A rotation problem of a somewhat different character is that of finding an orthogonal matrix 
T to simultaneously diagonalize a set E l , . . . ,  Ek of symmetric p by p matrices in the least 
squares sense. This problem arises in multidimensional scaling (de Leeuw & Pruzansky, 1978). 
More specifically the problem is to minimize 

k 

Z Ilndg(T~Ei T)II 2 (12) 
i=1 

over all p by p orthogonal matrices T. Here ndg(M) denotes the nondiagonal part of M. Mini- 
mizing (12) is equivalent to maximizing 

k 

f (T) = Z Ildg(T~ gi T)112/4 (13) 
i=1 

over all p by p orthogonal matrices T. Here rig(M) denotes the diagonal part of M. 
It is shown in the Appendix that 

k 

G = Z EiTdg(T~EiT) 
i=1 

is the gradient of f at T and this together with a choice of c~ defines the BSV algorithm for this 
problem. 

When c~ = 0, the BSV algorithm is the singular value decomposition algorithm of ten Berge 
(1984, Eq. (24)). As noted, ten Berge, Knol, and Kiers (1988) have shown that when the Ei are 
nonnegative definite (n.n.d.), ten Berge's singular value decomposition algorithm is monotone. 
We can assert more, namely that it is also globally convergent to a stationary point of f restricted 
to 34, the manifold of all p by p orthogonal matrices. 

To do this we must show that condition (3) is satisfied. As in section 5, it is sufficient to 
show f(X) is a convex function of X for X in B. Let xr be the r-th column of X. Then 

f ( X ) =  ZZ(x+rEixr) 2. (14) 
i r 

Note that since E¢ is n.n.d, ylrEiYr is a convex function of Xr and hence of X. Note also that 
xlrEixr > 0. Since i 2 i ~ 2 _ (XrEiXr) is an increasing convex function of XrEiXr,  (XrEixr)  is a convex 
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function of X. It follows from (14) that f ( X )  is a convex function of X because it is a sum of 
convex functions of X. 

Ten Berge, Knol, and Kiers (1988) show that ten Berge's algorithm may be used with indef- 
inite Ei by modifying the criterion (12). This is based on the observation that one may replace 
each Ei in (12) by a n.n.d, matrix Ei + Li I without changing its value at an orthogonal matrix T. 
Thus an indefinite Ei problem may be replaced by one with n.n.d. Ei. With this modification, ten 
Berge's algorithm is again a BSV algorithm with o~ = 0 and is monotone and globally convergent 
to a stationary point of f restricted to .A4. 

8. Optimizing a Class of Matrix Functions 

Kiers (1990) introduced a majorization algorithm for optimizing a class of matrix func- 
tions useful in a variety of statistical applications. We will show his rotation algorithm is a BSV 
algorithm. 

For rotation problems, the functions Kiers considers are of the form 

m 

f ( X )  = c + t r A X  + Z t r B j X C j X ~  
j = l  

(15) 

where X is any matrix in 74, c is a given constant, and A, B j ,  Cj are given matrices of appropriate 
sizes. As shown in the Appendix, the gradient of f at X is 

G = A' + Z B j X C j  + Z B S X C ~ "  (16) 

Kiers considers minimizin_g rather than maximizing f restricted to ./k4. Given T in ./k4, its update 
using Kiers' algorithm is T = U V  ~ where U D V  ~ is the s.v.d, of 

T 2~o~j (17) 

where the o~j _> 0 are defined by Kiers. Let o~ = 2 ~ o~j. Using (16) 

1 
T -  - G  = U D V  I. 

O{ 

It follows that 

- G  + a T  = U(o~D)V I. 

Since ceD is a nonnegative diagonal matrix and - G  is the gradient of - f  at T, the update 
= U V  I used by Kiers is the update used by the BSV algorithm to maximize - f  restricted to 

34 with ce = 2 ~ cej. Hence Kiers' algorithm is a BSV algorithm. Kiers shows that his algorithm 
is monotone. But he also shows that when o~ = 2 ~ o~j, condition (3) is satisfied for - f  and 
hence Kiers' algorithm is not only monotone, but also globally convergent to a stationary point. 

