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Abstract

It is demonstrated that the inertial oscillation is not produced
exclusively by “inertial forces,” and that the inertial oscillation ap-
pears as oscillatory motion even when viewed from a nonrotating
frame of reference. The component of true gravity parallel to the
geopotential surfaces plays a central role in forcing the inertial
oscillation, and in particular it is the only force driving the oscillation
in the nonrotating reference frame.

1. Introduction

Horizontal momentum equations describing invis-
cid midlatitude motions may be written in the approxi-
mate form,

du 1dp
i e
dt pox’ (1)
av 1dp
=iy =--2
at " ooy @

where pis pressure, p is density, and u and v are the
westerly and southerly wind velocities in a Cartesian
coordinate system lying in a plane tangent to the
earth's geopotential surfaces with the x axis oriented
east—west (Holton 1992, p. 40). As in the standard “f-
plane” approximation, suppose that the Coriolis pa-
rameter f is constant. A classical exercise in basic
atmospheric dynamics is to neglect vertical motions
and examine those solutions to (1) and (2) for which
the wind speed is constant. One such solution, the
inertial oscillation, is obtained if the pressure gradients
in (1) and (2) are identically zero, in which case

du

-y -fv=0, (3)
av

~ tfu=

dr+u 0. (4)
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Differentiating (3) with respect to time and using (4) to
eliminate dv/dt yields

2
%éi+f2u=0,

which has sinusoidal solutions of period 2z [f 7. If u=
u,and v=0at some initialtimet=0, the velocity atlater
times is

u(f) = ycosft, Ut) =-uygsinft.
An air parcel initially located at the origin follows the
inertia circle trajectory

x(r)=“T°smfr. y(r)z%‘-’-[cosft—ﬂ, 5)

The radius of curvature of this trajectory is u, f-' and
the direction of travel is anticyclonic.

Inasmuch as the Coriolis force is the only force in
equations (3) and (4), itis tempting to assume that the
Coriolis force is responsible for the inertial oscillation.
Indeed the name “inertial oscillation” suggests that the
motion arises solely as a result ofinertial forces, which
are apparent forces that appear in accelerating coor-
dinate frames (e.g., Coriolis and centrifugal forces).
The Glossary of Meteorology (Huschke 1959) rein-
forces this idea by defining “inertial flow” as “flow inthe
absence of externalforces.” Infact, inertial oscillations
are not produced entirely by inertial forces, and even
when viewed from a nonrotating coordinate frame, the
inertial oscillation looks like oscillatory motion. One
external force plays an essential role in driving the
inertial oscillation, and that force is gravity.

2.The inertial oscillation as viewed from
a nonrotating reference frame

In order to better appreciate the role of gravity in the
inertial oscillation, it is helpful to describe the oscilla-
tion that would be seen by an observer in a nonrotating
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coordinate frame. Consider, therefore, an f plane
tangent to the earth at the North Pole. Defining hori-
zontal and angular velocity vectors as

V, = i +j, n:%m

(3) and (4) may be written as the single vector equation

o,

—L+2Qx%xV,. =0, 6
= . (6)
The acceleration in a reference frame rotating at
angular velocity 2= | Q| is related to the acceleration
in an fixed reference frame via the formula

av; v,
?;=?;+ZQXV,+Q><(Q><R), @)

where V, is the horizontal velocity vector in the fixed
reference frame and R is a vector originating at the
axis of rotation and terminating at the instantaneous
position of the air parcel (Holton 1992, p. 32). Substi-
tuting (7) in (6), the equation governing the inertial
oscillation in the fixed coordinate frame becomes

N

" =Qx(QxR). (8

The right-hand side of this equation must represent

a real external force since (8) describes motion in a
nonrotating coordinate frame. This force is the compo-
nent of true gravity directed parallel to the polar
f plane. As indicated in Fig. 1, the net force on each
point on the earth’s surface, the “apparent gravity,” is
the vector sum of true gravity and the centrifugal force
due to the earth’s rotation about its polar axis. Except
atthe equator and the poles, the apparent gravity vector
is directed equatorward of the true gravity vector. Since
the earth’s crust cannot support a shearing stress, the
earth assumes the shape of an oblate spheroid whose
surface is everywhere normal to the apparent gravity
vector. One consequence of the resulting equatorial
bulge in the earth’s geopotential surfaces is that there
exists a poleward component of true gravity parallel to
the geopotential surfaces at all latitudes except 0° and
90°; or more simply, the equator is uphill.

