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ABSTRACT 
Recent research has pointed to a number of inherent disadvantages of unrotated principal components and 
empirical orthogonal functions when these techniques are used to depict individual modes of variation of data 
matrices in exploratory analyses. The various pitfalls are outlined and illustrated with an alternative method 
introduced to minimize these problems via available linear transformations known as simple structure rotations. 
The rationale and theory behind simple structure rotation and Procrustes target rotation is examined in the context 
of meteorological/climatological applications. This includes a discussion of the six unique ways to decompose a 
rotated data set in order to maximize the physical interpretability of the rotated results. 

The various analytic simple structure rotations available are compared by a Monte Carlo simulation, which is a 
modification of a similar technique developed by Tucker (1983), revealing that the DAPPFR and Promax k = 2 
rotations are the most accurate in recovering the input structure of the modes of variation over a wide range of 
conditions. Additionally, these results allow the investigator the opportunity to check the accuracy of the unrotated 
or rotated solution for specific types of data. This is important because, in the past, the decision of whether or not 
to apply a specific rotation has been a ‘blind decision’. In response to this, a methodology is presented herein by 
which the researcher can assess the degree of simple structure embedded within any meteorological data set and 
then apply known information about the data to the Monte Carlo results to optimize the likelihood of achieving 
physically meaningful results from a principal component analysis. 

KEY WORDS Orthogonal rotation Oblique rotation Simple structure Procrustes target transformation Principal components 
Eigenvectors Exploratory analyses Confirmatory analyses Monte Carlo techniques 

1. INTRODUCTION 

The eigentechniques have been used with increasing frequency since 1980; no fewer than eighty 
applications of empirical orthogonal functions (EOFs) , principal components (PCs) and common factor 
analysis (CFA) were published in the meteorological literature during this period. A characteristic of 
this proliferation has been the varied types of ways in which analyses are specified. For instance, there 
are different dispersion matrices used to relate data in these analyses (e.g. correlation, covariance, 
cross-products), three basic eigenmodels (EOFs, PCs, CFA), numerous procedures to determine the 
optimum number of significant eigenmodes, a number of alternative solutions for interpreting the 
output (e.g. orthogonal rotations, oblique rotations, Procrustes target rotations), and six different ways 
to specify a data set prior to the analysis, within these alternative solutions, each of which brings out 
different relationships among the data. Consequently, an analysis of a single data set can yield a 
number of physically plausible interpretations based on the options outlined, and all of the options 
need to be carefully considered in order for the analysis to yield physically meaningful results. 
Furthermore, the eigentechniques have been used to address such diverse objectives as pure data 
reduction (Weickmann, 1983), a tool to group synoptic (Christenson and Bryson, 1966) and chemical 
variables (Gatz, 1978), a technique to aid in forecasting atmospheric parameters (Gilman, 1957), a 
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method to aid in determining the variability of atmospheric fields (Hastenrath and Wendland, 1979; 
Horel, 1981) and a procedure to identify coherent modes of various parameters such as geopotential 
height (Cohen, 1983) and rainfall (Dyer, 1975). 

There has been some lengthy discussion of the effects of choosing various dispersion matrices in the 
early meteorological literature. Craddock (1965), Kutzbach (1967, 1969) and Craddock and Flood 
(1969) discuss the relative merits of a covariance matrix which includes the analysis of actual 
magnitudes of the variances (as opposed to relative variations in a correlation matrix) whereas Gilman 
(1957), Sellers (1957) and Glahn (1965) discuss the advantages of a correlation input which equally 
weights all variables (e .g. stations) in an analysis. The cross-products matrix incorporates information 
on the mean of each variable as well as its variation into the analysis and has been discussed by Resio 
and Hayden (1975) and Molteni et al. (1983). The three eigentechniques have all been used in 
meteorological research. The most common application has employed EOFs or unit length eigenvec- 
tors; this was pioneered in meteorological work by Lorenz (1956) and has remained essentially 
unchanged ever since. In contrast is the mathematically more elegant principal component model 
(Hotelling, 1933) which weights the eigenvectors by the square root of the corresponding eigenvalue, so 
that the weights (known as loadings) represent the correlations (covariances) between each variable 
and each principal component. The first application of this technique to meteorological data was by 
Fukuoka (1951). Although both EOFs and PCs have been widely used in the past few years, the 
common factor model (CFA) has rarely been employed in meteorological applications. This model 
excludes measurement error (uncorrelated white noise) and variance unique to each individual variable 
from the analysis, dealing only with that portion of the total variance which can be predicted from the 
other variables (hence the term common). Walsh et al. (1982) and Richman (1983a) apply the common 
factor model to precipitation data and geopotential height and discuss its relative advantages. 

Methods for determining where to stop extracting eigenmodes have been proposed in the meteorolo- 
gical literature by Craddock and Flood (1969) and Preisendorfer and Barnett (1977). Craddock and 
Flood’s LEV test graphs the natural logarithm of each eigenvalue against the mode number. The point 
where the tail of the plot becomes linear is where no further EOFs are retained, since the linear tail 
with nearly equal eigenvalues theoretically represents random noise. This test is a variation of the 
‘scree’ test which was proposed by Cattell (1966a), which plots each raw eigenvalue against root 
number. Cohen (1983) illustrates a variation of the scree test on meteorological data where he rotates a 
data set, prior to graphing up the eigenvalues, claiming a more distinct break in the curve. Preisendor- 
fer and Barnett (1977) offer a test based on a Monte Carlo criterion where a matrix of random normal 
deviates, of the same direction as the data matrix, is formed into a dispersion matrix and then 
decomposed into a series of eigenvalues. A number of trials are completed, confidence intervals 
constructed and then compared to the data eigenvalues. The point where the data eigenvalues become 
smaller than the corresponding Monte Carlo confidence interval is where no further PCs/EOFs are 
retained, as shown by Overland and Preisendorfer (1982). It is a variation of the test that Horn (1965) 
proposed without confidence intervals, whereas Humphreys and Montanelli (1975) devised another 
modification of this test for the common factor model. Other tests have appeared in the literature, 
many of which are reviewed in Rummel’s (1970) text, applied to a chemical data set in Thurston and 
Spengler (19854, to various physical systems in Preisendorfer et d . ’ s  (1981) report and recently 
compared for accuracy by Hakstian et al. (1982) and by Zwick and Velicer (1982). 

The question concerning the applicability of an alternative solution or linear transformation (known 
as a ‘rotation’) has not been addressed fully in the meteorological literature. A few early applications of 
rotation were employed by Gregory (1975), Dyer (1975), Rogers (1976), Willmott (1977), Gatz (1978), 
Morin et al. (1979) and Salinger (1980) in which a particular criterion (Varimax) was applied to identify 
homogeneous groups of variables. However, the majority of earlier and recent studies apply the 
traditional approach of unrotated EOFs to the analysis to attempt to characterize the modes of 
variation of a field under investigation. All three eigenmodels (EOF, PCA, CFA) allow for an infinite 
number of alternative final solutions which satisfy the models’ equations, a fact which will serve as 
motivation for this paper, which will present the theory behind simple structure rotation and outline the 
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meteorological benefits of rotating various data sets. In order to facilitate this, section 2 will provide 
empirical evidence of problems associated with unrotated solutions which are reduced, and in some 
cases eliminated, by the use of rotation. One eigenmodel (PCA) is then developed and shown to be 
valid for any non-singular linear transformation (section 3), a characteristic which is capitalized on in 
the detailed discussion of simple structure and its graphical presentation (sections 4 and 5, respec- 
tively). Section 6 provides a discussion of how best to analyse a data matrix to bring out the most 
physically meaningful meteorological relationships in a rotated analysis and section 7 develops an 
alternative to simple structure rotations, the Procrustes transformation, and provides some ideas for its 
applications. The analytic rotations are individually explored and then compared in a Monte Carlo 
analysis in sections 8 and 9. The resulting findings are presented in section 10, which is useful to 
meteorologists in that it provides a more finely calibrated tool for the optimal choice of a solution (e.g. 
unrotated, orthogonally rotated, obliquely rotated) in order to most accurately determine the modes of 
variation in an analysis. 

2. WHY BOTHER WITH ROTATION? 

A question which immediately arises is: why not simply interpret the unrotated EOFs/PCs? Unrotated 
solutions offer a number of potential advantages, such as their economy, ability to extract the maximal 
variance from a data set, their spatial and temporal orthogonality and their pattern insensitivity to the 
number of PCs retained, whereas the rotated solutions have a set of jargon associated with them (e.g. 
hyperplanes, intercomponent correlations, oblique angles, etc.) which can be discouragingly foreign to 
uninitiated meteorologists. Additionally, these characteristics make unrotated solutions good candi- 
dates for situations where pure data reduction is sought, in cases where the PCs will be used for 
regression without individually interpreting each mode and even in certain exploratory applications. 
The reason why meteorologists should at least consider the possibility of applying a rotation to a data 
set is that unrotated solutions exhibit four characteristics which hamper their utility to isolate individual 
modes of variation. These four characteristics are domain shape dependence, subdomain instability, 
sampling problems and inaccurate portrayal of the physical relationships embedded within the input 
matrix. 

Domain shape dependence 

The problem of domain shape dependence has been outlined by Buell (1975, 1979) who illustrates 
that the topographies of unrotated EOFs are primarily determined by the shape of the domain and not 
by the covariation among the data. Specifically, Buell has shown that different correlation functions on 
a geometrically shaped domain have similar EOF patterns in a predictable sequence which do not 
reflect the underlying covariation. Numerous published meteorological studies (inadvertently) support 
Buell’s findings as their unrotated EOFs/PCs of various unrelated parameters for different geographical 
areas all show the characteristic patterns outlined by Buell; a limited inventory of which was compiled 
by Richman (1983a). The results of that inventory for studies with a square/rectangular domain (Table 
I) indicate that the first unrotated EOF/PC is positive (+) in all of the studies, regardless of the 
meteorological parameter or geographical area treated, whereas unrotated EOF/PC2 is always a 
flip-flop (+ -). The third to fifth unrotated EOF/PCs have mixed patterns of either (*), (- + -) or 
(* T) which is exactly what Buell (1975, p. 191) found for another correlation function where the third 
EOF was (k), the fourth (* T) and the fifth (- + -). Overall, Table I supports Buell’s (1979, p. 117) 
contention that the unrotated EOF/PC approach produces results that are domain shape dependent, 
might not yield realistic modes of variation and should be looked upon with suspicion. The predictable 
progression of the unrotated EOF/PC patterns may be at least partly due to the relationship between 
EOFs and harmonics. Cahalan (1983) mentions that they are closely related to spherical harmonics 
(when represented on a sphere) and on a limited domain (e.g. rectangle) they are related to ‘patch 
harmonics’. North (1985) also discusses this phenomenon for a limited number of physical systems. In 
order for the rotated solution to be potentially more useful, it should not suffer from domain shape 
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Table I. The morphology of various unrotated EOF/PC studies in comparison to Buell's (1975, p. 190, his Figure 
5) rectangular domain. The topography of the EOF/PCs are denoted by ( +  ) for one positive anomaly over the 
entire domain, (+  - )  for a positive anomaly in the west and a negative anomaly in the east, ( - + - )  for a 
negative anomaly in the west, positive anomaly in the centre and negative anomaly in the east, ( f ) for a positive 
anomaly in the north and negative anomaly in the south and, finally ( f T ) for positive anomalies in the 
north-west and south-east and negative anomalies in the south-west and north-east. The patterns shown are also 
valid for their inverses (e.g. ( + - ) and ( - + ) are the same pattern) due to the reflective property of EOF/PC_s. 
The domain can also be rotated 90" to be aligned with the longest axis of the rectangle (e.g. ( - + - ) and ( 5  ) 

are the same pattern) 
~ ~ ~ 

Author, Year Parameter EOFlPCl EOF/PC2 EOF/PC3 EOF/PC4 EOF/PC5 
~~ 

Buell (1975) 
Klaus (1978) 
Willmott (1978) 
Dyer (1979) 
Bedi and Bindra (1980) 
Walsh and Mostek (1980) 
Diaz (1981) 
Diaz and Fulbright (1981) 
Tabony (1981) 
Karl and Koscielny (1982) 
McGuirk (1982) 
Lamb and Richman (1982) 
Lorenz (1956) 
Veitch (1965) 
Davis (1976) 
Brier and Meltesen (1976) 
Walsh and Mostek (1980) 
Brinkmann (1981) 
Walsh and Mostek (1980) 
Walsh and Richman (1981) 
Gray (1981) 
Karl et al. (1982) 

Correlated noise 
Precipitation 
Precipitation 
Precipitation 
Precipitation 
Precipitation 
Precipitation 
Precipitation 
Precipitation 
Precipitation 
Precipitation 
Precipitation 
Sea-level pressure 
Sea-level pressure 
Sea-level pressure 
Sea-level pressure 
Sea-level pressure 
Sea-level pressure 
Temperature 
Temperature 
Temperature 
Temperature 

(- + -) 
(+ -1 

(+ - +I 
(- + -1 

($) 
(+ - +) 

dependence. Kaiser (1958) and Horel (1981, 1984) both state that, theoretically, rotated solutions are 
less affected by domain dependence. Walsh and Richman (1981, pp. 780-781) and Richman (1981) 
tested the domain dependence of both an unrotated solution and a rotated solution for a known data 
set of two sea-level pressure patterns which had a scale of over half the domain size, finding that the 
unrotated PCs yielded the predictable Buell patterns, whereas the rotated PCs recovered the two 
underlying pressure patterns. Vargas and Compagnucci (1983) apply this approach of known input 
modes to a meteorological concept, as they began with an example of three large scale flow patterns 
(zonal, meridional and cyclonic) and their inverses on a square domain (Figures l(a), (b), (c)). A 
covariance matrix was formed to relate the 36 grid points for the 3 flow types and their inverses which 
was then decomposed into three unrotated PCs and the PC loadings plotted at the 36 grid points. The 
first map of unrotated PC loadings (Figure l(d)) indicates that all coefficients are of the same sign; this 
has no resemblance to any of the input patterns but, rather, is a combination, or merging, of the three, 
which is a direct consequence of the maximum variance restriction placed on the first unrotated PC 
(Richman, 1981; Karl and Koscielny, 1982). The second map of unrotated PC loadings (Figure l(e) 
also does not represent any of the input patterns but has a north-wedsouth-east (+ -) pattern which 
agrees with Buell's pattern for a square domain. The third map of unrotated PC loadings (Figure l(f)) 
has some similarities to the third input pattern but differs in that there is a flip-flop of loadings with the 
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Figure 1. Example of the decomposition of three known input sea-level pressure patterns (in mb) corresponding to meridional, 
zonal and anticyclonic flow (panels (a), (b), (c)) based on work of Vargas and Compagnucci (1983). The inverses of these three 
patterns were also included by reflecting the values about a mean of 1012mb and thus the mean map is constant and can be 
discarded. Decomposition of the covariance matrix into three unrotated PCs (panels (d), (e), (f)), three orthogonally rotated PCs 

(panels (g), (h), (i)) and three obliquely rotated PCs (panels (j), (k), (1)) to be compared to the three input flow types 

largest magnitude (-8-4) in the south-west portion of the domain, decreasing to lower absolute values 
in the north-east portion and is similar to what Buell’s square domain pattern illustrates. The three 
unrotated PCs were next rotated orthogonally (Varimax criterion; Kaiser, 1958). The first Varimax 
map of PC loadings (Figure l(g)) closely corresponds to input map two, as both represent a zonal flow 
type, and the second loading map (Figure l(h)) closely corresponds to input map one with the only 
difference being the PC loading isolines have a slight curvature. The third Varimax PC loading map 
(Figure l(i)) is most similar to the third input map, although there is a small region with one slightly 
negative PC loading (-0.3) in the south-west corner of the domain. In order to detect if the solution 
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could be further improved, an oblique rotation (one-sided DAPPFR rotation; Tucker and Finkbeiner, 
1982) was applied to the unrotated PCs. The first map of DAPPFR PC loadings (Figure l(j)) depicts a 
zonal flow pattern similar to the second input type with a total absence of curvature in the loading 
isolines and zero PC loadings along the top edge of the domain, corresponding to the zero deviation 
line in the input mode. The second map of DAPPFR PC loadings (Figure l(k)) depicts a meridional 
flow pattern similar to the first input type, with straight isolines throughout the map and the zero isoline 
on the right edge of the domain, which agrees with the flow type, and the third map of DAPPFR PC 
loadings (Figure l(1)) represents anticyclonic flow having all positive loadings and symmetry from the 
left side of the domain to the right in good correspondence with input type three. This is in better 
agreement with the input flow types than the unrotated PC loadings (or Varimax) and illustrates how a 
rotated solution can be used to recover more accurately the input modes with little concern about the 
shape of the domain. 