Kiers and ten Berge (1992) present a modification to Kiers' algorithm that is designed to 
converge faster. Kiers and ten Berge assume that some of the Cj in (15) are n.n.d, and that these 

are the first k of the Cj. Given T in 34 the new algorithm uses the update if = U V  ~ where 
U D V  ~ is the s.v.d, of 

~_~ Fj - A' (18) 
j=l 
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where 

r c j  - (Bj + B } ) r c j  j _< k 

and pj and )~j are nonnegative values specified by Kiers and ten Berge. Using (16) and some 
algebra, (18) can be expressed in the form 

- G  + T W  

where 

k m 

j=l  j=k+l 

Thus the Kiers and ten Berge algorithm is the BSV algorithm for maximizing - f with c~ T in Step 
(b) replaced by TW. Kiers and ten Berge show their algorithm is monotone, but as with Kiers' 
algorithm it follows from our general theory that it is also globally convergent to a stationary 
point. 

9. Fitting the DEDICOM Model 

Kiers, ten Berge, Takane, and de Leeuw (1990) give a method for least squares fitting of 
the DEDICOM model. They show that this may be reduced to finding a T in 34 that maximizes 
II T~YTII 2 where Y is the data matrix to be fitted. For all X in 7-£ let 

f ( X )  = IIUYXII2/2. (19) 

The fitting problem may be viewed as that of maximizing f restricted to 34. Kiers et al. update 
T in 34 by any i? whose columns are an orthonormal basis of the column space of 

YTTIYIT  + YITTIYT + 2&T 

where ~ is no less than the largest eigenvalue of the symmetric part of - Y  @ TIYT. As shown 
in the Appendix, the gradient of f at T is 

G = YTTIYIT  + YITTIYT,  

and hence the update i? is any matrix whose columns are an orthonormal basis of the column 
space of G + 2~T. One such T is given by ic = UV I where U D W  is a s.v.d, of G + 2~T. Thus 
the Kiers et al. algorithm is a BSV algorithm with o~ = 2~. The value of ~ may change from 
iteration to iteration. Kiers et al. also consider using an ~ that does not change. One such ~ is the 
largest singular value of Y @ Y which is the square of the largest singular value of Y. 

Kiers et al. show that their algorithm is monotone. They do not show that condition (3) is 
satisfied, but this follows fairly easily from their results and hence their algorithm is not only 
monotone, but also globally convergent to a stationary point of f restricted to 34. 

When ~ = 0 the Kiers et al. algorithm is the algorithm of Takane (1985). Hence Takane's 
algorithm is a BSV algorithm with o~ = 0. Kiers et al. show that Takane's algorithm need not be 
monotonic. They found, however, that this did not happen on their noncontrived examples when 
using good starting values. Moreover, on these examples Takane's algorithm was very efficient 
compared to the Kiers et al. algorithm. This shows that using values of o~ larger than necessary 
may significantly slow the BSV algorithm. 

To expand on this point we compared the modified BSV algorithm of section 4, which 
unlike Takane's algorithm is monotone, to the algorithm of Kiers et al. We used 100, 10 by 10 
data matrices Y whose components were realizations of independent standard normal variables. 
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The matrices T were 10 by 5 with initial value 

where I is an identity" matrix. For the modified BSV algorithm, ce = 0 and Ace = .1 were used, 
and for the Kiers et at. algorithm ~ was equal to the square of" the largest singular value of Y. 

Both algorithms converged to a stationary point on all 100 trials. In terms of total FLOPS 
used, the modified BSV algorithm was 4.09 times faster than the Kiers et al. algorithm. In 91 of 
the trials the values of f at convergence agreed to 12 significant digits. In two trials they agreed 
to 5 and 7 significant digits. In both of these the modified BSV algorithm had the larger value of 
f .  In the other 7 trials, they agreed to at most 2 significant digits and among these the modified 
BSV algorithm had the larger value of f on 3 trials. Clearly neither algorithm always produces 
a global maximizer. What we have shown is that the modified BSV algorithm converged to a 
stationary point in every case and with reasonable speed. 