Objects located at a fixed point on the surface of the
rotating earth do not “fall” poleward because the
poleward component of true gravity is exactly bal-
anced by an equatorward component of the centrifu-
gal force. Consider, however, the behavior of a mov-
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Fic. 1. Deformation of the earth's surface from a true sphere
(dashed line) toan oblate spheroid (solid line). True gravity, indicated
by the vector g, is perpendicular to the spherical surface. Apparent
gravity g,, being the vector sum of g and the centrifugal force
—2 % (Q x R), is perpendicular to the surface of the oblate spheroid.

ing air parcel whose instantaneous position is the
North Pole. This parcel is not rotating around the
earth’s polar axis, and unless some torque acts to
change its angular momentum about the polar axis, it
will never rotate with the underlying earth and never be
subject to an equatorward centrifugal force. The mo-
tion of this parcel can be easily modeled with the polar
f-plane equations. Let us first determine the parcel
motion with respect to a nonrotating coordinate sys-
tem. If the origin coincides with the North Pole, (8) may
be expressed in component form as

d?x d?y

—+Px=0, —3-+Py=0. 9
at? pe Y (9)
Recalling that £2 = f/2, the fixed-coordinate trajectory
for an air parcel leaving the pole at t = 0 with initial
velocities u=u, v=0is

X =2ﬁsin(£), y=0,

7 > (10)

This trajectory is a straight line segment along which
the parcel oscillates with period 4z f-'. In contrast, the
trajectory of the same parcel, as viewed in a coordi-
nate system rotating with the earth, is the familiar
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Fic. 2. Fixed-coordinate trajectory [dashed, Eq. (10)}and rotating-
coordinate trajectory [solid, Eq. (5)] for an air parcel leaving the pole
at t= 0 with initial velocities u = u,, v= 0. The initial position of the
parcel is indicated by the open square. The North Pole is shown as
a heavy dot.

inertia circle (5). These fixed- and rotating-coordinate-
frame trajectories are compared in Fig. 2. Note that the
length of the fixed-frame trajectory is twice the diam-
eter of the inertia circle and the frequency of the fixed-
frame oscillation is one-half that observed in the
rotating frame.

The relative orientation of the fixed- and rotating-
frametrajectories shownin Fig. 2 changes as the earth
rotates because the inertia circle travels around the
pole with the rotating earth. Figure 3 shows snapshots
of the relative position of the two trajectories at 3, 6, 9,
and 12 h. In all four panels, the air parcel occupies a
point indicated by the open square at the intersection
of the fixed- and rotating-frame trajectories. At t= 0
(Fig. 2), the air parcel is at the North Pole moving
toward the right along both trajectories. Three hours
later (Fig. 3a), the inertia circle has rotated 45° coun-
terclockwise around the pole, and the air parcel lies at
the intersection of the inertia circle and the fixed-frame
trajectory at a distance u, [(2)"*f]"' to the right of the
pole. At six hours (Fig. 3b), the air parcel has just
reached the end of its rightward trajectory in the fixed
coordinate frame. This position coincides with the
most equatorward point on the inertia circle trajectory,
which has now rotated 90° counterclockwise from its
initial position. At this time, the parcel has completed
one-half its rotating-frame orbit and one-quarter of its
fixed-frame oscillation. At 12 h (Fig. 3d), the air parcel
has returned to the pole, completing one orbit around
the inertia circle, but only the right half of its fixed-
frame linear oscillation. Note that although in Figs. 3a,
3b, and 3c the y component of the air parcel’s earth-
relative velocity is nonzero, the y-component velocity
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is zero in the fixed coordinate frame because the
ground-relative motion of the parcel is exactly com-
pensated by the movement of the underlying earth.

As indicated by (10) and Fig. 3, the inertial oscilla-
tion of an air parcel passing through the pole appears
as straight-line simple harmonic motion when viewed
in a nonrotating coordinate frame. If a parcel does not
pass through the pole but remains within the polar
region so that its motion can still be well approximated
using the polar f plane, its nonrotating coordinate
frame trajectory will be given by the general solution
to (9),

x=AcosQt+ BsinQt y=CcosQt+ DsinQt.

