HW #4

Due Nov 6

1.  The solar “constant”, S0 = 1368 W m-2.  The solar flux from the sun comes from such a narrow range of angles that it is often treated as “collimated” light, coming from a single direction.  Use (or just assume) this simplification when calculating the following

· The global average TOA solar flux is 342 W m-2.

· On the Equinoxes, the daily average TOA solar flux at the equator is 435 W m-2.

· On the Solstices, the daily average TOA solar flux at the summer pole is 545 W m‑2.

These problems can be solved in one of two ways.  The first is to do a time- or space-average of S0, where  is the cosine of the zenith angle, and is equal to 0 for nighttime sides of the planet.  The other is to shortcut this integral by looking at the total power of sunlight intercepted and dividing it by the total area over which the sunlight is absorbed.  We use the latter method for a) and b), and the former method for c), although either method will work with all three problems.
a) Total radiation intercepted by the Earth is S0 times the area of its shadow, Re2.  Averaged over the global surface area, 4Re2, we have FG = S0/4 = 342 W m-2.
b) The total radiation intercepted by a narrow band (of width L) surrounding the equator is 2S0ReL.  Averaged over the surface area of this band (2ReL) yields FEE = S0/ = 435 W m-2.

c) At any given time on the polar summer solstice, the angle of incidence at the TOA is S0.  On the solar solstice, we know that the earth is tilted towards the sun by 23.5°, making a solar zenith angle of 66.5°.  cos(66.5°) = 0.4, so FPSS = 545 Wm-2.

Interestingly, the pole gets more sunlight on its maximum insolation day than the Equator does on its maximum insolation day.  
2.  The albedo of a surface As is defined as the fraction of incident solar flux that is reflected.  As = SU/SD.  A Lambertian surface has the property that AS is independent of the direction the incident flux density is coming from, and that the intensity of reflected radiation I() is also independent of direction, .  (Remember your relationship between intensity and flux).

Suppose the Moon’s surface has a Lambertian albedo of AM, and that the incident solar radiation is 1368 W m-2, normal to the direction of incidence.  Using a coordinate system where the polar direction (z-axis) points towards the Sun, calculate the intensity of reflected radiation directed back toward the Sun, as a function of polar latitude in this Sun-oriented coordinate system.

IL = FU/
For a Lambertian (isotropic) reflection, intensity is just flux/pi, 



irrespective of direction of reflection

FU = FDAM 
This is just the definition of albedo

FD = S0
Downward flux for a collimated source is just the strength of the 


source times the cosine of the angle of incidence.  But the angle of incidence is simply the polar angle in the coordinate system we have defined

Combining yields

IL = S0AM/
Note that this predicts that the intensity reflected back towards the sun becomes less and less as we consider angles towards the edge of the Moon’s disc, viewed from the Sun

Next consider the view of the full moon from Earth.  In this configuration the Earth sits between the Moon and the Sun (but just off at enough of an angle so the Moon isn’t in the Earth’s shadow).  Calculate the flux density of reflected moonlight at the top of Earth’s atmosphere.  This will require a proper integration over the solid angle subtended by the moon, accounting for the varying intensity with the polar angle. 

We are viewing the moon from the Earth.  The geometry is as follows:

The flux (defined for a surface directly facing the moon) received at the Earth from the moon is equal to the intensity integrated over the solid angle subtended by the moon times the cosine of the incidence angle.
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Since we know that  will be very small throughout the integration (the moon subtends an angle of only 0.5° in the sky), we can substitute sin =  and cos = 1, yielding
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We have the moon’s intensity as a function of , not , so we have to do the change of variables.  


[image: image3]
The dashed line above is the most convenient way to relate  to .  We have 

RMsin = DEM [for DEM >> RM]
thus d = (RM/DEM)2sincosd

But RM/DEM is just the angle from the center of the moon to the edge of its disc, as viewed from Earth = 0.  So we now have
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If AM = 0.07, what is the ratio of the flux density from a full moon, and the solar constant?  Use the fact that the moon subtends the same solid angle in the sky as does the Sun.  [In actuality, the Moon’s surface is not Lambertian, and the intensity is nearly constant across the face of a full moon]
Using these values (the Moon’s disc is about 16 arcminutes from center to edge, on average, which translates to 0 = 0.0046 radians) we get Fmoon = 10-6S0 = 1.4 mW m-2.  This is actually a very low estimate.  Some measures of moon albedo are as high as 0.12, and it is known that the moon has a very strong glory, or back-reflection, that makes a full moon’s disk appear uniformly bright from center to edge.  Regardless, the fact that we can see pretty well by the light of the full moon means that our eyes have a dynamic range of about 6 orders of magnitude.  Pretty impressive.
2.  The Planck function for blackbody radiation is defined as I = dI/d, where dI is the amount of intensity between  and  + d in the limit that d ( 0.  What is Iln?  Show that IlnIln where  is wavenumber.