Subdomain stability 

A second disadvantage of unrotated solutions is their subdomain instability, which is a corollary of 
domain shape dependence and refers to the stability or invariance of the modal patterns as subportions 
of the domain are examined. If an EOF pattern is to be considered as a mode of variation, it should 
remain stable if the northern hemisphere is the domain or if only the United States is considered (i.e. as 
affects the U.S.). Richman and Lamb (1985) present the results of a study of subdomain stability using 
a United States rainfall data set for 3-day and 7-day totals from May to August. The unrotated modes 
for the full domain (Figure 2(a)) exhibited the Buell-like patterns over the first eight PCs (first four 
shown). Although they are in a predictable progression, these cannot be simply discounted, as it is 
possible that the patterns are physically meaningful. The domain was next subdivided into northern and 
southern portions. The results for each half of the domain (Figure 2(b)) indicate that the PC patterns 
obtained for the entire domain were simply transferred and compressed into the subareas when the 
latter were analysed individually. For instance, the first unrotated PC (full domain) had its anomaly 
centre in Iowa, whereas none of the subdomain modes had a similar pattern. This comparison points to 
an obvious dilemma created by the unrotated solution-which pattern is the correct mode of 
decomposition, the full domain or the subdomain? The same experiment was repeated for the rotated 
patterns and is summarized in Figure 3(a) where the 0.4 isoline is plotted. Examination of each half of 
the domain in Figure 3(a) would lead to the hypothesis that areas 5 ,  6, 8 and 10 (full domain) should be 
present in the southern subdomain whereas areas 1, 2, 3, 4, 7 and 9 (full domain) should be present in 
the northern subdomain. This holds true, as evidenced by Figure 3(b) in which the rotated modes 
yielded much more encouraging results, as the same basic regionalization emerges in both Figures 3(a) 
and 3(b). The agreement is nearly identical (maximum difference of f0.02 at each station loading in 
each analysis) for the southern half of the domain, whereas for the north only small differences are 
apparent. The importance of this is that, as a scientific tool, a goal of EOF/PC/CFA is the 
decomposition of variables into invariant modes of variation, which are considered to be fundamental 
elements in explaining the relationships among the variables. The extent to which PCs really represent 
the true modes of variation, however, depends largely on the extent to which the same modes can be 
found under different conditions. 

Sampling errors 

Unrotated solutions may also suffer from large sampling errors if neighbouring eigenvalues are close 
together (Kendall, 1980; North et al., 1982; Storch and Hannoschock, 1985). In these cases the 
information from population patterns can become mixed up when samples are drawn with eigenvalues 
separated by less than a specific value (Hsuing and Newell, 1983). Cahalan (1983) lists some 
well-referenced papers whose eigenvalue series’ lie in the white noise spectrum and, consequently, the 
EOF patterns may be mixed up. To further study the effects of eigenvalue separation, examination of 
how unrotated and rotated PCs responded to nearly equal eigenvalues (equal out to 15 decimal places) 
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a b 
Figure 2. The first four unrotated modes of variation of 3-day totals for May-August precipitation over the central United States 
with corresponding Buell (1975) patterns shown in left inset. The results for the full domain (a) are to the left and those 
computed separately for the northern and southern halves of the domain (b) are to the right. The zonal division in (b) is given by 

the thick broken line. (Taken from Richman and Lamb, 1985) 
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Figure 3. Regionalization of the central United States for 3-day summer rainfall totals for orthogonally rotated (Varimax 
criterion) principal components. The regional boundaries are the 0.4 loading isopleths for individual PCs. The results for the full 
domain appear in (a) and those computed separately for the northern and southern halves of the domain are shown in (b). The 

zonal division is given by the thick broken line. (Taken from Richman and Lamb, 1985) 

was performed as a means to investigate their sensitivity to insufficient eigenvalue spacing. In this 
experiment the sample sizes ranged from 10 to 10,000. The samples for 100 replications of the 
unrotated and rotated solutions were compared to the appropriate unrotated and rotated population 
values by using a congruence coefficient (Richman and Lamb, 1985) to match them. The congruence 
coefficient varies from -1 to +1, identical to a correlation coefficient, but does not remove the mean of 
a variable. Values 210-98) are interpretable as an excellent match (see section 9.4 for more 
information). The results of the study are shown in the upper portion of Table 11, indicating that 
unrotated sampling errors are very severe and relatively insensitive to sample size. Note that increasing 
the sample size to be as large as 10,000 makes little improvement in the matches. Conversely, when the 
samples were rotated (DAPPFR criterion) the correct population structure could be recovered for any 
sample size greater than 25. The population loadings of both the unrotated and obliquely rotated 
solutions are shown at the bottom of Table I1 (left) and the first replication (of 100) of the sample 
loadings for both solutions are shown for the case of a moderate sample size of 500 (right). 
Comparisons of the unrotated population loadings with those drawn from the sample indicate little 
correspondence, which is reflected by the congruence coefficient which had an average root mean 
square of 0.39847 for the 100 replications at a sample size of 500. Inspection of the obliquely rotated 
pattern coefficients (‘loadings’) for the same replication from the population to the sample indicates an 
excellent match, reflected by the average root mean square congruence coefficient of 0.99902 for the 
100 replications. This agrees well with Horel’s (1984) preliminary findings of lower sampling errors for 
rotated patterns compared to unrotated PC loadings and the results in section 10 for data containing 
strong to moderate ‘simple structure’. Cliff and Hamburger (1967, pp.443-444) in their study of 
sampling errors in factor analysis note that ‘under certain conditions [e.g. closely spaced eigenvalues] , 
sampling errors of unrotated loadings are likely to be so large as to render them useless as estimates of 
anything’. They further conclude that an analyst ‘should rotate his factors [PCs] either to a hypothesis 
or by an analytic procedure if he wants statistical stability’. 

Faithfulness to relationships embedded in the dispersion matrix 

A final reason why an alternative solution may be desirable is that the rotated solutions sometimes 
yield results which are more intuitively meaningful in a meteorological sense. The example in Figure 1 
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Table IT. Coefficients of congruence for 100 replications of population versus sample component loadings for 
cases with nearly equal eigenvalues. An example is shown (bottom) for the correspondence between population 

values (left) and sample values based on a sample size of 500 (right) 

Unrotated solution Obliquely rotated solution 

Coefficient of congruence Coefficient of congruence 
Sample size between sample and population Sample size between sample and population 

10 
25 
50 

100 
250 
500 

1000 
2500 
5000 

10,000 

0.37138 
0.38775 
0.38823 
0-39521 
0.39760 
0.39847 
0.39897 
0.39935 
0.39951 
0.39951 

10 
25 
50 

100 
250 
500 

1000 
2500 
5000 

10,000 

0.92140 
0.97974 
0.99008 
0.99508 
0.99804 
0.99902 
0.99951 
0.99980 
0.99990 
0.99995 

Unrotated and obliquely rotated 
population values 

Unrotated and obliquely rotated 
sample values 

Variable 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Unrotated 
solution 

PC 1 PC 2 

0.7517 0.6596 
0.7517 0-6596 
0.7517 0.6596 
0.7517 0.6596 

-0.7517 -0.6596 
-0.7517 -0.6596 

0.7517 -0.6596 
0.7517 -0.6596 
0.7517 -0.6596 

-0.7517 0.6596 
-0.7517 0.6596 
-0.7517 0.6596 

0.6000 -0.8000 
0.6000 0.8000 
0.5000 -0.8660 
0.5000 -0.8660 

Obliquely rotated 
solution 

PC 1 PC 2 

0.9999 0.0003 
0.9999 0.0003 
0.9999 0-0003 
0.9999 0.0003 

-0.9999 -0.0003 
-0.9999 -0.0003 

0.0003 1.0000 
0.0003 1.0000 
0.0003 1.0000 

-0.0003 -1.0000 
-0.0003 -1.0000 
-0.0003 - 1.0000 
-0.2071 1.0056 

1.0054 -0.2071 
-0.3236 0.9891 

0.9889 -0.3237 

Unrotated 
solution 

Variable PC 1 PC 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0.5929 
0.5929 
0.5929 
0.5929 

-0.5929 
-0-5929 

0.8940 
0.8940 
0.8940 

-0.8904 
-0.8904 
-0.8904 

0.7761 
0.4108 
0.6923 
0.2968 

0.8010 
0.8010 
0.8010 
0.8010 

-0.8010 
-0.8010 
-0.4673 
-0.4673 
-0.4673 

0.4673 
0.4673 
0.4673 

-0.6360 
0.9024 

-0.7217 
0.9437 

Obliquely rotated 
solution 

PC 1 PC 2 

0.9692 0.0003 
0.9692 0.0003 
0.9692 0-0003 
0.9692 0-0003 

-0.9692 -0.0003 
-0.9692 -0.0003 

0.0003 0.9521 
0.0003 0.9521 
0.0003 0.9521 

-0.0003 -0.9521 
-0.0003 -0.9521 
-0.0003 -0.9521 
-0.2007 0.9574 

0.9746 -0.1972 
-0.3137 0.9417 

0.9586 -0.3182 

indirectly addresses the idea; however, it is more an example of domain shape dependence and not 
directly transferable to most analyses since it was based on known patterns. A more exact example of 
this concept with a methodology useful for any exploratory work is now presented using the unrotated 
and rotated PC patterns of 3-day summer rainfall totals given by Richman and Lamb (1985). This may 
be the most important advantage of a rotated solution, yet it is often a difficult one to substantiate 
owing to the exploratory nature of most EOF/PC studies. The first ten unrotuted PCs are shown in 
Figure 4(a) and their interpretation is possible, yet difficult, because the patterns are not what one 
would expect for convective rainfall. For example, PC1 would correspond to either an excess or deficit 
of 3-day rainfall over the entire domain simultaneously. Inspection of the actual rainfall data did not 
support this pattern, as there were no observations where it rained over every station simultaneously or 
where there was no rain at every station. In order to further verify or reject this observation, a 
quantitative inspection of the correlation matrix was performed, similar to a procedure used by Wigley 
et al. (1984). The spatial correlations of the station with the highest PC loading on each PC to each of 
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a b 
Figure 4. Unrotated principal components of 3-day summer precipitation totals over the central United States. The first 10 
components appear in (a). The point correlation teleconnection patterns corresponding to the unrotated PCs appear in (b). The 
cross in (b) locates station with the highest PC loading in (a). Correlation coefficients between the crossed station in (b) and the 
remaining 401 stations are isoplethed; those with magnitudes less than approximately 0.08 are not significant at the 99 per cent 
level according to the Z-test. Numbers in the top right-hand corner of (b) give the pattern correlationlcongruence coefficient (see 
section 9.4) between the correlation field shown and the corresponding PC loading pattern (Taken from Richman and Lamb, 

1985) 
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-I 

a 
Figure 5 .  Orthogonally rotated (Varimax criterion) PCs (a) and corresponding point correlation teleconnection patterns (b). 

Explanation is the same as Figure 4. (From Richman and Lamb, 1985) 
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the other 401 stations were calculated to provide basic information on the scale and orientation of the 
anomaly features and compared to the unrotated PCs to assess how well they recovered the underlying 
input correlation fields. This is shown directly opposite the PC in Figure 4(b), indicating some 
interesting features, as the first PC has a larger scale (recalling that the PC loadings are correlation 
coefficients) than the corresponding point-to-point station correlation teleconnection field. Proceeding 
to PC2, there is a flip-flop evident between the south and north. The physical explanation for this map 
would be an excess of rainfall in the northern half of the domain and a deficit in the south (or vice 
versa) yet the point correlations exhibited a surprising pattern in which there was only one statistically 
significant anomaly with no flip-flop. This is in direct disagreement with unrotated PC2 and points to 
the lack of a climatologically meaningful pattern in the unrotated PC. PC3-PC10 and their correspond- 
ing correlation patterns also point to this same defect in the unrotated PCs and result in poor matches. 
The first PC has a scale larger than the corresponding correlation field supports, whereas unrotated 
PCs5-10 have scales smaller than the corresponding correlation fields indicate. The mean correlation 
match between the teleconnection maps and the PC loadings (over all 10 maps) was only 0-47, with a 
standard deviation of 0.22 indicating a wide range of correspondence. The same process was repeated 
for the ten rotated PCs (Figure 5(a)). In rotated PC1, the point correlation field is shown directly 
opposite the PC in Figure 5(b) and indicates an excellent match between the PC and the correlation 
pattern. It is noteworthy that the shapes and orientations of the two fields, as well as the scale of the 
region, are very similar. The matches between PCs2-10 and their correlation fields are also excellent, 
as the sizes of the corresponding regions are almost identical, leading to correlation matches >0.90 in 
every case with a mean match of 0.93 (over all 10 map sets) and a standard deviation of only 0.01 
indicating uniformly excellent correspondence of location, size and morphology. The importance of this 
is that the underlying correlation fields have been shown to be properly depicted by the rotated PCs. 
The example presented in Figures 4 and 5 is only one application of this procedure, as the methodology 
can be applied to other spatial parameters (e.g. 500mb height by Richman and Walsh, 1985) or any 
type of analysis (e.g. grouping synoptic variables or chemical ions as in Thurston and Spengler (1985)) 
by identifying the variable with the largest loading on each PC. 