Suppose the initial position of the air parcel is some
distance r, from the pole and the parcel is given
arbitrary initial earth-relative velocities u,, v,. Without
loss of generality, the x axis in the fixed-coordinate
system can be oriented to pass through the initial
position of the parcel, in which case the initial condi-
tions for motion in the fixed-reference frame are

x(0)=r, y0)=0, ul0)=u, v(0)=v,+Qr,.
The specific solution to (9) satisfying these initial
conditions is

(@) (b)

3 hours

------------ 11
6 hours

@

9 hours 12 hours

Fia. 3. Relative position of the fixed- and rotating-coordinate
trajectories shown in Fig. 2 at: 3, 6, 9, and 12 h. As in Fig. 2 the
position of the air parcel is indicated by the open square. The North
Poleisindicated by the heavy dot. The inertia circle trajectory rotates
with the earth, turning 180° around the pole in 12 h.
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(1

x(t)=rycos 2t + Yo sincat ,
Q

y(t)=r sith+%sith, (12)

The trajectory defined by the preceding is an ellipse.
It is, however, more instructive to consider the total
trajectory as the sum of two types of motion. The first
termin each of these equations represents the circular
orbit followed by the initial position of the parcel as the
earth rotates about its axis. The second terms in (11)
and (12) have the same form as (10) and, as before,
these terms represent gravitationally driven simple
harmonic oscillations along a line segment parallel to
the initial velocity vector. If one were to represent the
same trajectory in coordinates rotating with the earth,
the first terms in (11) and (12) would disappear, and
the remaining terms would deform from line segments
to the familiar inertia circle trajectories.

If an air parcel is sufficiently far from the pole that
the polar f-plane approximation is inadequate, its fixed-
frame trajectory is not confined to a two-dimensionall
plane and the motion is more difficultto calculate. [See
Stommel and Moore (1989) for a detailed discussion
of inertial trajectories on the rotating sphere.] It is
nevertheless easy to demonstrate the influence of real
(i.e., nonapparent) forces on the inertial oscillation.
Suppose an air parcel at latitude ¢ is initially moving
north and undergoing an inertial oscillation. To within
the accuracy of the midlatitude f-plane approximation,
the parcel moves around the inertia circle shown in
Fig. 4 with a period relative to the rotating earth of

T
Qsing”

(13)

An observer in a fixed reference frame can obtain
some rudimentary information about the parcel's mo-
tion by sampling its position at one-day intervais, over
which time the f plane completes one full revolution
about the earth’s axis and returns to its original posi-
tion with respect to a fixed frame of reference.' At the
instant when the f plane returns to its initial position,
the air parcel must lie at some point on original inertia
circle trajectory shown in Fig. 4. The fraction of the
total inertial circle orbit traversed by the parcel during
the one-day sampling interval is 2 sing, which is the
ratio of the period of the earth’s rotation to the period
of the inertial oscillation. According to (14), the air
parcel could reappear at any position on the inertia

'Neglecting the motion of the earth around the sun and other
astronomical movements.
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circle, depending on its initial latitude ¢. A typical
example is shown in Fig. 4, which could correspond to
either 11° or 43°N latitude. The velocity of the parcel
shown in Fig. 4 has clearly changed over the 24-h
period between day 1 and day 2. Since this change of
velocity is observed in a fixed frame of reference, it
must be produced by noninertial forces. As in the
preceding examples, gravity is the external force
responsible for the observed acceleration.

3. Conclusions

Ithas been demonstrated that the inertial oscillation
is not produced exclusively by “inertial forces,” and
that the inertial oscillation appears as oscillatory mo-
tion even when viewed from a nonrotating frame of
reference. Although not explicitly included in the
plane equations (3) and (4), the component of gravity
parallel to the geopotential surfaces plays a central
role in forcing the inertial oscillation and in particular,
it is the only force driving the oscillation in the fixed
reference frame. Since noninertial forces play a cru-
cial role in the “inertial oscillation,” it might be prefer-
able to rename the phenomenon. Gravitational forces
prevent air parcels undergoing inertial oscillations
from conserving linear momentum, but gravity does
not exert a torque about the earth’s polar axis and, as
aconsequence, air parcels undergoing inertial oscilla-
tions conserve angular momentum about the polar
axis. Thus, a possible new name for the inertial oscil-
lation might be the “constant angular momentum
oscillation.” The “inertia circle” might be better de-
scribed as a “constant angular momentum orbit.”

Day 2

Day 1

Fia. 4. Initial position and velocity of an air parcel on an inertial
trajectory (day 1). Subsequent position and velocity 24 h later (day
2).
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Much of the confusion associated with the interpre-
tation of the f-plane equations arises because they are
assumed to describe motion in a horizontal plane
rotating about a vertical axis. As discussed in connec-
tion with (7) and (8), the centrifugal forces that should
appearin the rotating-frame equations governing such
motion are not present in (3) and (4) because they are
exactly cancelled by gravity. A correct physical model
for the f plane needs to account for the presence of
the gravitational restoring force that balances these
centrifugal forces. One relatively easy way to provide
the necessary restoring force is to deform the rotating
plane into a rotating paraboloidal dish. Inertial motion
within a paraboloidal dish, and within other surfaces of
revolution, is discussed in considerable detail by
Stommel and Moore (1989). An alternative derivation
of the paraboloidal dish model, which differs from that
i, Stommel and Moore, is presented in the Appendix.
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Appendix: Building a physical model for
the f plane

