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Fig. 8.11 (a) Phase angles and (b) example of a 90° phase shift.

2nkn 271tkn
Ak,n) = Cs(n)-sin( N ) + Cc(n)-cos(—N_)

where Cs = C-cos® and C. = -C-sin®.

As shown in section 8.4.1 the Fourier transforms give the amplitudes of sine
cosine terms in the spectral decomposition of the original field. Thus, we ¢ |
interpret the spectra in terms of an amplitude and phase shift for waves of each freque

AN

8.8.2 Cross Spectra _ Y

Define G, =IF A(n)lz as the unfolded spectral energy for variable A and frequen
We can rewrite this definition as G, =F,"F, , where F,* is the complex conju
F,, and where the dependence on n is still implied.

To demonstrate this last definition, let F, =F, +i-F,;, where subscripts r &

denote real and imaginary parts respectively. Thus, the complex conjugate is sr.mp \
=F, -1F,; . The expression for the spectral energy can now be written as:

G, =F,"F,
= (F,, -iF,)(F, +iF,,)
= Fy*+1 B ~iFgF - TF,2
= F,2+F,2

IF , (n)I?

leaving the magnitude squared as a real number.



Similarly, define the spectral intensity G =Fp 'Fg.fora different variable B. We

i now define the cross spectrum between A and B by

G,y =Ey (8.8.22)

the real part is defined as the

ting the real parts and the imaginary parts,
drature spectrum, Q:

Co, and the imaginary part is called the qua

G,g = Co-iQ (8.8.2b)
Co = F,, Fy + FaiFi (8.8.2¢)
(8.8.2d)

Q =FuFp - FacFai

Fu and Fp are functions of n,

Although not explicitly written in the equations above,
s of n too: Co(n) and

making both the cospectrum and quadrature spectrum function
Q(n).

The cospectrum is frequently used in meteorology, because the sum over frequency of
gl cospectral amplitudes, Co, equals the covariance between A and B, (i.e.,

§ Co(n) = 25'). Note that the cospectrum computed as above is NOT equal to the

ypectrum of the time series of the product a'b'.
The quadrature spectrum is usually not used directly, but it 100 has a physical

interpretation. The quadrature spectrum is equal to the spectrum of the product of b'

{imes a phase shifted a', where a' is phase shifted a quarter period of n. In other

words, the amount of time lag applied to a' depends on the frequency, 1, such that the

phase shift is always 9Q° for each n.
Three additional spectra can be construc
amplitude spectrum, Am, can be defined as

ted from the quad and co-spectra. An

Am = GAB'. GAB

= QF +Co (8.8.2¢)

A large amplitude atany frequency n implies that A is very strongly correlated to B at that
frequency, regardless of phase differences between A and B. In other words if both A
and B have a strong amplitude component with frequency n =15 even if A and B are out of
phase, then Am will be large forn = 5. Also, if the amplitude is small for any frequency




e T T —

n, then coherence and phase spectra (described next) are not significant (i.e,u
for that frequency. _ |
The coherence spectrum, Coh, is defined by:

This is essentially a normalized amplitude, and is a real number in the range 010 |
very much like a frequency dependent correlation coefficient. Note that in

literature Coh? is defined as the coherence, rather than Coh. Like the amplitu
it is not a function of phase shift.

Finally, a phase spectrum, ®, can be defined as

tan® = Q/Co

This can be interpreted as the phase difference between the two time series A
yielded the greatest correlation for any frequency, n. The phase spectrum can
infer the nature of the physical flow. For buoyancy waves, 8' is characteris

out of phase with w', while for turbulence, the two variables either in phase or
phase.

8.8.3 Example

Problem: Given the time series from section 8.4.2 for humidity, and the
below for vertical velocity, w:

Index (k): 0 1 2 3 4 5 6
Time (UTC): 1200 1215 1230 1245 1300 1315 1330
w (m/s): 0 -2 -1 1 -2 2%, AR

Find and plot:
a) the discrete Fourier transform and the spectrum for w
b) the cospectrum for w and q
¢) the quadrature spectrum
d) the amplitude spectrum
e) the coherence spectrum
f) the phase spectrum.
Also find the discrete Fourier transform and the spectrum for the product w'q'.

Solution: The original time series are listed in Table 8-2 as a reference,
the deviations squared and the series w'q'. The Fourier transforms for both w and q ar