As a result of these various potential advantages which may exist for rotated EOF/PCs when 
individual modes are examined, compared to the unrotated solutions, this work will concentrate on 
presenting the theory behind simple structure rotation, meteorological applications of these rotations 
and, finally, a comparison of the various solutions available. 

3. PRINCIPAL COMPONENT MODEL 

Basic equations 

The principal component model will be developed for application to the rotated solutions. Most of 
the results are directly applicable to EOF and FA also. The PC model can be defined from an N x n 
data matrix Z = {zij: i = 1, . . . , N ;  j = 1, . . . , n} where i indexes individuals or cases and j indexes 
variables. For every, i, j ,  zij denotes the variable value of some physical field or some derived field. The 
PC model representation of zij is 

zij= C i = l , .  . . , N ; ~ = I , .  . . , n ; m = l , .  . . , r ; r s n  (1) 
m = l  

where hm is the rth principal component score for the ith individual and aim is the rth principal 
component loading on the jth variable. 

In matrix form (1) becomes 

z =  FA^ (2) 
The principal component scores (sometimes called ‘amplitudes’ in the meteorological literature) and 
loadings can be developed with the following definitions (assumed to be in standardized form and 
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divided by the number of cases although not a necessary condition): 

R = ZTZ (n X n) (data correlation matrix) 

Q, = F ~ F  ( r  x r )  (principal component score correlation matrix) 

S = ZTF (n  X r )  (principal component primary structure matrix) 

(3) 

(4) 

( 5 )  

ZTF = AFTF (6) 

S=AQ,  (7) 

Since ZT = AFT can be substituted in (9, 

which is an alternative solution of the PC primary structure matrix ( 5 )  which represents the correlations 
between the PCs and the variables. The equations (3), (4) and (6) are used to define the PC model in 
terms of the correlation matrix (R) representation: R = ZTZ = AFTFAT 

R = AQ,AT (8) 

This relationship (8) is the fundamental PC equation in terms of the correlation matrix and is a 
combination of A (the PC primary pattern matrix) and AQ, (the PC primary structure matrix). In the 
initial solution (and under orthogonal rotation) Q, = I,, therefore AQ, = A and both are referred to as 
PC lotzdings. 

Transformational indeterminacy 

In the introduction it was stated that an infinite number of alternative solutions satisfied the PC 
model. Applying the relationships which define the PC model in (2) and (8), it will be shown that an 
inherent indeterminacy exists, since a unique solution is not possible without additional constraints. This 
arises because PCs may be linearly transformed to an infinite number of other sets of PCs having the 
same properties by using arbitrary non-singular linear transformations (T) such as 

(9) F* = R T  

A* = ATp1 (10) 

The data matrix representation in (2) then becomes 
z = FAT = RT(TT)-~AT = F*A*T 

For the correlation matrix representation in (8), Q,* can be defined as Q,* = T@TT and application of 
(10) yields 

R = A@AT = AT-lTQ,TT(TT)-lAT = A*Q,*A*T (12) 
From (11) it can be seen that F and F* have the same properties and are indistinguishable, accounting 
for the same amount of total variance. From (12) it can be seen that A can be linearly transformed to 
A* to yield a new set of PC loadings. To determine a unique set of PCs, a set of r basis vectors must be 
defined so that the PCs can be referred to these vectors. The basis vectors can be chosen to be 
orthogonal to each other, so that the PCs are uncorrelated in an orthogonal rotation, or can be chosen 
to be obliquely related, so that the PCs are correlated in an oblique rotation. In both orthogonal and 
oblique solutions, the basis vectors are typically chosen such that the PC loadings (A*) [orthogonal 
case] or the PC primary pattern matrix (A*) [oblique case] have specific variance properties. The 
matrix A* is typically transformed with the constraint that it contains the properties of a concept known 
as ‘simple structure’. 
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4. SIMPLE STRUCTURE 

4.1. General concept 

Thurstone (1947) developed a set of five requirements or criteria for a transformed solution, which 
he called simple structure, to help ensure that the matrix A* is easily interpretable. The definition of 
these five requirements will be presented in Section 4.3. Some background information will now be 
offered to make the exact definition more meaningful and logical. The goal of simple structure is to aid 
in ‘the scientific problem of discovering an underlying order in the domain’. This implies that the 
concept is useful in exploratory work. Thurstone reasoned that the variable correlations (R) defined a 
geometrical configuration of variable vectors without a reference frame. Since the PCs could be 
represented by the axes of the frame, it was necessary to locate a reference frame in the variable 
configuration where it could be used for meaningful scientific interpretation of the configuration. 

Thurstone noted that, in the majority of analyses, variable vectors would cluster or group together. 
Furthermore, the angular separations between the variable vectors within a group were relatively small, 
whereas the separations between groups of clustered vectors were markedly larger. When these 
subgroups or clusters were examined, the speciJic variable vectors within any one were frequently so 
highly related that one causal or summary influence could be assigned to each of the variables within a 
cluster. Rotating the PCs into such a position where they explained these clusters (were co-linear with 
them) would facilitate easier interpretation since each PC would represent one summary influence (or a 
subset of influences) and would not be related to other summary influences in other data clusters. 
Thurstone’s concept of simple structure was specifically tailored to common factor analysis (as opposed 
to PC), which only analyses the common or shared variance between variables. Thurstone states that all 
of the common variance of a variable should be accounted for by fewer than r common factors. 
Consequently, the definitions in this paper have been modified to agree with PC terminology. The 
important point is that the advantages gained by a simple structure rotation of common factors are 
completely transferable to a simple structure rotation of PCs. 

4.2. Technical aspects of simple structure 

The fundamental rationale behind simple structure is the compact scientific explanation of a variable 
with the smallest number of PCs. For example, if there were n variables and r PCs retained in an 
analysis, the solution would fulfil the principles of simple structures when each variable required fewer 
than r PCs to account for most of the variable’s variance. Moreover, the individual PCs would have a 
compact interpretation if each PC was associated with only a subgroup of the original variables. Since a 
simple structure solution requires that much of the variables’ variance must be accounted for by a linear 
combination of fewer than r PCs, this directly implies that to achieve simple structure, the variables’ 
variance must exist in a subspace having no more than r - 1 dimensions in r-dimensional PC space. By 
definition, a subspace of r - 1  dimensions is known as a hyperplane or co-ordinate hyperplane. For 
example, a three-dimensional region is a hyperplane lying in four-space, analogous to a plane lying in 
three-space. 

Under simple structure rotation, the problem is to find those subspaces which completely contain the 
significant variance of various subsets of the original variables. The device which is used to locate these 
subspaces is known as a reference axis. A reference axis (as opposed to a primary axis) is a hypothetical 
random variable of unit length in PC space which is orthogonal to a hyperplane in the r-dimensional PC 
space. Since a reference axis is orthogonal to every vector contained in the hyperplane, a vector in PC 
space which is orthogonal to an observed variable is potentially a reference axis and identifies a 
corresponding co-ordinate hyperplane to which it is orthogonal (Mulaik, 1972). Given variables for 
which simple structure applies, then, since there are n observed variables and, at most, r linearly 
independent reference axes in r-dimensional PC space, some of the observed variables must be 
orthogonal to the same reference axes, and the significant part of these variables’ variances must share 
the same subspaces of the PC space. Mulaik (1972) suggests a way to find a simple structure solution 
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using the n x r reference structure matrix (V) 

v = RZY = ZTY 

where Z is a matrix of n row vectors zT, . . . , z;f which represent the normalized variables Z,, . . . , 2, 
and Y is a matrix consisting of r row vectors yT, . . . , y: representing the r reference axes. The entries 
in V are correlation coefficients between the vectors zT, . . . , z;f and the vectors y:, . . . , yr. T 

4.3. Explicit definition of simple structure 

From the definition of V in (13), a simple structure can be determined which satisfies Thurstone’s 
(1947, p. 335) five criteria. Thurstone notes that variables of complexity r should be eliminated prior to 
a final rotation and interpretation since these variables do not contribute to the location of the 
reference frame. This point is frequently overlooked. Additionally, the five criteria specifically refer to 
an oblique solution, since it yields the cleanest interpretation as no artificial orthogonality constraint is 
applied, although the criteria are also valid for orthogonal solutions. All that these criteria require of 
the r reference axes is that they be a set of linearly independent vectors in PC space. 

1. Each row of the [oblique] reference structure matrix V should have at least one zero. This 
criterion satisfies the basic concept (explained in section 4.1). 

2. For each column m of the matrix V there should be a distinct set of at least r linearly independent 
observed variables whose correlations (as found in the mth column of V) with the mth reference 
axis variable are zero. This criterion is needed to overdetermine the reference axis, since each 
column m of V is determined by a hyperplane Hk. 

3. For every pair of columns in V there should be several variables, whose entries are zero in one 
column but not in the other. This criterion ensures both the overdetermination and the distinct- 
ness of the reference axes and their corresponding subspaces of r - 1 dimensions in PC space. [If 
two columns of V contained the same zero entries and if these exceeded r - 2 in number, then the 
two corresponding hyperplanes would be identical.] 

4. With four or more PCs, each pair of columns of V should have a large proportion of correspond- 
ing zero entries. This criterion ensures that the reference axis is pertinent to only a few of the 
observed variables, thereby guaranteeing a separation of the variables into distinct clusters. [This 
criterion is unimportant when there are only two or three PCs retained as the complexity would 
be less than or equal to 1 since, at most, one PC would be measured.] 

5. For every pair of columns in V there should preferably be only a small number of entries in both 
columns which do not vanish. This criterion further ensures the simplicity of the variables. 

Thurstone notes that when these conditions are met a graphical plot of each pair of columns of V 
shows (i) a large concentration of points in two radial streaks, (ii) a large number of points at or near 
the origin, and (iii) only a small number of points off the two radial streaks. For a PC analysis of r 
dimensions, there would be i r  ( r  - 1) graphical plot diagrams. Thurstone (1947, p. 335) goes so far as to 
note that ‘In the last analysis it is the appearance of the diagrams that determines, more than any other 
criterion, which of the hyperplanes of the simple structure are convincing and whether the whole 
configuration is to be accepted as stable and ready for interpretation.’ 

A common point of confusion is that the reference vectors (Y) mentioned above are not the PCs (F). 
The reference axes are treated as if they were PCs in a simple structure solution since they form a basis 
in PC space. The PCs are determined after the hyperplanes have been determined by the reference 
axes. The reference axes f o r m  a biorthogonal system of vectors with the PC vectors. Mulaik (1972) 
presents a detailed mathematical comparison of the interrelationships of these two vectors. The two can 
be related by the following equation: 

F = Y T  (14) 
where T is an r x r non-singular linear transformation matrix. Finding T such that F and Y have unit 
length involves letting the covariances of the reference axes (Y), Cyy = YTY and D$ = [diag C&]. 
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Then T transforms Y into F if 
TT = DYIC& 

The PCs have unit variances because their covariance matrix yields a correlation matrix. If Cyy is not a 
diagonal matrix (that is, the reference axes are correlated), the PCs are also correlated, so Cm or Q, is 
not diagonal. 

Typically, simple structure is assessed in the PC loading matrix (for orthogonal solutions) or in the 
PC primary pattern matrix (oblique solutions). The relationships can be seen by substituting Y as 
defined in (14), V as defined in (13) and TT as defined in (15): 

z =  FA*^ = YTA*T 

(z’Y) = ( A * T ~ Y ~ ) Y  = A * T ~ Y ~ Y  
v = A*T~C, = A*D,~c;:c,, = A*D;’ 

A* = VDY (16) 
As a result of (16), the zeros in A* correspond to the zeros in V and the PC primary pattern matrix 

(A*) has coefficients which are proportional by columns to the matrix of reference structure 
coefficients. Therefore, in a definition of simple structure configurations, either the reference structure 
matrix or the primary pattern matrix can be used. This will allow identification of simple structure in 
the pairwise graphical plots directly from the PCs. 

4.4. Objective analytic rotation 

The simple structure criteria listed in section 4.3 have been used as a springboard to create analytic 
computer programs to approximate at least a portion of the concept. There is a difficulty in defining the 
five criteria objectively since they are topological concepts originally designed for hand-rotating the 
axes. The advantages gained with analytic rotation programs arise from the objectivity gained by 
automating an algebraic formula which replaces human judgement in placing the reference axes (hence 
is more easily reproduced independently) and the time saved by computers (as what may now take 30 
seconds of computer time would take days or weeks to accomplish by hand). This last feature has been 
such a strong motivating force that no fewer than nineteen orthogonal and oblique rotations exist today; 
they are listed in Table 111. Most of the analytic rotations are simple algebraic expressions which 
attempt to approximate simple structure through the application of specially designed mathematical 
algorithms which distribute the PC loadings such that the dispersion of the loadings is maximized by 
maximizing the number of large and small coefficients (e.g. Varimax). This, in turn, has led to the 
common misconception that simple structure involves maximizing the number of near-zero and large 
loadings (for example, Johnston (1981, p. 217) states ‘. . . theory of simple structure, which says that 
components/factors should be clearly identified by their loadings. In an orthogonal solution, all 
loadings should be either f l - 0  or 0.0; in an oblique solution, all variables should have one loading of 
f1-0’). This is not what simple structure attempts to do since simple structure makes no assumptions 
about how large the salient coefficients are; maximization of the near-zero coefficients is the most 
important aspect. Nevertheless, the advantages gained by such analytic programs has resulted in their 
widespread use. The important point to remember is that all of the analytic rotation algorithms listed in 
Table I11 were created as attempts to fulfil Thurstone’s simple structure principles, as simple structure 
itself was considered to be a highly desirable concept by the various authors. There is a potential 
danger in blindly accepting the output of such analytic programs as, occasionally, their accuracy in 
recovering known patterns is no better than randomly spinning the PCs (see section 10) or they fail to 
converge in exploratory analyses (Jennrich and Sampson, 1966). One method to detect most of the 
problems is to plot up the rotated results as outlined in section 5 below. Cattell (1966b, p. 188) sums up 
the danger in blindly accepting the analytic results without inspecting the pairwise plots of rotated 
loadings when he states ‘The goal of a single “push button” rotation to final simple structure is 
naturally so seductive that many proceed as if it existed, but the resources at present claiming to do this 
are theoretically and practically misleading’. 
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Table 111. Analytic simple structure rotations 

Rotation name Type Reference(s) 

