1.9  use (1.26) with ideal gas law.

1.12  First of all, I can’t see where the chapter derives the ideal gas law.  They get half-way there, and then impose it, or assert it through heat capacity observations.  The derivation in class notes is a little more complete.  

Consider two gases with different molecular weights.  The derivation from (1.1) – (1.8) can be done separately for each species, where pi is the pressure on the wall due to species i.
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Equipartition of energy states that the energy per degree of freedom, , for a gas in equilibrium at temperature T is 
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 That is, T ~ , where we have defined k/2 as the conversion constant.  This yields,
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Since pressure is just a force per unit area, and since forces are additive, we know that
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In previous versions of my class, I had students simulate random collisions between molecules with different molecular weights to prove the equipartition theorem.  Lucky you!
1.17  The Graviational and kinetic potential energies of an object are given by
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and
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The object will remain in orbit if its total energy, E = U + K, is negative, and will escape orbit (regardless of direction of motion, barring a collision course w/ Earth) if E > 0.  The threshold velocity for an object near Earth’s surface is given by E = 0. This yields,
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Above 200-500 km (the exosphere), the mean free path of a molecule is greater than the scale height of the atmosphere.  These molecules are essentially “ballistic”, in that those headed upward are typically pulled down by gravity (in a parabolic trajectory) before colliding with another molecule.  These are the molecules that are potentially free to escape, if their velocity is greater than vesc. Let’s consider the RMS velocities of N2, O2, and H2 gases, with molecular weights of 28, 32, and 4 (g/mol), respectively. On the daytime side of the planet, temperatures in the thermosphere and exosphere can exceed 2500 K (you didn’t have to estimate such a high temperature here, since this info wasn’t in the book or my notes).  
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Clearly, none of these molecules are flooding out to space, even at these high temperatures.  However, there is a finite fraction of each species that does exceed the escape velocity.  This is obtained through the Maxwell velocity distribution
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There isn’t an easy general solution to this integral, and it’s OK if you stopped here and started handwaving arguments about the losses of H2 relative to N2 and O2.  But I am compelled to answer the question to some more satisfactory conclusion.  

We know that for vesc >> vrms the distribution above vesc is tailing off very rapidly with velocity.  There’s a trick for working with tails of Gaussian-like distributions, which is to simulate that portion of the tail that contributes most to the integral as a simple exponential decay.  We write

   
n(v)|v > vesc ( n(vesc) exp(-(v-vesc)/V).  
which can be integrated to yield,

f = Vn(vesc).

(You can prove this works out on the wing of a distribution by expressing v = vesc + v and justifying the dropping the terms that don’t affect the integral significantly.)  We get V by noting that 1/V = -dln n(v)/dv evaluated at vesc.
Doing this for H2 yields a result that 1% of the molecules in the exosphere have enough velocity to blast out of orbit.  For O2, the value is much, much smaller at ~4 x 10-40.  Calculating the number of molecules of O2 gas above 200 km using the hypsometric equation yields that there is a one in 100,000,000 chance that there is a single O2 molecule in the exosphere at any given time that is energetic enough to escape Earth’s orbit.  This is probably an underestimate because UV solar photons and a lack of inter-molecular collisions wreak havoc on the assumption of thermodynamic equilibrium, which is necessary to derive the shape of n(v).  I would guess more oxygen is probably lost to space through the reaction O2 + h ( 2O and the subsequent escape of an anomalously energized O.
1.20  Crunching using (1.26) yields vrms = 1.5 c.  The speed of sound is more directly related to vx,rms than to vrms, since we only care about the velocity in the direction of sound propagation.   vx,rms = c/1.2.  This result agrees with simple theory, where the 1.2 is equal to sqrt(cp/cv), and comes from the fact that the compressions in a sound wave are adiabatic.
3.23  A balloon cruising at a fixed altitude must experience no net vertical force, or it would rise or fall.  The two vertical forces on a balloon are its own gravity and the buoyancy force of the atmosphere.  The former is the weight of the balloon, and by Archimedes’ principle, the latter is the weight of the displaced air.  So in equilibrium, we have
mag = (m1 + mp)g

where ma is the mass of the displaced air, m1 is the mass of the He in the first balloon, and mp is the payload mass.  The mass of the displaced air is equal to the density of the ambient air, a, times the volume of the balloon, V1.  For consistency, we also write m1 = V11, and get,
V1ag = (V11 + mp)g

The purpose of the He is to provide lift for the payload.  So let’s put the payload on one side of the equation, and the “lift” term on the other, letting gravity cancel.
V1(a - 1) = mp
The hot air balloon is carrying the same payload at the same altitude, so it must have the same lift.

V2(a - 2) = mp
Setting the two lifts equal to each other, we have

V1(a - 1) = V2(a - 2)

Rearranging to solve for the unknown volume of the hot air balloon, we have,
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Now we have only to use the ideal gas law to determine what the differences in density are.  For all three cases, (ambient, helium, and hot-air), the ideal gas law take the form

px = xR*Tx/Mx
which we use to solve for density
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where Tx = 0°C = 273.15 K for the He and ambient; T2 = 90 °C = 363.15 K for the hot air balloon and Mx = Ma = .029 kg/mol for the hot air and ambient, and M1 = MHe = 0.004 kg/mol for the He balloon.  We also have pinside = poutside for open (hot air) or non-rigid (He) balloons.  That is px = p.
Using the equations of state for the three gases in the expression for volume, and noting that p and R* cancel in the numerators and denominators, we end up with.
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So the hot-air balloon, which gets less lift per unit volume (because T/T < M/Ma) must have a 3.5 x higher volume to lift the same payload.  This corresponds to a radius that’s about 1.5 x that of the He balloon.

3.26  There is nothing in this problem that specifies that the lapse rates inside and outside the columns are the same.  Given this lack of constraint, we are free to define a “mean” temperature of the column however we want, as long as we are consistent.  The easiest is to define it in terms of the scale height and an assumed hypsometric pressure distribution.
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Solving for Tx yields
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It’s most useful to express gz/R in terms of T1 when solving for the temperature difference.
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3.29  This calls back to HW #1, in which we found for hydrostatic, fixed lapse rate atmospheres that,
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Since p/ps doesn’t change, and  doesn’t change, then z/Ts can’t change.  Thus a 3.4% increase in the 500 mb height must mean a 3.4% increase in Ts which is in the 10 K ballpark, depending on what you assume for Ts.  This is the correct way to do the problem.
The other way to do this problem involves the (unjustified due to explicit constraints on the problem) hypsometric equation.  Here,
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Which requires that z/<T> can’t change.  So <T> has to increase by 3.4%.  But Ts = <T>  + <z>.  So the change in surface temperature has to include both the mean temperature increase, plus the increase in the (pressure-mean) altitude at 750 mb.  You can crunch these numbers and get an answer similar to that done above if you make appropriate assumptions for TS and , but it’s a lot more tedious and less accurate.

3.38  
a)

h = cpT;   definition of enthalpy

km = 0.5(cp/cv)RdT ; definition of kinetic energy (per unit mass)
km = 0.5(Rd/cv)h  ; combine equations to eliminate T

     ( h/5;  for air

b)
Fractional change in c = dc/c = dlnc
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I find it more useful to say
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which says that the % change in cs is about half the % change in T for small changes in T.  i.e. a 1% increase in T (say, from 297 to 300 K) will lead to a ½% increase in cs (from 346 m/s to 348 m/s).
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