10. Discussion 

The BSV algorithm unifies the theory of singular value rotation algorithms because many 
previous algorithms can be expressed simply as BSV algorithms, and because it provides a sin- 
gular value algorithm for essentially any rotation problem. 

We have shown that with an appropriate choice of ce, the BSV algorithm is monotone and 
globally convergent to a stationary point. Moreover, we have shown that such an ce always exists. 
We have also shown how to identify stationary points for a general rotation problem in a simple 
way. 

Finding an appropriate ce, however, can be difficult. For this reason we have shown how to 
modify the BSV algorithm so the difficult to find ce is not required. The modification is guaranteed 
to be monotone, but not necessarily convergent to stationary point. Nevertheless in all of our 
examples it has never failed to converge to a stationary point. What makes the modification 
work is the fact that an ce large enough to satisify condition (3) always exists as we have shown. 
The modified BSV algorithm is very easy to derive requiring little more than a formula for the 
gradient of f .  

The BSV algorithm and its modification will probably be slower than special purpose al- 
gorithms such as pairwise algorithms when they exist. But our examples show that the modified 
BSV algorithm is reasonably efficient in several applications. Because it tends to be easy to 
implement, its efficiency in a given context is usually easy to evaluate. 

As noted in section 3 the size of the steps produced by the BSV algorithm tend to decrease 
as ce increases. This will lead to unnecessarily slow convergence when ce is too large. A reviewer 
has pointed out this suggests the modified BSV algorithm may generally be faster than the BSV 
algorithm with ce large enough to guarantee it is a majorization algorithm and this, indeed, hap- 
pened with the DEDICOM example in section 9. 

Although the BSV algorithm was reasonably fast in our examples, one should not conclude 
this will be true for all applications. We know from our experence with the EM algorithm that 
majorization algorithms can be painfully slow (see, e.g., Jamshidian and Jennrich, 1977) and it 
seems likely that this will be true for the BSV algorithm as well. It will depend on the application. 

11. Appendix 

11.1. Differentials and Matrix Calculus 

Differentials are discussed in most advanced calculus texts, for exmnple, Buck (1956) and 
Loomis and Sternberg (1968). A book length treatment of differentials in the context of matrix 
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calculus is given by Magnus and Neudecker (1999). We will show how to use differentials to 
compute gradients for functions of interest to us. 

Let d fx  denote the differential of a function f at X. The differential dfx  is a linear function 
whose value at d X  is denoted by dJx(dX) .  We will use the following. If f is scalar valued then 

d f x ( d X )  = (M, dX)  

for all dX,  if and only if, M = d f / d X ,  the gradicnt of f at X. 
As an example of using differentials, consider finding the gradient of f at X when 

f ( X )  = Q(AX).  

Let A = AX.  Using the chain rule 

dfx  (dX) = d QAX (AdX)  = d QA (AdX)  

- = ( d I ~ A , A d X ) = ( A ' ~ A , d X  ) • 

Thus 

d f  _ A, dQ 
d X  dA 

As another example, consider finding the gradient of f given by (2) at T. Equation (2) may 
be written in the form 

Differentiating gives 

Thus 

6l 
f ( x )  = f ( T )  + (G, X -  T) - - ~ ( X -  T, X -  T). 

d f x ( d X )  = (G, dX)  - c~(X - T, dX) 

= (G - o:(X - T), dX).  

di 
= G -  c~(X - T) 

d X  

which at X = T is G. 
As another example, consider finding the gradient of the DEDICOM criterion (19). For this 

d f x ( d X )  = (X 'YX,  d X ' Y X  + X~YdX) 

= (XfYfX, XIYfdX)  + (XIYX,  XIYdX)  

= ( Y X X f Y f X  + YrXXIYX,  dX).  

Thus the gradient of f at X is 

Y X X I Y t X  + YIXXIYX.  

As another example, consider finding the gradient for Kiers' criterion (15). This may be 
expressed in the form 

f (z) = c + (A', x)  +  (BjX, XCj). 
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Viewing (Bj X, XC)) as a function of X its differential is given by 

d(BjX, XC}) = (BjdX, XC}) + (BjX, dXC}) 

= (dX, B}XC}) + (BjXCj,  dX) 

= (BjXCj + B}XC), dX). 