Quartimax 

Varimax 
Transvarimax 
Parsimax 
Equamax 
Quartimin 
Biquartimin 
Covarimin 
Binormamin 

Maxplane 

Oblimax 
Harris-Kaiser 

Class I1 
Harris-Kaiser 

Class I11 
Promax 

Direct oblimin 

Functionplane 
H-A (Types A 

Casey’s method 

DAPPFR 

and B) 

Orthogonal 

Orthogonal 
Orthogonal 
Orthogonal 
Orthogonal 
Oblique 
Oblique 
Oblique 
Oblique 

Oblique 

Oblique 
Oblique 

Oblique 

Oblique 

Oblique 

Oblique 
Oblique 

0 blique 

Oblique 

Carroll (1953); Neuhaus 
and Wrigley (1954) 

Kaiser (1958) 
Saunders (1962) 
Crawford (1967) 
Kaiser (1974) 
Carroll (1953) 
Carroll (1957) 
Kaiser (1958) 
Kaiser and Dickman 

Cattell and Muerle 

Saunders (1961) 
Harris and Kaiser 

Harris and Kaiser 

Hendrickson and White 

Jennrich and Sampson 

Katz and Rohlf (1974) 
Hakstian and Abell 

Kaiser and Cerny 

Tucker and Finkbeiner 

(1959, 1977) 

(1960) 

(1964) 

(1964) 

(1964) 

(1966) 

(1974) 

(1978) 

(1982) 

5 .  GRAPHICAL PRESENTATION OF SIMPLE STRUCTURE 

5.1. Construction of pairwise plots 

The importance of the above statement naturally leads to the question: how can it be determined 
whether an analytic rotation is yielding results close to an ideal simple structure solution? Thurstone 
provides a clue when he states that the inspection of graphical pairwise plots of PCs is of utmost 
importance in the interpretation of an analysis (see Section 4.3). Such a plot involves setting two PCs as 
the x- and y-axes. The rotated PC loadings (or pattern coefficients) are plotted up with respect to the 
two PCs as a reference frame. An example is provided in Figure 6 which plots up the PC primary 
pattern coefficients in Table IV for the three sets of pairwise plots. In addition to this, Figure 6(a) has 
been constructed as a guideline to illustrate the hyperplanes which are orthogonal to the PCs. Variables 
which fall close to a hyperplane are termed ‘in the hyperplane of that PC’ (see below for definition of 
hyperplane width); variables located near the origin are termed ‘in the hyperplanes of both PCs’, and 
variables which have large coefficients on both PCs are termed ‘complex variables’ (not to be confused 
with u‘(-1)). Examining Figure 6(b), which plots PC1 vs. PC2, indicates that variables 2, 3, 6, 9, 12, 
14, 15, 19 and 20 are nearly zero with respect to PC1. Strictly speaking, the hyperplane is infinitely 
narrow and can only be formed by an exact zero loading. The question arises of how the problem of 
sampling errors and other noise affects the magnitude of the loadings as it is unlikely that an exact zero 
loading will occur in any analysis. Since a subset of variables are ‘close’ to zero, Tucker (1955) suggested 
that variables considered to be in the hyperplane should have coefficients falling within a certain narrow 
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Figure 6. Graphical pairwise plots of the obliquely rotated primary pattern coefficients for the three PCs listed in Table IV and 
an illustrative guideline for interpretation (panel (a)). The plot of PC1 vs. PC2 is panel (b), PC1 vs. PC3 is panel (c) and PC2 vs. 
PC3 is panel (d). Note the clustering of subsets of variables along the PC axes. The numbering of the points in panels (b), (c), (d) 

corresponds to variable numbers in Table IV. See Table V for results of this analysis. 

band on either side of zero. Typically, values between k0.05 and f0-20 are used with the hyperplane 
width being directly proportional to the number of input observations and the amount of noise in the 
analysis. For this example a value of 50.10 will be used, as shown in Figure 6(a). Returning to Figure 
6(b), variables 2, 3, 6, 9, 12, 14, 15, 19 and 20 all define the hyperplane of PC1. Similarly, variables 1, 
3, 5, 8, 11, 13, 15, 18 and 20 define the hyperplane of PC2, whereas variables 1, 2, 4, 7, 10, 13, 14, 18, 
and 19 define the hyperplane of PC3 (Figure 6(c)). PC1 clusters variables 1, 5 ,  8, 11, 13 and 18 whereas 
PC2 clusters variables 2 ,  6, 9, 12, 14 and 19 (Figure 6(b)). Similar interpretations can be made by 
examining Figures 6(c) and (d). 

This solution was obtained with an analytic oblique rotation. Does it fulfil the principles of simple 
structure? Examining the plots in Figure 6 indicates that there are near-zero loadings around the origin 
with two radial streaks and not too many complex variables as Thurstone mentions. If the five criteria 
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Table IV. Hypothetical PC loadings for graphical plot 
example shown in Figure 6 (Harman, 1976, p. 359) 

Variable 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

PC1 

0.997 
0.008 

-0.001 
0.471 
0-406 
0.008 
0-728 
0.863 

-0.013 
0.615 
0.678 

-0.007 
0.990 

-0.047 
0.019 
0.293 
0.645 
0.970 
0.055 

-0.009 

PC2 PC3 

0.000 
0.994 
0.013 
0.759 

-0.008 
0.411 
0.522 
0.014 
0.773 
0.643 

-0.001 
0.624 
0.030 
0.993 

-0.046 
0.378 
0.472 

-0.036 
- . n a  

0.038 

-0.002 
-0.006 

0.985 
0.007 
0.863 
0.800 
0.001 
0.411 
0-474 
0.009 
0.672 
0.645 

-0.011 
0.050 
0.996 
0.697 
0-301 
0.009 

-0.055 
0-950 

are examined individually, the simple structure can also be assessed and this rotation can be 
satisfactorily interpreted. This example is an actual analysis of physical data in which 20 non-linear 
measurements (variables) were taken of a series of boxes, as shown in Table V, based on Thurstone’s 
(1947, pp. 140-144) experiment. These measurements were formed into a correlation matrix and 
analysed, and the final rotated solution identifies the three PCs as length, width and height of the boxes 
(X, Y ,  Z ) ,  which indicates that the analysis can recover the underlying order in a set of variables. 

Table V. Various measurements taken for Thurstone’s (1947) 
20 variable box problem 

Variable Measurement Variable 

1 X’ 11 
2 Y” 12 
3 Z’ 13 
4 X Y  14 
5 xz 15 
6 YZ 16 
7 d(XZ + Y’) 17 

9 d( Y’ + Z”) 19 
10 2 x  + 2Y 20 

8 d(X’ + Z’) 18 

Measurement 

2 x  + 2 2  
2Y + 2 2  

log x 
log Y 
log z 
XYZ 

d(X’ + Y’ + Z’) 
ex 
ey 
ez 

5.2. Amount of simple structure present in an analysis 

Using the graphical plots presented in Figure 6 as a guide, the amount of simple structure present in 
an analysis will now be schematically illustrated in Figure 7. This is vital to the development of the 
Monte Carlo technique in sections 9 and 10. Strong simple structure is present in Figure 7(a), as there 
are many variables in the hyperplane with distinct clusters of variables radiating out along the axes and 
few complex variables. Figure 7(b) illustrates moderate simple structure in which there are more 
complex variables than the previous case, and slightly fewer variables in the hyperplane. Figure 7(c) 
depicts weak simple structure in which there are a good number of complex variables, poorly defined 
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Figure 7. Hypothetical schematic examples of various degrees of simple structure using the graphical pairwise plots of rotated PC 
loadings as a guide. Panel (a) corresponds to a strong simple structure. Panel (b) corresponds to a moderate simple structure. 
Panel (c) corresponds to a weak simple structure. Panel (d) corresponds to a random configuration of input correlations. These 
plots can be compared to actual pairwise graphical plots of meteorological data to assess the degree of simple structure in any 

rotated data set 

hyperplanes and indistinct clusters. Finally, Figure 7(d) depicts a random configuration with many 
complex variables and no clusters, in which case any PC position would be equally valid to describe the 
variables. Fortunately, meteorological data are rarely in a random configuration; those that are should 
not be subject to an eigenanalysis (particularly EOF/PC), as it is possible for the coefficients to appear 
as signal when they are artifacts of the techniques (see Richman, 1985, for illustrations and screening 
devices). 

5.3 .  Relating real data to the amount of simple structure present 

Using real examples of meteorological data, the amount of simple structure present in pairwise plots 
of PCs can be determined. The first example, Figure 8(a), is taken from the Lamb and Richman 



C.<IS, I I"L "LC..*"L 
I . ,  J ."  0.0 0 . .  ".* Y.0 0.z  0.. 0 .6  0.a I.0 ................................................... 

.- * . .I . ....... ---..- ..... ...... .. I. . .... 
* 

7 . . 1.. 

. -  -r- -. 
I -, ., _________..- . ................................................... 

I.0 a.. o., (I.. 0.2 O." 0.1 0.. 0.G 0.Y 8 . 0  
"LI..', "k "ni l  I ,  "E 

*o,, I,  r e  *LC..l"L 
,.o 0.. a.e 0.. 0.2 0 . 0  0 . I  0.. 0.. 0.. I . 0  .................... -.Ly.. ..;. .?. .............. .=> -.-. .. 

. . . . . . . . . .  . . . . . .  ............... ... 5 7 .  ........... Ti?. ... ................ .. ........... . . . . .  ........ . .  
7-- ,- 

~- ................................................... 
I.. e., 0.. 0.. o.* 0 . 0  m.2 0..  0 . 6  0.. I . O  

t+ccArtvc co*,r*"E 

.. .... - - -~-~-~~ * L C " I I " I _ _  .... .* .. 0.6 6.1- --.a r U I . n . l . " L ~ . . -  ~ ~ 

1.0 ,.a 0.6  0. .  0.8 ................................................... 
.. . .  

:- -.-_.- - * *  .--, . . . . .  
t .  ...................................................... ... .-*---.- _. . . .  . .  

.- . . .  
-*-*- - . ~ ?-- ___.. 

- 

................................................... 
2 I 0 . 6  --r,.~--o.I ~ - - 3 . 3  

*r ' . I ,"L e",,rl*F 
__ d.T-- -~~~ o ; I ~ ~  -. ~.=- 

Figure 8. Computerized output of three representative graphical plots of meteorological/climatological data sets. Panel (a) is 
taken from Lamb and Richman's (1983a, b) 3-day summer rainfall study and illustrates a strong degree of simple structure with a 
Varimax rotation using the information in Figure 7 as a guideline. Panel (b) is taken from Walsh and Richman's (1981) 
sea-surface temperature data set and illustrates moderate simple structure with a Varimax rotation. Panel (c) is from Richman's 

(1981) geopotential height data set and illustrates a very weak simple structure with a Varimax rotation 
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(1983a) precipitation analysis, where PC loadings refer to climatological stations, exhibiting a large 
number of near-zero loadings in the hyperplane and clusters of salient loadings aligned with the PCs 
indicating a prime example of strong simple structure. The second example, Figure 8(b), is taken from 
the Walsh and Richman (1981) sea-surface temperature data set which exhibits moderate simple 
structure, as there are a number of complex variables between the PCs and clusters of variables which 
are not as well defined as in Figure 8(a). The third example, Figure 8(c), is taken from a study by 
Richman (1981) of 500mb geopotential data (not shown in that article) in which there are more 
ambiguous clusters of variables with fewer variables in the hyperplanes corresponding to a weak simple 
structure. One point should be made clearly: the results in Figure 8 do not imply that all precipitation 
data exhibit strong simple structure, all sea-surface temperature data exhibit moderate simple structure 
or all geopotential data exhibit weak simple structure. In any given analysis some pairwise plots may 
exhibit strong simple structure, whereas others may exhibit moderate simple structure; therefore, all 
possible 4r ( r  - 1) pairs of plots should be examined in order to assess the overall degree of simple 
structure in the data (as illustrated by Richman and Lamb, 1985). 

Certain types of meteorological data are more amenable to simple structure rotation than others. 
Recalling that simple structure identifies subsets of variables is one important factor in deciding if a 
rotation will aid in the specific interpretation of an analysis. This requires some meteorological insight 
prior to the analysis. For example, the Richman and Lamb (1985) precipitation study was expected to 
yield more intuitively meaningful results when rotated, since warm season rainfall anomaly patterns 
tend to occur on a subset (or subregions) of the United States at any given 3-day time interval [(Figure 
8(a)) attests to the strong simple structure and distinct clustering]. Conversely, the geopotential height 
data indicated little simple structure when rotated (Figure 8(c)) as many of the pairwise plots had 
almost randomly located variable points. This one example does not mean that geopotential data are 
not suitable for a simple structure rotation, as Cohen (1983), Barnston and Livezey (1985) and Horel 
(1981) present geopotential analyses where rotation was useful, only that the orthogonal rotation used 
(Varimax) failed to capture a simple structure for this one particular data set. At this point an oblique 
rotation could be applied to discern if the artificial orthogonality constraint was causing the problem. If 
the plots were similar to Figure 8(c), this one particular data set might, in its present form, have to be 
considered unsuitable for a simple structure interpretation. This leaves two alternatives (besides 
analysing the unrotated results): (i) attempt to analyse the transposed data matrix with a simple 
structure solution, or (ii) use a non-simple-structure rotation known as Procrustes target rotation. Each 
of these possibilities will be briefly examined. 

6. THE SIX MODES OF DECOMPOSITION 

A PC analysis can be specified in at least six basic operational modes, depending on which parameters 
are chosen as variables, individuals and fixed entities. These six modes have been defined as 0, P, Q, 

Table VI. The six modes of decomposition and how these relate to 
the PC model as shown in equation (1). Matrix configurations 

shown in Figure 9 

Variable index Individual index Fixed 
PC mode j denotes i denotes entity 

0 time field station 
P field time station 
Q station field time 
R field station time 
S station time field 
T time station field 

a,, j = 1, . . . , n 
m = l , .  . . , r m = l , .  , . , r 

PC loadings PC scores 
Matrix 
display 
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Figure 9. Data matrix (with columns treated as variables), dispersion matrix, PC loading matrix and PC score matrix under each 
of the six modes of variation. The application of a simple structure rotation to each of the six modes will uniquely cluster and 

simplify the variables (rows) in the PC loading matrix, corresponding to the information in Table VI 

R, S and T by Cattell (1952) and will result in a unique clustering of variables when simple structure 
rotation is applied. In studies of meteorological fields in space and time, there are three entities: a 
meteorological field (or parameter), time and a location (or station). A PC analysis of a meteorological 
field can therefore be made by varying any two of these three entities and holding the third fixed. 
Examination of (1) reveals two basic matrices which are examined in PC. These are suggested by aim 
(the PC loadings) a n d f ,  (the PC scores). These are applied to the six modes in Table VI. For example, 
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suppose Z has been rendered into an S-mode representation. From Table VI note that j indexes 
stations and i indexes times, of some fixed field. Then a geographical plot of a,,, for fixed m, as a 
function of j would be a map of the PC loadings as distributed over the spatial extent of the data of 2. 
The time plot of hm, for fixed m, as a function of i, would be a time series of the rth PC score. 
Alternatively, if T-mode had been used to analyse Z, the PC loadings, a,m, would be a time series for 
each m whereas Am would plot up as a geographical map of PC scores for each m. The matrix 
configurations of the data (columns are treated as variables), dispersion matrices, PC loading matrices 
(rows are treated as variables) and PC score matrices corresponding to all six modes in Table VI are 
shown in Figure 9. 