A physical model for the inertial motion an air parcel
on an fplane can be constructed by placing a hockey
puck in a circular bowl of ice that opens upward and
rotates around a vertical axis perpendicular to the
bottom of the bowl at angular velocity Q. If the height
of the bowl is h(x, y), an equation for the three-
dimensional surface defining the bowl may be written
in the form "

S(x, y, 2) =0, where S(x, y, 2) = h(x, y) — z. (A1)
If surface friction is neglected, the only forces acting on
a hockey puck within the bowl will be gravity and the
normal force exerted on the puck by the surface of the
bowl. The normal force per unit mass can be ex-
pressed as NVS, where VS is a vector normal to the
surface of the bowl and N is a scalar determining the
magnitude of the normal force. Newton’s law govern-
ing the puck’s accelerations in a fixed reference frame
may thus be written as

avi
B o _gk+NVS
o gk+ ,

(A2)
where V, is the three-dimensional vector of velocities
with respect to the nonrotating coordinate frame. Let
the x, y, and zcomponents of V, be denoted as u,, v,
and w,, respectively. A closed system of four scalar
equations in the four unknowns u,, v,, w,, and Nis
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formed by (A2) and the kinematic condition that the
velocity of the puck perpendicular to the bow! must be
zero

V;eVS=0. (A3)

An explicit equation for N can be obtained by taking
the dot product of VS with the equations of motion
(A2) and using the relation

VS.%:M_,Vf.ﬂ_S_:—-Vf.d—VE,
dt at dt dt
(A4)
to yield
__g+VieadvS/dt

if the rotating ice bowl is to serve as a model for
inertial motion on the f plane, its shape should be
chosen so that the equations governing the motion of
the hockey puck are identical to those describing air
parcel motion in the absence of pressure gradients.
The equations governing these two systems can be
most easily compared by transforming (A2) into a
coordinate frame in which thexand y axes are rotating
at the same angular velocity as the ice bowl, the zaxis
coincides with the axis of rotation of the bowl, and the
origin is at the bottom of the bowl. Define

V,=ui+v,j+wk (A6)

as the velocity vector with respect to the rotating
coordinates, Q = (k as the angular velocity vector,
andR as a vector originating at the axis of rotation and
terminating atthe instantaneous position of the hockey
puck. Substituting (7) into (A2) yields the following
scalar equations for the velocity components in the
rotating coordinate frame

du, oh
=L _2Qv, - Px=NZ-
p v, X v (A7)
dv, odh
=L 42Qu, - Py=N=
g Ty R (A8)
dw,
=r —__g-N
o - 9N (A9)
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If vertical accelerations are neglected, whichis akin to
the hydrostatic approximation, (A9) reducestoN = —g.
Underthis approximation, (A7) and (A8) willbe equiva-
lent to the f-plane system (3) and (4), when

F _ on _ on
5=4 .sz-g—ax, and !fy-g——ay_
(A10)

The first requirement is completely natural since /2,
being the angular velocity about an axis perpendicular
tothe x—yplane in thef-plane approximation, is directly
analogous toQin the ice bowl system. The second two
requirements are satisfied if the bowl is shaped like the
circular paraboloid

)
Y

h(x,y)=%(x2+y2). (A11)

Thus, to within the accuracy of the “hydrostatic” ap-
proximation N =—g, the motion of a hockey puck within
the paraboloidal ice dish (A11) will be identical to the
inertial motion of an air parcel on the fplane.

The accuracy of the “hydrostatic” approximation
can be assessed by examining the exact expression
for N, which may be evaluated from (A5) using (A11)
and the definition of S to yield

-2

1+(uf+vf)ﬂ?g
N=-g ()T g | (A12)

According to this equation, Nwill be well approximated
by —g, provided

9?2 >> Q2 u? + vp) (A13)

and
g2>> 4(x2+ ).

The inequality (A13) reduces to (A14) under the as-
sumption that the total fixed-frame velocity scales like
the maximum straight-line velocity associated with the
rotation of the ice bowl—that is, like the maximum
of (X + y?)'2. If experiments were conducted inside
abowl rotating at 10 rpm, (A14) would be satisfied, and
the “hydrostatic” approximation would be valid, pro-
vided the puck remained within 4 m of the axis of
rotation.

(A14)
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