Thus 

dfx(dX) = (A',dX) + ( Z ( B j X C j  + B5XCS),dX ) , 

and the gradient of f at X is 

A' + Z ( B j X C j  + B}XC~). 

As another example, consider finding the gradient of the simultaneous diagonalization cri- 
terion (13). This can be written in the form 

k 

Thus 

f (X) = Z(dg(X 'E i  X), dg(X'Ei X))/4. 
i=1  

dfx(dX) = Z(dg(X 'E iX) ,  dg(X'EidX)) 

= Z(EiXdg(X 'E iX) ,  dX). 

Hence the gradient of f at X is 

Z Ei Xdg(XtEi X). 

As a finn example, consider finding the gradient of the or'thomax criterion. Let C be the p 
by p matrix with all of its components equal to 1/p. Note that C is idempotent, that is CC = C. 
For any p component column vector x 

C x= " 
2 

where 2 is the mean of the components of x. Using C the orthomax criterion (11) can be written 
in the form 

Q(A) = (A 2, (I - vC)A2)/4. 

Thus 

d Q A ( d A ) = ~ ( A . d A , ( I - v C ) A  2 ) +  (A 2 , ( I - Y C ) ( A . d A ) )  

= (A • dA, (l - yC)A2)) 

= (dA, A • ((l  - yC)A2)).  
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Hence 

dO = A .  ((I - yC)A 2) = A-  (A 2 - y~-Y). 
dA 

11.2. Stationaty Points 

Let g be a scalar-valued function defined and differentiable on/3. A matrix T in 34 is 
a stationary point of g restricted to 34 if and only if it satisfies the first order Kuhn-Tucker 
condition (Kaplan, 1999, p. 97). That is, if and only if the gradient of the Lagrangian 

g(X) = g(X) + (S, X 'X  - I) 

is zero at T for some symmetric matrix S. Differentiating 

dgr(dX) = dgr(dX) + 2(S, T~dX) 

= (G + 2TS, dX) 

where G is the gradient of g at T. Thus the gradient of g. at T is 

G + 2 T S ,  

and T is a stationary point if and only if 

G = TS (20) 

for some symmetric matrix S that may differ from that in file previous equation. 
We wish to express condition (20) without using S. Note that the following statements are 

equivalent 

G = T S  

G = TTIG, T IG= S 

( I -  T T ' ) G = O ,  s k m ( T ' G ) = 0  

Thus T is a stationary point if and only if 

v = tl(I - TTI)GII + tlskm(UG)tl 

is zero. 

11.3. Showing f > f on 15 when a Is SuJficiently Large 

We will show that when f is twice continuously differentiable on B, there exists an ~ such 
that f > f on/3. 

Let H(X) denote the Hessian of f at X. This is a pk by pk matrix. Because tlg(X)ll is 
a continuous function of X for all X in B and because B is closed and bounded, IIH(X)II is 
bounded above for all X in/3 by some constant, say g. Recall that for any matrix product AB, 
IIaBII _< Ilall IIBII. Thus 

lu 'g(X)ul <_ tlg(x)llllull 2 < ×llull 2 (21) 

for all X in B. 
Differentiating f gives 

32/ 
OxirOXjs 
_ _  - -  ~ Y ~ i j ( ~ t . s  
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where (~ij is one when i = j and zero otherwise. This defines the Hessian/4 of f at X. More 

precisely H = -c~I where I is a pk  by pk  identity matrix. Then 

u ' Y t  u = -o~llull 2. 

It follows from (21) that u~H(X)u > - g  Ilu II 2 and hence 

u ' ( H ( X )  - ffI)u >_ (el - g)llull 2. 

Thus when c~ > g the Hessian of f - f is n.n.d, on/3 and hence f - f is convex on/3. Since f 
and f have the same gradient at T, f - f has gradient zero at T and hence T minimizes f - f 
over/3. Thus 

f - f > f ( T )  - f ( T )  = 0 

on/3 because f and f have the same value at T. Hence f _> f on/3 when a is sufficiently large. 

11.4. Showing c~ = 0 Is Sufficiently Large when f Is Convex 

We will show that when f is convex and differentiable on/3, o~ = 0 is sufficient to satisfy 
condition (3). 