Applying this information to meteorological data provides an important insight into the type of 
information gained via each mode of decomposition. In the typical S-mode decomposition, the simple 
structure rotation attempts to isolate subgroups of stations which covary similarly. Horel (1981) and 
Richman and Lamb (1985) provide this type of analysis, which is useful for regionalization. By 
transposing the data matrix, Z, so that the variables refer to the individual time observations, a T-mode 
analysis can be performed, and when rotated it would isolate subgroups of observations with similar 
spatial patterns and, thereby, simplify the time series. It is important that the mode of decomposition 
be given serious thought prior to the analysis in order to optimize the potential for rotation to uncover 
physically meaningful relationships. For example, in Richman (1983a) the data were 700 mb heights 
and the aim of the study was to develop a catalogue of flow types which resembled weekly 700mb 
anomaly averages over the western half of the Northern Hemisphere. Examination of the input data 
prior to the analysis was vital in this case as it gave insight into the nature of the height anomalies over the 
domain. Inspection of the weekly 700 mb height anomalies indicated that 3-6 discrete anomaly centres 
were present on 98 per cent of the weekly mean maps examined. If an S-mode analysis with rotation 
was applied, the rotation would attempt to isolate as few anomalies as possible per component; Cohen 
(1983, p. 1981, his Figure 2) illustrates an example of this effect with the Varimax rotation depicting 
only one anomaly per PC map. This is not consistent with what was observed in the 700mb maps, 
hence S-mode was rejected, a priori, and a T-mode analysis with rotation was considered. In T-mode 
the time series would be simplified into discrete groups of clustered weeks, which better fits the idea of 
discrete map types, and the spatial series (component scores) are left in a complex form which can then 
represent the complex waves evident at 700 mb. This is exactly what occurred when the T-mode rotated 
analysis was applied to the data set and yielded height anomaly patterns with typically 3-6 anomaly 
centres, in agreement with the input data. The pairwise graphical plots were examined and indicated a 
strong to moderate degree of simple structure, since the time series clustered into groups of weekly 
observations with similar spatial patterns. This example combined with Table VI and Figure 9 
underlines the need to carefully consider which of the six modes of decomposition should yield the best 
theoretical representation of the data for the objective at hand prior to running an analysis. 

7. PROCRUSTES TARGET ROTATION 

Suppose that simple structure in any of the six modes is not theoretically suitable for a field under 
investigation. An alternative technique, Procrustes target rotation, may be useful (Hurley and Cattell, 
1962). The various rotations listed in Table I11 are all simple structure transformations, which are most 
useful when trying to identify relationships, yet have limited use in trying to confirm existing theory. 
Procrustes target rotation is useful in confirmatory applications where a hypothesized component 
structure is of interest and involves designating the hypothesis as a target and rotating the unrotated 
PCs to an optimized fit with these loadings. The transformation involves a least-squares solution 
between transformed PC weights or loadings and the hypothesized PC weights. The goodness-of-fit 
between these two sets of weights is related to the validity of the hypothesis. Mathematically, the 
Procrustes equation is 

B = A T + E  (17) 
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where B is the n X r target matrix, A is the n x r PC unrotated loading matrix, T is the r x r 
transformation matrix and E in the n X r matrix of discrepancies or residuals. We wish to find a 
transformation matrix (T) such that 

trace (ETE) = trace (B - AT)T(B - AT) is a minimum (18) 
Mulaik (1972) provides such a solution by taking the partial derivative with respect to T and setting (18) 
to zero as d/dT [trace (ETE)] = -2ATB + 2ATAT= 0. This can be rewritten as ATAT= ATB and 
solving for T yields 

T = (ATA)-lATB (19) 
T is typically normalized such that diag (TTT) = I,. The matrix (AT) is analysed and comparison to the 
residuals (E) is of utmost importance when using Procrustes to gauge the validity of the hypothesis. 

Procrustes offers numerous applications, such as in weather modification research, where the 
expected modification region could be specified as the ‘target area’ to note how well stations within this 
region clustered. Another application would be to verify if some hypothesized synoptic pattern from 
one data set existed in a second database, or at a different time interval (Richman, 1983a). In T-mode, 
Procrustes can be employed to isolate specific time periods in the target and used to study the effects of 
quasi-periodic events (such as El Niiio) on meteorological parameters (such as surface temperature). 
This approach has advantages over harmonics since aperiodic intervals can be specified as the target. 

8. ANALYTIC SIMPLE STRUCTURE ROTATION 

8.1 Availability 

In section 4, the concept of simple structure was introduced along with a method of assessing the 
amount of simple structure present in a database (section 5) .  The focus of this portion of this work 
involves comparing the analytic rotation techniques available on the statistical packages. Thurstone’s 
(1947) five simple structure criteria have been partially incorporated into algebraic expressions which 
attempt to approximate a simple structure solution of which 19 were identified in Table 111. A survey of 
the major mathematical/statistical packages (BMDP, 1981; IMSL, 1979; SAS, 1982; SPSS, 1979) 
revealed that, of the 19, only a subset of eight orthogonal and oblique rotations are readily obtainable 
(Table VII) because some are outdated whereas others are so new that they are not yet available. Of 
these eight, all five oblique rotations and the most accurate orthogonal rotation will be examined 
and compared for accuracy over a variety of different data sets. Algebraically, the orthogonal rotations 

Table VII. Analytical simple structure rotations available on the four major mathematical/statistical 
packages. Asterisk denotes Procrustes which is generally used as a confirmatory transformation 

Packages 
BMDP (1981) IMSL (1979) SAS (1982) SPSS (1979) 

Orthogonal rotations 

Equimax Equimax 
Quartimax Quartimax 
Varimax Varimax 

Equimax 
Quartimax 
Varimax 

Equimax 
Quartimax 
Varimax 

Oblique rotations 

Direct oblimin Harris-Kaiser I1 IC Harris-Kaiser I1 IC Direct oblimin 
Harris-Kaiser I1 IC Harris-Kaiser I1 BTB Harris-Kaiser I1 BTB 
Harris-Kaiser I1 BTB Procrustes* Procrustes* 

Promax Promax 
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must satisfy equation (lo), B = A* = AT-’, where B is an n X r rotated PC loading matrix correspond- 
ing to A* in (10) and (16), A is an n x r initial unrotated loading matrix and T is an r x r orthonormal 
transformation matrix which attempts to impart the properties of simple structure on B. (Some of the 
packages define T-’ as T; therefore, in these situations, B =AT). Since T is an orthonormal matrix, 
TTT = TTT = I,. The oblique rotations also use (10) but relax the condition that TTT = TTT = I, so that 

may have off-diagonal values. One other characteristic of rotated solutions is that they typically 
resolve nearly the same total variance as unrotated solutions (see Richman and Lamb (1985) for 
empirical evidence, where variance retained for the Varimax solution was 99.9995 per cent of the 
unrotated solution). Harman (1976, p. 268) presents a means to calculate variances of oblique 
solutions. 

8.2. Varimax orthogonal rotation (Kaiser, 1958, 1959) 

Varimax will be the only orthogonal package rotation examined since it is generally accepted as the 
most accurate analytic algrbraic orthogonal rotation when applied to ‘known’ data sets (Rummel, 1970; 
Mulaik, 1972; Harman, 1976) and is the only orthogonal rotation which has been widely used. Varimax 
attempts to simplify the columns or PCs of the matrix B as a route to achieving simple structure. The 
simplicity (V*)  of a PC r is defined in terms of the variance of the squared loadings by 

V* = [n  2 (b;.)’- (i b i . ) 2 ] / n 2  j = 1, . . . , r 
i = l  i = l  

where n is the number of variables, r is the number of PCs, and the bs are the PC loadings. Kaiser 
reasoned that when the variance was at a maximum, the PC had its greatest simplicity (i.e. inter- 
pretability) as the b’s tended to either 0 or 1. This is in some contrast to what simple structure states, as 
only near-zero loadings are important to a simple structure, yet is frequently a reasonable approxima- 
tion. From (20), the normalized Varimax criterion (version available on packages) can be developed as 

where h; is the communality of the ith variable (the amount of the ith variables variance accounted for 
by the r PCs retained). The PCs are rotated in pairs until the value V is maximized to a given 
convergence criterion. The V criterion in (21) is used to determine the matrix B* = H-’ATV, where H2 
is an n x n diagonal matrix of communalities, A is a matrix of the n x r unrotated loadings and Tv is an 
r X r orthonormal transformation matrix determined when V is maximized. This is then renormalized to 
the original metric of the variables by a premultiplication by a diagonal matrix of square roots of the 
communalities as B = HB*. 

8.3. Direct oblimin (Jennrich and Sampson, 1966) 

The Direct oblimin method of oblique PC rotation operates directly on the primary pattern matrix B 
rather than the reference structure matrix V as shown in (16). Simple structure is approximated by 
minimizing a function of the primary pattern matrix B, F(B) of the form 

where 6 is a specification parameter which is typically set at zero (default value for the various 
packages). The problem then becomes finding a transformation matrix T which minimizes F(AT-’) 
under the condition diag (TTT) = I,. Rotations are performed systematically using all possible pairs of 
PCs until F(B) converges to a set value (typically 0.00001). The value 6 can be changed to alter the 
obliquity of the PCs. The permissible range for 6 is - w  to +1, although values less than -10 typically 
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result in nearly orthogonal solutions whereas values greater than approximately +O-5 can result in a 
‘collapsed solution’ as the PCs become highly correlated when the function F(B) goes highly negative. 
If the graphical plots of the coefficients of B are examined, 6 can be altered over a more moderate 
range (e.g. -1 to +O-5 in 0.1 increment steps) to visually assess which solution yields the best structure. 
Karl and Koscielny (1982) illustrate a meteorological example where 6 was set at +0-25 to achieve a 
solution. 

8.4. Harris-Kaiser Case ZZ (Harris and Kaiser, 1964) 

This oblique rotational approach finds a T by using orthonormal and diagonal transformation 
matrices using the Eckart-Young (1936) theorem with an arbitrary transformation matrix M which may 
be expressed as the product 

M = T2D2T1D1 (23) 
where T1 and T2 are orthonormal r X r matrices and D1 and D2 are r X r diagonal matrices. The 
Eckart-Young theorem states that, for any real matrix A, two orthogonal matrices P and Q can be 
found for which PTAQ is a real diagonal matrix, D, with no negative elements (Mulaik, 1972). 
Rewriting (23) as 

M = M*Dl (24) 
which is in the form B = AT, and applying the Eckart-Young theorem, any M* can be expressed as 
M* = T2D2T1 where the relationships T2 = P, Tl = QT and D2 = D are defined by the theorem. The 
matrix D1 in (23) and (24) only serves to make the rotated PCs unit length. Therefore, D1 = 
[diag (M*TM*)-l]j. As a result, any transformation matrix M can be described in terms of a series of 
orthonormal and length-adjusting transformations of the PCs. 

There are two types of case I1 procedures recommended by Harris and Kaiser: the independent 
cluster (IC) solution and the proportional (BTB) solution. The IC solution is best applied when the 
clusters of variables do not overlap and each variable loads highly on only one PC. When the data are 
more complex, the BTB solution is recommended. The graphical painvise plots can be used to help 
determine which solution yields a better structure. The case I1 IC procedure begins with the following 
equation: 

M = (I)D2T1D1 (25) 
where T2 is set to I.  (The definition of any case I1 procedure involves setting T2 = I). The columns of A 
are rescaled, followed by an orthogonal transformation, and finally a rescaling again of the resulting 
columns. The process involves a principal axes solution A = VDf where V is an n x r matrix of retained 
eigenvectors and D is an r X r diagonal matrix of retained eigenvalues. D2 in (23) is set to D-f.  Then 
the resulting primary pattern matrix (AM) is represented as 

(AM) = VTIDl (26) 

which can be obtained by letting TI be any one of the orthogonal simple structure solutions of the 
eigenvectors V (e.g. Varimax) [not VD;]. The matrix D1 normalizes the PCs. 

The second type of Harris-Kaiser solution, the BTB [sometimes denoted PTP], is more complex and 
used for overlapping data clusters. In this case D2 is chosen to be some power of D typically, D2 = D-a. 
Then, in this case, the primary pattern matrix (AM) is represented as 

(AM) = VDiTID1 (27) 
Again, TI can be any orthogonal simple structure rotation of VD; (as opposed to V in the IC 

solution). The name proportional solution arises as BTB = D,TTAiT,D, where A is the matrix of 
eigenvalues. This shows that BTB is proportional to the PC intercorrelations (a), within a scaling 
constant D,. It is also possible to raise VD to other powers (e.g. VDQ) and examine the painvise plots 
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to assess the degree of simple structure, as Hakstian (1974) illustrates. Richman and Lamb (1985) apply 
the Harris-Kaiser case I1 BTB solution to a rainfall data set. 

8.5 Promax (Hendrickson and White, 1964) 

The Promax oblique simple structure rotation uses an oblique Procrustes transformation to achieve a 
simple structure solution. The Procrustes equation (17): B = AT + E where B is the n X r target matrix, 
A is the n X r initial unrotated matrix, T is the r x r transformation matrix and E is the n x r matrix of 
discrepancies is developed in equations (17)-(19). Minimizing the discrepancies (ETE) by taking the 
partial derivative with respect to T and setting the solution to zero yields equation (19): T =  
(ATA)-'ATB which Promax uses to obliquely rotate to simple structure under the assumption that an 
orthogonal simple structure solution is usually fairly close to an optimum oblique solution. As a result, 
functions of the loading elements of an orthogonal solution (e.g. Varimax) are used to construct a 
hypothetical oblique PC primary pattern matrix to be approximated by an oblique Procrustes transfor- 
mation of the orthogonal PC primary pattern matrix. Mulaik (1972) offers a solution. 