We start with dI = Id = Ilndln.  This works because the amount of intensity, dI, (in W m-2 Sr-1) within the range  to  + d is equal to the amount of intensity within the range ln + dln only if the bounds are the same.  The lower bound is the same because 

ln( = ln.  


The upper bound is the same only if 

ln( + d) = ln + dln.  

This is only true if 

dln = ln( + d) - ln
        = ln(1 + d/)

        = d/           (in the limit that d ( 0)

Thus 

dI = Id = Ilndln.

    = Id = Ilnd.

and

Iln= I
This was the brute force way to do it.  The quicker way is to just note that
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Now let’s do the same thing to understand the relationship between Ilnand Iln
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where
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and thus
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The minus sign, of course can’t be right, since intensity (and spectral intensity) is always a positive quantity.  If you go back to the previous example, where we explicitly considered the bounds of the problem, you’ll see that the lower band in ln matches up with the upper bound in ln.  For this reason, we conventionally say that
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3.  Consider our 1-layer atmosphere with an emissivity of 1.  Show that if the solar flux increased by 1% then the surface temperature would increase by 0.25%.

Our 1-layer atmosphere with an emissivity of 1 in the visible discussed in class had the result that

TS4 = 2TE4 = 2S0/4

so

TS+dT)4 = 2(S0+dS)/4

A fractional change in S0 can be represented by dS/S0.  We get at this by dividing the 2nd equation above by the 1st equation above

(1 + dT/TS)4 = 1 + dS/S0 = 1.01
Taking the 4th root of both sides of the equation yields

dT/Ts = 0.0025 = .25%.

Again, this could have been done more easily by noting that

dX/X = dlnX for small dX.

Thus 

ln(TS4) = ln(2S0/4)

d ln(TS4) = dln(2S0/4)

4dlnTS = dlnS0 = 0.01

dT/TS = dlnTS = 0.0025 = .25%
4.   Calculate the distance from the Earth’s surface of a geostationary orbit.  What solid angle does the Earth subtend when viewed from this distance?  If the Earth’s effective radiating temperature is 255 K, and the satellite has a wavelength independent emissivity of , what is the equilibrium temperature of the satellite when it is in the Earth’s shadow.  Assume the satellite is spherical.  Do not use the formula in the text – calculate it.

The geostationary orbit is defined such that 

aG = 2RG
which simply states that gravitational acceleration serves as the centripetal acceleration for a circular orbit having the same angular velocity as the Earth’s surface.

aG = GME/RG2 

    = g(RE/RG)2
Thus

RG = (gRE2/2)1/3
 ~= 42,000 km
Note that this distance is with respect to Earth’s center, and is about 6.6x the Earth’s radius.  Thus the Earth subtends a non-trivial solid angle in the satellite’s “sky”.


[image: image10]
The solid angle subtended by the Earth can be calculated by defining a satellite-centered coordinate system whose polar axis passes through the center of the Earth.  Because of the Earth’s spherical symmetry, the Earth’s image will block all polar angles between 0 and 0 = sin-1(RE/RG).  Keeping this geometry in mind, the total solid angle is
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This is an exact formulation.  Because (RE/RG)2 = 0.152 << 1, you can write this as
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This is just the form of the equation we used when calculating the solid angle of the solar disk, which we knew a-priori was going to be a very small solid angle.  In this case, the angle the earth’s angular diameter is 16 degrees, and the solid angle is .07 Sr

The assumption that the Earth emits like a blackbody at 255 K means that the intensity leaving any part of the earth, Ie = TE4/.  An element of surface area on the satellite, dA will absorb energy from radiation in a narrow range of solid angles d at the rate, dPa (in Watts)
dPa = I()cosddA

where cos is the angle that  makes with the normal to dA.  To get the total power emitted, we would need to do a quadruple integral over both satellite surface area and over the disc of the Earth.  Rather than do this brute force, we can note that, for a given angle , the satellite will intercept an area Rs2, no matter what  is.  Thus we can rewrite the above expression

dPa = I()Rs2d
Now we invoke the expression that I() is constant over the disc of the Earth, and this reduces to 

Pa = TE4RS2(RE/RG)2
The energy emitted by the satellite is just

Pe = 4Rs2Ts4
Setting the two equal to one another yields

Ts4= (1/4)TE4(RE/RG)2
Ts = 70 K.

Note that the assumption of a spectrally independent value of  was essential to this calculation, since the wavelength of peak emission will be in the 40-50 m range, whereas the satellite is absorbing in the 10-12 m range..
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