When o~ = 0, f is linear and hence f - f is convex. Since f - f has gradient zero at T, T 
minimizes f - f over/3. Thus 

f - f > f ( T )  - f ( T )  = 0 

on/3. Thus f > f on/3 and condition (3) is satisfied when a = 0. 

11.5. Global Convergence without Assuming the Basic Algorithm Is Continuous 

Let g be the function used in the BSV algorithm to map G + c~T into the triplet (U,D,V) 
that defines its s.v.d. U D V  ~. In this notation 

(U, D, V) = g ( V  f ( T )  + c~T) 

where V f ( T )  is the gradient of f at T. I fg  is continuous, the left-hand side is a continuous func- 
tion of T. Moreover, the function that defines the BSV algorithm, that is the function that maps 
T into U V  ~, is continuous. As noted above, when the function that defines the BSV algorithm 
is continuous and c~ is sufficiently large to satisfy condition (3), the basic algorithm is globally 
convergent. While it is tempting to believe that any algorithm one's computer uses to compute 
values of g is continuous, one generally doesn't actually know this, and in fact such an algorithm 
may not exist. Fortunately, for global convergence one does not need g to be continuous, as we 
will show in this section. 

For each M in 74 let ~ (M) be the set of all T such that T = U V ~ and UD V ~ is a s.v.d, of M. 
The set ~(M) may contain more than one column-wise orthonormal matrix (e.g., ~(0) contains 
all such matrices) and hence ~ must be viewed as a point to set mapping. We begin by showing: 

Theorem 2. The mapping ~ is closed on M .  

Proof  Using the definition of a closed point to set mapping as given by Luenberger (1984, 
p. 185), it is sufficient to show that if 

(Mn, Tn) ---> (M, T) 

where Mn E 74, Tn = Un V~, and Un Dn V~ is a s.v.d, of Mn, then there is a s.v.d. UD V I of M such 
that T = U V  ~. To show this, note that because the sequences Un, Dn, and Vn are bounded, each 
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has at least one limit point, say U, D, and V respectively. Let Un, Dn, and l)n be subsequences 
of Un, Dn, Vn that converge to U, D, and V respectively and let 

Because ~ and 3)n are subsequences of T~ and Mn respectively, passing to the limit gives 

T = U V  f 

M = U D V  I. 

Because a limit of orthogonal matrices is an orthogonal matrix and a limit of nonnegative di- 
agonal matrices is a nonnegative diagonal matrix, U D W  is the s.v.d, of M. This completes the 
proof. [] 

For each T m 3.4 let 

h(T) = ~ ( V f ( T )  +c¢T). 

Then h is a point to set mapping on 34. Since V f  is continuous on 34, V f ( T )  + c~T is a 
continuous function of T for T in 34. It follows from Luenberger's Corollary 2 (1984, p. 187) 
that ¼ is closed on 34. We are ready to prove our basic convergence theorem. 

Theorem 3. Let T, be a sequence of orthogonal matrices in 3/ /such that 

Tn+l E h(Tn). 

If ~ is sufficiently large to satisfy condition (3), any limit point of Tn is a stationary point of f 
restricted to AA. 

Proof  Using the Zangwill global convergence theorem as given by Luenberger (1984, p. 
187), it is sufficient to show that for all T E h(T) 

f ( T )  < f ( T ) ,  

whenever T is not a stationary point of f restricted to 3A. ~I~is assertion follows from Theorem 
1 and completes the proof. [] 

Now let T~ be the sequence of orthogonal matrices generated by the BSV algorithm. Then 
Tn+l ~ h(T~). It follows from Theorem 3 that for c~ sufficiently large, any limit point of Tn is a 
stationary point of f restricted to jr4. This is the global convergence we set out to prove. 

We mentioned some modifications of the BSV algorithm in section 3 that used alternatives 
to the matrix G + a T in step (b). For example, c~ may be a function of T or a T may be replaced 
by T W where W is a positive definite matrix that may also be a function of T. If  the argument 
of ~ is modified accordingly in the definition of h and it is assumed that c~ and W are continuous 
functions of T, Theorem 3 continues to hold. 
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