Let A* be defined as an n X r orthogonal simple structure pattern matrix (Varimax PC loadings are 
the same as the primary PC pattern matrix under orthogonal rotation). The rows of A* are then 
normalized as follows by hi to construct an n X r matrix G :  gij = a:/hi where 

A matrix A can now be defined which normalizes G by columns so that in each column of G the largest 
absolute value of an element is 1.00. Other elements of G are rescaled in A as aii = gij/kj where k, is the 
absolute value of the element with the largest absolute value in the jth column. Now a hypothetical 
simple structure primary pattern matrix B can be defined with elements b, such that 

where rn is a power to which the element aij in A is raised. The matrix B represents A raised to the rnth 
power, but with the original sign of aij. The rationale for raising the elements of A to the rnth power is 
to make those elements near-zero in magnitude approach zero more rapidly than elements further away 
from zero. Hendrickson and White recommend that initially rn = 4 in most instances, although 
Hakstian and Abell (1974) mention that the more complex the initial orthogonal solution is, with less 
spread between the low and high loadings, the lower the value at which rn should be set (rn = 2 in 
complex solutions). The power constant rn is denoted as k in section 10 to agree with the packages. 

In Promax, the matrix A* is the matrix to be transformed and the matrix B is target matrix to be 
approximated by application of a Procrustes target transformation. The transformation matrix T* is 
then obtained by application of equation (19): 

Since unit length orthogonal vectors are used in A*, the matrix A*TT will not be a primary pattern 
matrix since the associated vectors are not unit length. Therefore a transformation is needed to 
normalize T*: T = TTDl where D: = [diag (TTT,)-']. Since [diag (TTT)-'] = [diag D;l(TTT,)-'D;'] = I, 
this is the proper normalization of T. The desired oblique PC primary pattern matrix, A:, is given by 

A; = A*T = A*TID, (30) 

Hayden (1983) applies a Promax solution to a cyclone frequency data set, and Lins (1985) applies it to 
streamflow data. 
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8.6. DAPPFR (Tucker and Finkbeiner, 1982) 

The Direct Artificial Personal Probability Factor Rotation differs from the other four simple structure 
rotations examined for two reasons: (i) it is an oblique topological approach to simple structure 
solution rather than the simple maximization of an algebraic formula and, (ii) it is the only newly 
developed rotation tested which is not yet available on the packages. This method represents an 
attempt to quantify the detailed judgements involved in Thurstone’s (1947) graphical approach to 
simple structure by fitting hyperplanes to the variable configurations and is based on earlier work by 
Tucker (1940, 1944, 1955). As such, it closely parallels graphically hand-rotating the factors (PCs) to 
achieve simple structure, as subgroups of variables determine hyperplane locations in PC space and 
these variables will therefore have small projections on the normal to the hyperplane. The determina- 
tion of exactly which variables constitute these subgroups is sometimes difficult, since this implies that 
total groups of variables are partitioned into two subgroups on the basis of projections on the normal to 
the hyperplane. One subgroup is composed of those variables whose projections on the normal lie in 
the near-zero range, whereas the second subgroup contains the remaining variables. Partitioning the 
variables as so described amounts to a ‘step function’ based on the projections of the variables on the 
normal to the hyperplane. 

In Figure 6, for example, the hyperplane width is shown as f0-10, and this implies that variables with 
projections of greater than +0-10 or less than -0.10 are considered to lie outside ’the hyperplane, 
whereas variables within the f0.10 range are considered in the hyperplane. This approach can be 
thought of as a weighted least-squares fit of the hyperplane to the entire set of variables when the 
weights are either 0 or 1 as determined by the step function, but presents a theoretical problem as the 
question arises: why should a variable with a projection just within the interval (e.g. 0.09) be given the 
full weight in the determination of the hyperplane whereas a slightly larger value (e.g. 0.11) is given a 
zero weight? A continuous function would help eliminate the problem if it could represent the personal 
probability that a given variable should be considered in the subgroup defining the hyperplane, which 
would be a function of the projection of the variable on the normal to the hyperplane. The name of the 
rotation arises from these concepts as the primary factor pattern matrix is operated on (hence ‘direct’ as 
in Direct oblimin) , and artificial personal probability refers to the probabilities of specific variables 
lying in the hyperplane. In DAPPFR, the hyperplane location is defined by a weighted least-squares 
principle which minimizes the mean weighted projection of the variables when the weights are the 
personal probabilities. 

The probability (p) of a theoretical common factor loading being within the hyperplane: p (c = 0 I b )  
is calculated (after Tucker and Finkbeiner, 1982). Let f ( b  I P )  be a conditional probability density 
function of b (observed factor loading) given /3 (theoretical factor loading). The analyses of real data 
use observed factor loadings and do not deal directly with the theoretical loadings. Divergence of the 
observed factor loadings from the theoretical loadings occurs as a result of sampling error and lack of fit 
of the factor model to the data. The bivariate probability density function of b and p is 

where f(P) is the probability density function (p.d.f.). For a given value of b, define: 
Po - 6 0  

gob = jpp0 f(b, P )  d p  and glb = f(b, P )  dP f f(bt 6) dp  (32) I__ Po 

where Po is the hyperplane width. Then 

P ( C  = 0 I b )  = gob/(&% + glb) (33) 
The personal probability of a factor loading being within the hyperplane is given by (33). These are 
then employed as weights, and a weighted least-squares solution is applied to the variables in a series of 
trials until a stable position is obtained. A trial matrix of vectors normal to the hyperplanes (N) is 
formed and a shift matrix applied as shown by Tucker and Finkbeiner. The relationship between the 
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final N and the transformation matrix used in the determination of the simple structure solution 
B = AT-' is given by 

(34) T-1 = N T D - ~  

where diag (NNT) = I and diag ((NNT)-') = DW2. Therefore, D is a diagonal matrix used to normalize 
the columns of T-' such that B represents a primary pattern matrix. 

One other important aspect of the rotation is that there are two separate procedures, one for cases 
when salient projections might be positive or negative (two-sided personal probability function) and the 
other for cases when a positive manifold is to be assumed (one-sided personal probability function). 
The development of both functions was accomplished by a trial-and-error basis for which Tucker and 
Finkbeiner list the specific constants employed. The physical importance of the option of choosing a 
one- or a two-sided rotation is that the specific case can be chosen to agree with the data. For example, 
the Lamb and Richman (1983a) 3-day rainfall total correlation matrix exhibited all significant correla- 
tions of the same sign as indicated in Figure 5(b). Consequently, all PC loadings were expected to be of 
one sign and a one-sided DAPPFR solution could be applied. In other cases, as in the analysis of 
geopotential height over a large domain where standing waves would be manifested by both large 
positive and negative correlations, a two-sided DAPPFR solution could be applied. It is up to the 
analyst to use physical insight in order to figure out which of the two procedures best corresponds to his 
data. Richman (1983a) applies a two-sided DAPPFR rotation to a 700 mb data set. 

8.7. Orthogonal Procrustes (Schonemann, 1966) 

Schonemann (1966) develops a family of techniques which are most useful in confirmatory work. 
However, similar to the way Promax uses oblique Procrustes as a means to achieve an oblique simple 
structure solution, one facet of this approach can be used as a means to achieve an orthogonal simple 
structure solution. This is an experimental approach to achieving an orthogonal solution by first using 
an oblique rotation to arrive at a target matrix and then taking advantage of Procrustes to yield a least- 
squares fit to the target. Conceptually, this is the reverse of the Promax rotation (which uses an initial 
orthogonal rotation to form the target). In this transformation, the Procrustes equation (17), is applied 
in the form AT = B + E and solves for T in a least-square sense as trace (ETE) is minimized under the 
restriction that T be orthonormal: TTT = TTT = I. There has been little or no application of orthogonal 
Procrustes in an exploratory simple structure mode to date; however, there may be circumstances when 
the statistical need for an orthogonal solution outweighs the disadvantages incurred (e.g. if the PC 
scores are to be used in a regression equation on independent data as by Walsh and Richman, 1981). 
This was the motivation for testing this new type of orthogonal solution: to discern if this approach 
could retain more of the accuracy advantage of an oblique rotation over a conventional orthogonal 
rotation such as Varimax. In this specific application the primary pattern matrix from the DAPPFR 
transformation was directly inserted (without rescaling) as a target matrix, B. The resulting Procrustes 
output AT was used as the orthogonal loading matrix. Since this is a new, experimental and relatively 
untested procedure, the results will be shown in section 10 in the hope that other investigators will 
apply it along with Varimax when statistical requirements indicate that an orthogonal solution is 
necessary. 

9. MONTE CARL0 SIMULATION 

9.1. Rationale 

In the past, the choice of which analytic rotation(s) to apply has been a 'blind' decision; that is, there 
have been few studies comparing how accurately (see Section 9.4 for specifics) the rotations can 
uncover the underlying structure for different types of data in various analyses. An initial analysis 
would typically be followed by a readily accessible orthogonal or oblique rotation. This was the 
motivating force behind this Monte Carlo study: to examine how well various factor solutions (i.e. 
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unrotated, orthogonally rotated, obliquely rotated and random spin) can uncover input factor struc- 
tures which were randomly generated. The basic Monte Carlo procedure and format were developed by 
Tucker (1983) to test a new rotational technique and the theoretical development is given by Tucker et 
al. (1969) and Tucker and Finkbeiner (1982). The technique uses factor analysis as opposed to PC. 
Although the factor model may have a slight advantage in accurately uncovering the underlying modes 
of variation, the results found will be valid for either technique. A brief discussion of some of the 
parameters will ensue in Section 9.3. 

9.2. How Thurstone’s simple structure concept was incorporated into the simulation 

Thurstone’s simple structure concept can be seen by examining pairwise graphical PC plots as shown 
in Section 5.2. The relationships shown in Figure 7 will form the basis for objectively stating the 
amount of simple structure in the variable configurations. Recalling that the simple structure plots have 
many near-zero loadings and radial streaks or clusters aids in objectifying the concept. The values for 
the plots in the Monte Carlo procedure are randomly generated numbers between 0 and f l .  These 
input random numbers are used to simulate realistic looking simple structure fields by treating them as 
if they are factor pattern coefficients. In order to create these ‘mock‘ fields, all values which are less 
than the specific pre-set value shown in Table VIII are changed to zero to ensure well-defined 
hyperplanes. To ensure that the hyperplane values are separate from the ‘clusters’, a minimum number 
of high loadings on one factor which are low loadings on the second must be present, and a specific 
number of low loadings must be present. All three of these values vary with the degree of simple 
structure as determined by Tucker (1983) and shown in Table VIII. 

Table VIII. Relationships for various degrees of simple structure in first- 
order factor loadings for 25 and 50 variable simulations (Tucker, 1983) 

25 variablesf5 factors 
Critical loading to be set to zero 
Minimum number of zero loadings 
Minimum number of loadings high 
on factor X and low on factor Y 

50 Variablesf10 factors 
Critical loading to be set to zero 
Minimum number of zero loadings 
Minimum number of loadings high 
on factor X and low on factor Y 

Simple Structure 
Strong Moderate Weak 
C0.70 S0.55 C0.40 

15 12 10 
5 4 3 

4 . 7 0  sO.55 S0.40 
30 25 20 
5 4 3 

9.3. Outline of simulation 

From the preceding, it can be seen that the basic configuration contains the properties of simple 
structure as defined by the random numbers and the amount of simple structure required. The purpose 
of the simulation is to test various procedures (i.e. unrotated, rotated solutions) in their ability to 
retrieve the mock simple structure fields generated according to the program. To make the results 
closer to actual data (which contain signal and noise) a random noise component is added to the mock 
simple structure fields. In order to ensure control over the obliquity of the primary factors, the matrix 
Cg is defined initially. Since Cg is a correlation matrix of factor scores, it can be defined as @=ATA2 
where A2 are the randomly generated loadings for the second order (see Richman (1983a) for 
discussion on higher-order factoring). The program at present allows for Cg = I if orthogonal first-order 
factors are desired. The procedure sets up second-order factor loadings which cluster similar first-order 
factors. This controls the obliquity of the first-order factors within limits similar to the simple structure 
guidelines shown in Table VIII and ensures distinct second-order factors. Once these have been 
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formed, Q, is calculated. The program uses a form of the correlation equation (8) to generate unrotated 
common factors from the mock simple structure pattern coefficients: 

B Q , B ~  = B V V ~ B ~  
Q,=WT (35) 

A = B V  (36) 
where B is an n x r matrix of simple structure factor pattern coefficients, Q, is the r X r factor score 
intercorrelation matrix, V is the r x r transformation matrix and A is the n x r unrotated factor loading 
matrix. At this point the white noise mentioned above is added to the matrix A, as specified by the 
user. The matrix A is then transposed and multiplied by itself to yield a product matrix, C. 

c = A ~ A  (37) 

This product matrix is then decomposed into a real eigensolution via a principal axis factor solution and 
the eigenvalue series is checked to ensure full rank. The unrotated output and the outputs of the various 
rotations with noise are all compared to the original mock simple structure input (without noise). A 
random rotation is also used, which spins the axes by randomly generated values prior to the 
comparison, for a baseline. The parameters which can be varied are (i) whether or not the factor 
loadings will all be positive (positive manifold), (ii) number of variables, (iii) number of first-order 
factors, (iv) number of second-order factors, (v) the upper limit for the contribution of the variables’ 
variances to the first-order factors, (vi) the lower limit for the contribution of the variables’ variances to 
the first-order factors, (vii) the upper limit for the contribution of the variables’ variances to the 
second-order factors, (viii) the lower limit for the contribution of the variables’ variances to the 
second-order factors [Parameters (vii) and (viii) control the obliquity of the first-order factors since the 
variables in a second-order analysis are the first-order factors. If parameters (vii) and (viii) are set near 
or at zero, the first-order solution will have uncorrelated factors since the sum of the squares of the 
rows of the second-order factor loading matrix will be near-zero.], (ix) the critical value for which lower 
loadings are set to zero for first-order factors, (x) the critical value for which lower loadings are set to 
zero for second-order factors, (xi) minimum number of low loadings on each first-order factor, (xii) 
minimum number of low loadings on each second-order factor, (xiii) minimum number of high loadings 
on one factor which are low on the second factor in the first-order, (xiv) minimum number of high 
loadings on one factor which are low on the second factor in the second-order, (xv) lower limit of the 
least eigenvalue, (xvi) number of individuals in samples, (xvii) standard deviation of the noise added to 
the factor loadings, (xviii) initial random number generator ‘seed’, (xix) coefficients to ‘order’ the 
factors to ensure distinct factors and (xx) the total number of replications. 

It is obvious that there are so many potential combinations of parameters that it would be an 
extremely complex project to examine all (or even a large subset of all) of the possible combinations. 
As such, only the number of variables and number of factors will be altered for a fixed amount of noise 
(standard deviation of noise =0.050 which is considered a moderate amount). The results will be 
computed for analyses with the significant loadings being of one sign only (one-sided solution) as well 
as analyses with both positive and negative significant loadings (two-sided solution) with the remainder 
of the parameters set at the program’s constants. Strong, moderate and weak simple structure 
conditions will be examined. It is important that both one-sided and two-sided solutions be computed 
as different meteorological data sets fall into each category as illustrated under the discussion of the 
DAPPFR rotation. 