fable 8-2. Spectraand cospectra data, computed with an FFT program, and then displayed
here in spreadsheet form.
Timeseries:
k w q w'2 q'2 wq'
0 0 8 (1] 1 0
1 -2 9 4 4 -4
2 -1 9 1 4 -2
a 1 6 1 1 -1
4 -2 10 4 9 -6
-] 2 3 4 16 -8
6 1 5 1 4 -2
7 1 - 1 1 -1
Sum: 0 56 Sum: 16 40 Sum: -24
Mean: 0 7 Variance: 2 5 Covar: -3
Simple Spectra: )
i PN e —Fq— Yy
n . real .imag ow EwwZ - real Imag Gq Eq/q'2
0 0.000 0.000 7.000 0.000
1 .0.104 0.604 0.375 0.375 0.280 -1.030 1.140 0.456
2 .0.250 0.250 0.125 0.125 0.500 0.000 0.250 0.100
3 0.604 0.104 0.375 0.375 -0.780 -0.030 0.610 0.244
4 .0,500 0.000 0.250 0.125 1.000 0.000 1.000 0.200
5 0.604 -0.104 0.375 .0.780 ©0.030 0.610
6 .0.250 -0.250 0.125 0.500 0.000 0.250
7 .0.104 -0.604 0.375 0.280 1.030 1.140
Sum: . 2,000 1.000 5.000 1.000
Cross-spectra (based on F & G values above): Simple Spectrum of w'q' timeseries:
Gwg ———Fwq
n Co Q . Am Coh2 Phase(”) real imag Gwg Ewg/(w'q)2
0 -3.000 0.000
1 .0.651 0.062 0.428 1.000 174,52 1.104 -0.354 1.343 0.308
2 -0.125 ©0.125 0.031 1.000 135.00 .0.250 1.250 1.825 0.481
3 .0.474 -0.063 0,229 1 .000 187.52 0.396 -0.354 0.282 0.084
4 .0.500 0.000 0.250 1 .000 180.00 0.500 0.000 0,250 0.037
5 .0.474 ©0.063 0,229 1.000 172.48 0.306 0.354 0.282
6 -0.125 -0.125 0,031 1.000 225.00 -0.250 -1.250 1.625
7 -0.651 -0.062 0.428 1.000 185.48 1.104 0.354 1.343
Sum: -3.000 ©0.000 6.750 1.000
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Fig. 8.12 (a) Amplitude spectrum, (b) phase spectrum, and (c) the co-spectral
and quadrature components of the cross spectrum for example 8.8.9,

then found using an FFT program, and are listed in Table 8-2 along with (h
corresponding unfolded spectral intensities, Gy, and Gg, and the fraction of v
explained, E,, /s,% and Eg /sq®, where s? represents the variance. )

Also listed is a subtable with co- and quad- spectral components of Giygs the resul
values of Am, Coh2, and the phase angles in degrees. These are plotted in Fig i
Finally, the simple spectrum of the w'q' time series is listed.

Discussion: The biased variances of the w and q time series are 2.0 and
respectively. From Table 8-2, we see that the sum of the G, and Gq spectral compaing
equals their respective variances. This is always a good check to do with the analy
The associated normalized spectral components, E,, /sy2 and Eq /sq2 , sum to un '."'

desired. Also, the covariance w'q' = -3.0, which agrees with the sum of the

cospectral components.

Looking at the original time series, we see that w' is usunally positive when (
negative, as confirmed by the negative covariance. Thus, we anticipate that w' and '
180° out of phase. The phase spectrum supports this. In fact, the only phase |
which are substantially different from 180° are those for which the amplitude (Am) vali
are small, suggesting that these phase values can't be trusted, 1



[t is surprising to find that the coherence is 1.0 for all frequencies. This indicates that
jonship between w and q for all frequencies or wavelengths,
_ For real turbulence data the coherence would not equal 1.0 for
| frequencies.
Next, look at the individual q series. There is an obvious oscillation with three
iycles within the whole period of record. In addition there is a background low frequency
(hange of the time series. Looking at the simple spectrum for q, the spectral intensity is
Indeed large forn=3andn=1. A similar conclusion can be reached for w. For both of

\\ese series, there is a distinct spectral minimum atn = 2.
This minimum shows up in the cospectrum atn = 2. Thus, waves with two cycles per

ariance w'q . This is in sharp contrast with the w'q'
definite n = 2 wave. The simple spectrum analysis

component atn = 2. This tells us that the variance
s has a large contribution atn = 2, even though the

period contribute little to the total cov

{Ime series itself, which shows a very
ol w'q' also yields the largest spectral
(ot covariance) of the w'q’ time serie

(ovariance itself, w'q’, has a minimum atn = 2.

In the discussion presented above, it was easy 10 compare the spectra with features in
lie original time serics, because the series were sO short. For real turbulence data
(onsisting of thousands of data points, it is not so easy to pick out features by eye. For
(hese simations, spectral analysis is particularly valuable.

8.9 Periodogram

The periodogram is just least squares best it of sine and cosine waves to the original
ugnal (i.e., to the time series). Because the original time series need not consist of
svenly spaced data points for the periodogram to work, it has a very distinct advantage
uver the discrete Fourier transform. In fact, for some data sets with data gaps or missing
(uta, it is the only method to calculate spectral information short of making up bogus data
10 fill the gaps. The prime disadvantage of the periodogram is that it takers longer to

gompute than an FFT.

First, the mean of the original time series of variable A is subtracted from each A(k)

{ollowing form is fitted to the data:

2rkn 2nkn
A' = a cos|T Ny + a, sin | T (8.9a)

an, and where a, and a, are the best-fit

where A' is the deviation of A from the me
and a, (both a function of n) in the least-

coefficients to be determined. Solving for a,
yquares sense gives:

data point to yield a modified time series for A'(k). For each frequency (n) a wave of the