9.4. Matching factors or components 

In the previous section it was shown how the unrotated, rotated and randomly spun solutions would 
be compared to the initial structure. In order to quantitatively assess the goodness-of-match, the 
coefficient of congruence will be used. The coefficient of congruence (g) between any factors 
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[components] A and B is given by (Harman, 1976) 

where b are the component/factor loadings or pattern coefficients. The form of the coefficient is similar 
to a correlation coefficient, as the possible values range from +1.0 for total agreement through 0 for no 
relationship to -1.0 for total inverse agreement, and it corresponds to the cosine of the angular 
separation between the pairs of loadings. However, the coefficient of congruence uses loadings (b's) 
which are not deviations from their respective means. This is important as the mean of a component 
loading vector is a fixed property of that component, and translating the origin (which is implied by 
expressing a value as a deviation) is not warranted. Specifically, the magnitude of the loadings is an 
important aspect of component identijication. An example of this is presented by Richman and Lamb 
(1985) where they compare two sets of PCs with PC A having the loadings [0.95, 0.65, 0-30, 0, -0.03, 
-0.06, -0.101 and PC B having the loadings [0.20, -0.10, -0.45, -0-75, -0.78, -0.81, -0.851. These 
two PCs are definitely different, as many of the variables which load highly on PC A are low on PC B, 
which is characteristic of a simple structure solution. Accordingly, the coefficient of congruence 
between A and B reflects this with a value of 0.07. The question arises: why not simply correlate the 
two PCs? The reason why the correlation coefficient is not a good matching coefficient for PCs is that it 
removes the mean of each vector. When these two PCs were correlated, the correlation coefficient was 
1.00, which would indicate a perfect match. Hence, the correlation coefficient is not the optimal 
similarity coefficient for matching components. Korth and Tucker (1975) used a Monte Carlo approach 
to obtain normative data on the distribution of the congruence coefficient, with a view to establishing a 
baseline for evaluating its significance. This led Tucker (1983) to attach the following goodness-of- 
match names to specific ranges of absolute congruence coefficients: 0.98 to 1.00 (excellent match); 0.92 
to 0.98 (good match); 0-82 to 0.92 (borderline match); 0-68 to 0-82 (poor match); less than 0.68 
(terrible match). This was done since the congruence coefficient is biased towards a higher value than 
the corresponding correlation coefficient. Therefore, the meaning of a congruence coefficient between 
two sets of PC loadings of 0.8 is not nearly as strong as would be intuitively expected with a correlation 
coefficient of 0.8. Any coefficient of less than approximately 10.701 is not any better than would be 
expected by randomly spinning the PC axes prior to matching the sets of PC loadings. 

10. RESULTS OF THE MONTE CARL0 SIMULATION 

The rotations which were compared were largely available on the four mathematical/statistical 
packages in Table VII. Varimax was the sole orthogonal rotation available on the packages used, for the 
reason mentioned in Section 8.2 (which was confirmed in an earlier Monte Carlo study). However, the 
orthogonal Procrustes experimental transformation is also included to attempt to assess whether it is more 
accurate than Varimax. The oblique rotations tested are also available on the packages (with the 
exception of the one- and two-sided DAPPFR solutions) and represent the second-generation (i.e. 
mid-sixties) types of linear transformations. Some of the original oblique rotations were also tested 
(e.g. Binormamin and Oblimax) [not shown herein] an the results were clearly inferior to those 
rotations tested. Both the Harris-Kaiser Case I1 IC and Harris-Kaiser Case I1 BTB rotations were 
tested along with Direct oblimin with 6 = 0 (default on packages) and both Promax k = 2 and Promax 
k = 4. The unrotated solution is also included along with a random rotation in which the factor axes are 
spun by a randomly generated 0 angle. As stated in section 9.3, the standard deviation of the random 
noise was set at 0.05, which represented a middle value of those tested (0.025 to 0-075). This value 
would represent a moderate amount of noise in an actual analysis as 95 per cent of the loadings would 
be expected to be perturbed by values 60.10 from their ideal values. There were 200 replications of 
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each rotation type within each cell to obtain a representative distribution of results. This is in contrast 
to a pilot study (Richman, 1983b) in which only 50 replications were drawn. The results will be 
subdivided into four categories: (i) one-sided twenty-five variablesifive factors retained, (ii) one-sided 
fifty variablesiten factors retained, (iii) two-sided twenty-five variablesifive factors retained, and (iv) 
two-sided fifty variablesiten factors retained. Additionally, a few replications were run at one hundred 
variablesitwenty factors with results consistent with the fifty variablesften factors except for a moderate 
reduction in accuracy (not shown). The cost of running 200 replications for 9 solutions for 3 strengths of 
simple structure on both one- and two-sided solutions at 100 variablesi20 factors retained was 
prohibitive and only the results for five and ten factors will be shown. The five and ten factor runs are 
in the range of the majority of meteorological studies; therefore the results should be applicable to 
most research designs. 

The first result is for the one-sided 25 variablei5 factor design with strong simple structure (Table 
IX(a)). The analysis in this cell reveals that the oblique rotations tested could all reproduce the input 
structure almost perfectly. Varimax did not do quite as well, with 93 per cent of its replications having a 
matching congruence coefficient between 0.92 and 0.98 (good range) and the orthogonal Procrustes 
was slightly more accurate. It is noteworthy that the unrotated results did poorly in recovering the input 
structure, with random rotation being the worst. The results suggest that a small study with strong 
simple structure of all positive (or all negative) loadings can be well described by any of the oblique 
methods. Although Varimax was not as good, it may be accurate enough for many applications if the 
pairwise plots are examined. With the simple structure at the moderate level and all other parameters, 
except those listed in Table VIII held constant, the analysis (Table IX(b)) still indicates mostly good to 
excellent matches for the various rotations. DAPPFR (one-sided solution) is now the most accurate 
rotation, and Promax k = 2, Direct oblimin, and Harris-Kaiser Case I1 BTB also do well. Any of these 
three would generally yield good results. Promax k = 4 and Harris-Kaiser Case I1 IC did not do as 
well, and Varimax was also below these, which is probably due to the orthogonality constraint, as the 
orthogonal Procrustes was only slightly better. The unrotated and random rotation were the worst, as 
before. The simple structure was next dropped to the weak level, indicating very little clustering and 

Table IX. Results of 200 replications of the Monte Carlo simulation for 25 variables, 5 factors and 1-sided 
correlations. Degree of simple structure vanes from strong (a), to moderate (b) and to weak (c) 

Root mean square congruence coefficient distribution 

Harris- Harris- 
Subjective Congruence Normal Direct Kaiser Kaiser Promax Promax Orthogonal Random 

match coefficient Unrotated Varimax oblimin I1 1C I1 BTB k = 4 k = 2 DAPPFR Procrustes transformation 

(a) Strong simple structure 
Excellent g > 0.98 6 194 195 195 194 195 195 96 
Good g 0.92 186 6 5 5 6 5 5 101 
Borderline g P 0.82 5 8 3 

Terrible g i 0.67 3 110 
Poor g20.68 192 90 

( b )  Moderate simple structure 
Excellent g > 0.98 1 157 27 145 56 158 185 29 
Good g P 0.92 180 33 156 51 132 31 15 157 
Borderline g P 0.82 1 19 10 17 4 12 11 14 
Poor gPO.68 198 141 
Terrible g s 0.67 1 59 

(c) Weak simple structure 
Excellent g P 0.98 30 1 15 2 53 99 2 

Borderline g 2 0.82 1 61 67 109 85 67 46 26 59 10 
Good g 2 0.92 131 100 56 93 120 101 75 138 

Poor g 30.68 194 8 3 25 7 10 1 158 
Terrible g s 0.67 5 9 1 32 
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fewer variables in the hyperplane, and all other parameters except those listed in Table VIII were held 
constant (Table IX(c)). The results point out that DAPPFR (one-sided solution) does best with 87 per 
cent of the replications in the good to excellent range, Promax k = 2 was the best package rotation (77 
per cent good to excellent), followed by direct oblimin (65 per cent good to excellent). The remaining 
rotations were a little less accurate, although they fared better than either the unrotated solutions or a 
random rotation. These results point to the importance of choosing one of the more accurate rotations 
for these types of condition, as there are a wide range of matches. This result is confirmed by the 
example shown in Figure 1 for the three flow types. The pairwise graphical plots indicated a very weak 
simple structure in a positive manifold for the 36 variable/3 PC experiment and illustrated how the 
DAPPFR rotation was more accurate than Varimax under these conditions. 

Next, the number of variables was increased to fifty and the number of factors retained to ten. This is 
a much more difficult situation to achieve good matches, since, even if one factor out of ten is poorly 
matched, it will drag the resulting RMS congruence coefficients down considerably. (Some runs were 
also performed at fifty variables and five factors retained, yet the matches were almost as good as 
twenty-five variables and five factors, indicating that the number of factors retained was the most 
critical aspect in degrading the matches). The ten factor runs are in the range of some of the larger 
meteorological studies (e.g. Walsh et al. (1982) retained 9 PCs, Karl and Koscielny (1982) retained 9 
PCs, Lamb and Richman (1983a, b) retained 10 PCs). The simple structure was set as one-sided strong 
(Table X(a)) with the best rotation being the one-sided DAPPFR with 100 per cent replications having 
g 0.92. Of the available package rotations, Promax k = 2 was best with almost 97 per cent of the 
replications in the good to excellent range with the other oblique solutions being slightly less accurate. 
Orthogonal Procrustes was more accurate than Varimax, which did not do well, with almost half of its 
replications in the borderline range (0.82 to 0.92). The unrotated results were poorer than any of the 
rotations, with the random spin coming in last. With simple structure at the moderate level, and all 
other parameters except those listed in Table VIII held constant (Table X(b)), the results indicate a 
large range in the ability of the solutions to recover the input data. The one-sided DAPPFR rotation 
was clearly best, with 57 per cent of the replications in the good to excellent range, and there was a 

Table X. Results of 200 replications of the Monte Carlo simulation for 50 variables, 10 factors and 1-sided 
correlations. Degree of simple structure varies from strong (a), to moderate (b) and to weak (c) 

Root mean square congruence coefficient distribution 

Harris- Harris- 
Subjective Congruence Normal Direct Kaiser Kaiser Promax Promax Orthogonal Random 

match coefficient Unrotated Varimax oblimin I1 IC I1 B'B k = 4 k = 2 DAPPFR Procrustes transformation 

(a) Strong simple structure 
Excellent g 3 0.98 1 33 1 38 2 83 148 17 
Good g 0.92 100 142 127 141 180 110 52 155 
Borderline g 2 0.82 1 99 25 72 21 18 7 28 
Poor gZO.68 182 6 
Terrible g s 0.67 17 194 

( b )  Moderate simple structure 
Excellent g Z 0.98 42 

Borderline g 3 0.82 132 153 25 102 104 145 85 143 
Poor g20.68 198 64 41 165 95 93 37 1 52 26 
Terrible g s 0.67 2 9 174 

Good g 3 0.92 4 6 1 3 3 18 72 5 

( c )  Weak simple structure 
Excellent g a 0.98 
Good g 3 0.92 
Borderline g 3 0.82 38 1 6 29 35 34 
Poor g20.68 186 156 185 50 191 170 169 163 162 43 
Terrible g S 0.67 14 6 15 150 8 24 2 2 4 157 
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large drop-off to the next best solution, Promax k = 2, with Direct oblimin slightly below this along 
with the two orthogonal rotations. An important point to note is that although Promax k = 2 and Direct 
oblimin had most replications in the borderline range, they are still better than the unrotated results. 
The simple structure was dropped to the weak level (one-sided) with all other parameters held constant 
(Table X(c)). The results are not particularly encouraging, as even the best rotations are only 
marginally better than the unrotated results and are in the poor range. Varimax was best (19 per cent of 
the replications in the borderline range), DAPPFR (one-sided) was only slightly behind (18 per cent) 
followed by orthogonal Procrustes (17 per cent) and Promax k = 2 (15 per cent) with the remainder of 
the solutions being in the same range as the unrotated results (poor). This points to a problem in 
dealing with many factors/PCs and weak simple structure for all solutions; hence caution should be 
applied prior to physically interpreting such analyses without additional corroborating evidence. 

The second phase of the simulation incorporated two-sided rotations into the analysis, as both 
significant positive and negative loadings were allowed. The results for the 25 variable/5 factor solution 
(Table XI(a)) are similar to the corresponding one-sided case, as all of the oblique rotations do very 
well with over 90 per cent of the replications in the excellent range. As before, the Varimax rotation 
has 65 per cent of its cases in the good range and 35 per cent in the excellent, which is lower in accuracy 
than any of the oblique methods, but still may be sufficient for most research purposes, whereas 
orthogonal Procrustes fares slightly better (42 per cent excellent). The unrotated solution does poorly 
in recovering the input structure and the random spin does worst. When the amount of simple structure 
was reduced to the moderate level for two-sided data (Table XI@)), the results indicated a wide range 
in the ability of the various solutions to recover the input structures. The two-sided DAPPFR rotation 
is clearly superior to the rest with 83 per cent of the replications having congruence coefficients 20.92. 
Promax k =2 ,  Harris-Kaiser Case I1 BTB and Direct oblimin are well behind DAPPFR, with 
orthogonal Procrustes and Varimax falling slightly behind these and the unrotated solution doing 
poorest. As the amount of simple structure was again dropped to the weak level for the two-sided 
solution, the results (Table XI(c)) indicate a further degradation of the quality of match as most of the 

Table XI. Results of 200 replications of the Monte Carlo simulation for 25 variables, 5 factors and 2-sided 
correlations. Degree of simple structure varies from strong (a), to moderate (b) and to weak (c) 

Root mean square congruence coefficient distribution 

Harris- Harris- 
Subjective Congruence Normal Direct Kaiser Kaiser Promax Promax Orthogonal Random 

match coefficient Unrotated Varimax oblimin I1 IC I1 BTB k = 4 k = 2 DAPPFR Procrustes transformation 

(a) Strong simple structure 
Excellent g 2 0.98 70 188 181 189 187 188 191 83 
Good g 3 0.92 128 12 18 11 12 12 9 116 
Borderline g 3 0.82 1 2 1 1 1 
Poor g 20.68 199 93 
Terrible g s 0.67 107 

( b )  Moderate simple structure 
Excellent g 2 0.98 14 so 30 51 42 59 134 26 
Good g 2 0.92 142 115 80 115 115 103 32 136 
Borderline g 2 0.82 3 34 33 86 31 40 33 30 33 
Poor g 2 0 . 6 8  197 10 2 4 3 3 5 4 5 86 
Terrible g s 0.67 114 

( c )  Weak simple structure 
Excellent g 2 0.98 
Good g 3 0.92 9 10 9 12 11 12 20 10 
Borderline g 3 0.82 5 88 109 80 102 98 98 93 95 

Terrible g s 0.67 3 2 S 1 1 1 1 110 
Poor gdO.68 192 101 81 106 85 90 89 87 94 90 
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rotations are in the poor to borderline range. The two-sided DAPPFR rotation was the best with 10 per 
cent of the replications in the good range, the Harris-Kaiser Case I1 BTB was the best package rotation 
(6 per cent in the good range), and the unrotated solution was clearly lower than any of the rotations, 
vet the distance between the two was closer than in previous two-sided runs. 

Next, the number of variables was increased to fifty and the number of factors was increased to ten 
for two-sided data with simple structure set as strong, and the results (Table XII(a)) indicate that 
DAPPFR (two-sided) had the most accuracy by a wide margin with 92 per cent of the replications 
having congruence coefficients 30.92. Promax k = 2 and Harris-Kaiser Case I1 B~"B were the most 
accurate package rotations with between 68 and 70 per cent of the cases in the good to excellent range. 
Of the orthogonal rotations, Procrustes has 54 per cent of the replications in the good to excellent 
range with Varimax having 45 per cent in the good range; the unrotated was poorest. When the simple 
structure was reduced to the moderate level for two-sided solutions, the resulting accuracy for all 
rotated solutions dropped considerably (Table XII(b)) as all rotated solutions, with the exception of the 
two-sided DAPPFR, were very close to the unrotated accuracy. This is a decline from the one-sided 
results in Table X(b) and points to the difficulty in accurately reproducing modes with large positive 
and negative features. DAPPFR does somewhat better with 5 per cent of the cases in the good range 
and over 25 per cent having congruence coefficients 20.82 (borderline or better). The only package 
rotations slightly better than the unrotated solution are Promax k = 2 and, possibly, Harris-Kaiser 
Case I1 BTB. One possibility for a data set with these conditions would be to apply the DAPPFR or 
Promax k = 2 rotation to roughly place the PC axes and then use a computerized visually guided 
graphical plot program such as ROTOPLOT (Cattell and Foster, 1963) or Tucker's (1955) semi-analytic 
procedure to define the best simple structure position of the PC axes with the maximum number of 
variables in the hyperplanes. Finally, when the simple structure was reduced to the weak level, 
indicating very little clustering and few variables in the hyperplane, the results (Table XI1 (c)) indicate 
that this is the most difficult situation for any solution to accurately capture, and further indicate that 
simple structure rotation does not work well when the two-sided data exhibit little simple structure and 
many factors are retained. The most obvious result is that the unrotated solution does best in this one 

Table XII. Results of 200 replications of the Monte Carlo simulation for 50 variables, 10 factors and 2-sided 
correlations. Degree of simple structure varies from strong (a), to moderate (b) and to weak (c) 

Root mean square congruence coefficient distribution 

Harris- Harris- 
Subjective Congruence Normal Direct Kaiser Kaiser Promax Promax Orthogonal Random 

match coefficient Unrotated Varimax oblimin I1 IC I1 BTB k = 4 k = 2 DAPPFR Procrustes transformation 
~ ~ 

(a) Strong simple structure 
Excellent g 3 0.98 

Borderline g 3 0.82 

Terrible g S 0.67 

Good g 3 0.92 

Poor g Z= 0.68 

1 
90 80 

101 109 
196 9 10 

4 

69 
122 

9 

4 1 13 114 
135 118 123 70 
57 72 58 16 
4 9 6 

10 
97 
89 
4 1 

199 

( b )  Moderate simple structure 
Excellent g 3 0.98 

Borderline g 2 0.82 

Terrible g C 0.67 

Good g 2 0.92 

Poor g 3 0.68 
1 5 2 

183 166 156 
16 29 42 

3 
135 
62 

10 
17 8 17 41 

158 161 167 139 
25 31 16 10 

15 
163 2 
22 198 

( c )  Weak simple structure 
Excellent g 3 0.98 

Borderline g 5 0.82 

Terrible g < 0.67 

Good g 3 0.92 

Poor g 3 0.68 189 7 13 
11 193 187 

9 
191 

8 8 9 9 
192 192 191 191 

7 3 
193 197 
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case, although the best replications are in the poor range, indicating a questionable correspondence to 
the input data. Every simple structure rotation is even worse than the unrotated solution, being near or 
at the random spin accuracy level. Data in this configuration might benefit from a Procrustes 
transformation if there is sufficient prior knowledge concerning the nature of the modes of variation. If 
this is not the case, another type of analysis technique may be warranted. 

11. SUMMARY AND DISCUSSION 

This study has outlined some pitfalls of the conventional use of unrotated principal components, 
examined the theory behind simple structure and compared the accuracy of both unrotated and rotated 
solutions. Owing to the exploratory nature of meteorological applications of principal component 
analysis, most research in the literature has not examined how well the unrotated solutions fare in 
capturing the modes of variation of data sets. Within the past decade, Buell (1975, 1979) has illustrated 
the domain shape dependence of unrotated EOF/PCs where the topography of the patterns was shown 
to be predictable and primarily a function of the geometric shape of the domain and not the covariation 
of the data. Richman and Lamb (1985) illustrated the lack of stability in the modes of variation when 
subdomains are analysed separately. The significance of this is that the unrotated solutions confound 
the analysis by yielding two different sets of modes of decomposition. The third disadvantage of 
unrotated solutions occurs when the analysis has closely spaced eigenvalues. North et al. (1982) and 
Kendall (1980) point out that the sampling errors become very large if neighbouring eigenvalues are 
very close and the EOF patterns can become intermixed. The effects of nearly equal eigenvalues 
presented herein further support North et a1.k claims, as sample sizes as large as 10,000 could not 
capture the correct unrotated population patterns. This problem can be so severe that Storch and 
Hannoschock (1985) have recommended renouncing a physical interpretation of unrotated EOFs in 
many instances. A final reason why unrotated solutions may not provide the most accurate decomposi- 
tion of the input data into modes of variation was shown by Richman and Lamb (1985) who compared 
the set of unrotated PC loadings of their rainfall data to the actual set of variations embedded within 
the correlation matrix teleconnection patterns. The two sets of patterns were visually inspected and 
quantitatively matched with the correlation and congruence coefficients. The results of their study 
indicated that, for the rainfall data set, the modes of variation were all of one sign (i.e. all rainfall 
stations were either positively correlated to each other or had near-zero correlations). The correspond- 
ing unrotated PCs had flip-flops of PC loadings from PC2 to PClO which had no significant physical 
basis but were simply artefacts of the technique. Horel (1984, p. 1661) neatly sums up the state of the 
unrotated solution when he remarks that ‘principal component analysis was used for many years before 
its inherent liinitations were fully realized’. 

The four basic disadvantages of unrotated solutions have been shown to be reduced by using the 
rotated solutions. Domain shape dependence does not appear to be a problem, subdomains have 
virtually identical patterns to the full domain, sampling errors are greatly reduced even if the 
neighbouring eigenvalues are almost equal, as long as there is structure within the input data (e.g. see 
Tables IX(a), X(a), XI(a) and XII(a)) and, finally, the rotated solutions frequently do a better job of 
agreeing with the physical structure of the data as embedded within the correlation or covariance input 
matrix. These four advantages of simple structure rotations make them good candidates to accurately 
identify modes of variation in climatological data sets. A number of studies have recently applied 
rotation to the unrotated CFs/PCs/EOFs with successful results, including those of Horel (1981, 1984), 
Richman (1981), Walsh and Richman (1981), Balling and Lawson (1982), Karl and Koscielny (1982), 
Karl et al. (1982), Lamb and Richman (1983a, b), Walsh et al. (1982), Cohen (1983), Hayden (1983), 
Ashbaugh et al. (1984, 1985), Ronberg and Wang (1985), Barnston and Livezey (1985), Englehart and 
Douglas (1985) and Thurston and Spengler (1985). These studies involved meteorological fields such as 
temperature, rainfall, sea-surface temperature, cyclone frequency, chemical ions and geopotential 
height, yet there have been many other unrotated EOF/PC studies involving parameters (e.g. vertical 
velocity (Le Drew, 1980); IR radiation (Weickmann, 1983); vertical temperature profiles (Uddstrom 
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and Wark, 1985) etc.) which have never been rotated. Application of rotation to such fields would be 
interesting to assess the amount of simple structure inherent in such data. 

The results concerning the six ways to present a data set to maximize its physical interpretation are 
important when rotation is applied to the analysis. In the past, with unrotated solutions, the researcher 
typically set the variables to the smaller dimension of the data matrix and the cases to the larger 
dimension since the results are equivalent either way (Hirose and Kutzbach, 1969). For example, if a 
data matrix had 180 observations of long-wave radiation for 654 grid points, the typical unrotated 
analysis would set the observations to variables and the grid points to cases (in a T-mode analysis) for 
its cost-effectiveness (Weickmann, 1983). In a rotated solution each of the six modes of decomposition 
yields a unique clustering of the variables in an analysis; therefore some meteorological insight should 
be applied prior to the analysis to determine which mode makes the most physical sense theoretically. 
An example is presented in section 6 which illustrates which parameters each mode clusters along with 
some suggestions. There may even be situations where none of the six modes are suitable and, if there 
is sufficient prior knowledge concerning potential modes of variation, a Procrustes transformation can 
be applied. In this situation, any set of loadings can be specified, a priori, and they do not have to be in 
the form of an unrotated or a simple structure solution. 

A suggested analysis ‘plan of attack’ for a data set would first include choosing the most physically 
meaningful mode of decomposition (e.g. P, S, T, etc.) from Figure 9, relating the data with one of the 
dispersion matrices, choosing the most appropriate eigenmodel and deciding on the number of 
EOFs/PCs/factors to retain, followed by application of one of the more accurate simple structure 
rotations under a wide variety of conditions. This work points to two: DAPPFR or Promax k = 2 if a 
mathematical/statistical package is available. By using one of these two, the chances of arriving at the 
optimal simple structure solution are maximized prior to interpreting the results. The construction of 
the graphical pairwise plots of the rotated PC loadings illustrated in section 5 is a very important step in 
an analysis. By inspecting the $r ( r  - 1) plots and comparing these to Figure 7, the overall degree of 
simple structure within the data set can be assessed. The next step involves scanning the input 
dispersion matrix for the magnitudes and signs of the relationships and rotated loadings (primary 
pattern matrix in oblique cases) to detect whether salient or significant loadings should be all of one 
sign (one-sided) or contain both large positive and negative values (two-sided). At this point, 
information on the number of variables, number of rotated PCs retained, signs of the loadings and 
overall degree of simple structure can be assembled and compared to the results of the Monte Carlo 
simulation in Tables IX-XI1 to find what solution (unrotated, rotated) should be the most accurate for 
the data under investigation. If the initial guess was not one of the better solutions, the principal 
components can be re-rotated (i.e. to another criterion) if necessary and the painvise plots of PC 
loadings inspected to ensure a reasonable simple structure. Analysis can then be made directly from the 
primary pattern matrix (under oblique rotation) or from the PC loading matrix (orthogonal rotation or 
unrotated solutions). 

A final note concerns the results of the Monte Carlo simulation. The newly created DAPPFR 
rotation was the most accurate solution in 10 of 12 situations (Tables IX-XII) which is particularly 
noteworthy as it is the only analytic transformation which fully attempts to fulfil Thurstone’s concept of 
simple structure (rather than simply maximizing the numbers of both low and high loadings). Promax 
k = 2 appears to be the most accurate widely available solution, tying with DAPPFR in one case and 
being placed second in seven others. It is interesting to note how the accuracy of the Promax rotation 
dropped considerably at the default value of k = 4. The Harris-Kaiser case IT BTB and Direct oblimin 
rotations also did fairly well, scoring in the top three solutions between five and seven times. The one 
rotation which has been most frequently applied to meteorological data, Varimax, does not fare as well, 
scoring highest only in Table X(c). This does not necessarily mean that Varimax is a poor choice, but 
rather that it should be compared to one of the more accurate oblique methods (i.e. DAPPFR, Promax 
k = 2, Harris-Kaiser Case I1 BTB or Direct oblimin) to ensure that the orthogonality constraint has not 
degraded the solution substantially (see Richman and Lamb, 1985, for example). There may be 
circumstances when the need for an orthogonal solution outweighs the disadvantages incurred; for 
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example, if the PC scores are to be used in a regression equation on independent data. In these cases 
one alternative approach would be to initially apply the orthogonal Procrustes transformation based on 
a DAPPFR or Promax k = 2 target matrix to obtain uncorrelated PC scores which are input into a 
regression equation. The IMSL package offers orthogonal Procrustes under program ‘OFSCHN’. The 
initial results using this option appear positive, as it was slightly to moderately more accurate than 
Varimax in 10 of 12 cases. Further applications on meteorological data (e.g. Lamb and Richman, 1986) 
are needed to establish the utility of this procedure. The traditional use of unrotated PCs was found to 
yield low congruence coefficients in all 12 cases yet was superior to randomly spinning the components 
prior to matching. However, it was the most accurate match in the case of weak simple structure which 
had numerous PCs retained with both negative and positive correlations; consequently, unrotated 
solutions might have utility under these conditions (e.g. Richman and Walsh, 1985). In the other 11 
situations the use of one of the various rotations more accurately captured the modes of variation. 
Tables IX-XI1 provide a means to extract this information so that the choice of a final solution no 
longer has to be a blind decision. No one solution (unrotated, rotated) or specific criterion will always 
yield the most accurate results; however, specific ones are shown to work well for large classes of data. 
Consequently, unyielding adherence to any one solution within a particular eigenmodel for all types of 
data will ultimately lead to disappointing results (e.g. Legates and Willmott (1983) and Daultrey (1976) 
posit that PCs should never be rotated under any circumstances based on Mather’s (1971, 1972) 
comments to Davies (1971a, b; 1972)). If any eigenmodel may be less appropriate for a number of 
analytic rotation schemes, it is EOFs (due to the unit-length normalization of the eigenvectors), as 
some package algorithms (e.g. Harris-Kaiser) are designed for the input of eigenvectors whose 
coefficients have been scaled by the square-root of the corresponding eigenvalue (i.e. PC/CF loadings), 
while others (e.g. Promax) raise the coefficients to values as high as the 4th power. This can lower 
salient EOF coefficients to insignificantly small values when a large number of variables are analyzed 
(due to the normalization). The investigator must ultimately use his knowledge of the substance and 
literature in his domain, combined with judicious application of the optimal experimental design and 
solution (unrotated, simple structure rotation, Procrustes), to arrive at the most meaningful analysis. 
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