HW #5

Due Nov 13

1.  Based on the principles of quantum mechanics discussed in the course, what types of energy transitions do you expect from the following gases:  Ar, H2, CF3Cl, CF4.  What types of absorption bands from these species would be important for radiative transfer?  Make a ballpark guess as to where these spectral bands would occur in the solar and IR spectrum.

Energy Transitions:  All molecules will experience electronic transitions.  Ar will not experience any other transitions, because it has no modes of vibration or rotation.  H2 will have one vibrational and two rotational modes.  The halocarbons will have three rotational modes and several vibrational modes.
Absorption Spectra:  As with all molecules, there will be absorption spectra which will occur in the UV.  Without vibrational or rotational degrees of freedom, Ar will have no spectra outside its UV spectrum.  H2 is symmetric, and thus will have negligible absorption associated with its vibration and rotational bands, (like N2 and O2).  CF4 has no permanent dipole moment, due to symmetry, but will have vibrational modes and vibrationally-induced dipole moment, leading to rotational absorption.  The number of vibrational spectra will be small due to the symmetry of the molecule.  CF3Cl is asymmetric, leading to a permanent dipole moment, greatly enhancing the rotational absorption spectrum.  The asymmetry also increases the number of vibrational transitions.  The vibrational modes of the halocarbons in this example will be in the near-infrared, and the rotational modes will be in the far infrared.
2.  Consider some Lorentz-shaped absorption line at surface temperature and pressure, assuming that 0 = 1652 cm-1, s = 0.05 cm-1, and S = 1 m2 kg-1 cm.  The mixing ratio, r, of the absorber is 0.01.  Plot the optical depth as a function of wavenumber in the range of 0 +/- 0.3 cm-1, for an 8km horizontal path (i.e. constant T,p) through this gas.  What is the mass density (kg/m2) of the absorber along this path?

The optical depth is given by

d = kads

where k is the absorption cross-section per unit mass and ds is an element of distance along the path.  Note that the columnar mass density, ac is obtained by integrating

dac = ads

which yields 

ac = aL
along this homogeneous path (L = 8 km).  The absorber density is obtained from the ideal gas law for surface temperature and pressure (say 288 K, 1000 mb), assuming dry air, and we get a = 0.012 kg m-3 and ac = 96 kg m-2
We can now rewrite the optical depth equation in terms of the element of columnar mass instead of distance.

d = kdac
which yields

 = kaL
for this homogenous path.  The Lorenz shape is given by

k = Sf

where f is the Lorenz line shape.
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where we assume N = 1 for this problem to yield
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For the surface, where  = 0, we write
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This is plotted in the figure below for the parameters defined above.  

Now derive an expression for the optical depth in the vertical (to the top of the atmosphere), assuming Lorentz pressure broadening.  The line shape will obey  = s(p/ps)(Ts/T).  (i.e. N = 1).  S and r are constant with height.  Assume an atmosphere where number concentration decays exponentially in the vertical with a scale height of 8 km (this assumption is the same as saying what about the vertical profile of temperature?).  Plot this optical depth on the same graph as for the horizontal path case.  What is the mass density of the absorber for the column?

We’ve already done much of the work setting up the problem, but now we have to consider the vertical variation in the problem
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where the minus sign is because  increases downward from a value of 0 at the top of the atmosphere.  To integrate this, we can switch variables for our vertical coordinate system from z to p.  The constant scale height of density in the atmosphere of H = 8km implies a constant temperature profile, since H = R*T/gMA.  (i.e. if H is constant, then T is constant).  If T is constant then (/0) = (p/p0), and we can use the hydrostatic approximation to rewrite this
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To integrate this from the TOA to the surface, we have to change variables to p2.  Let
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which leads to
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Now we answer the question:  What is the columnar density of the absorber?  Since it has an exponential scale height H = 8 km, we can simply say that ca = 0Hra.  Since scale height is the same as the horizontal path length from the first part of this problem, we are dealing with an equal mass of absorber for the two cases.

To make use of this symmetry between the problems, we use the hydrostatic equation tells us that p0 = cag/ra = 0Hg  Subbing this in yields
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Now let's plot the two.
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Technically, the area under these two curves is the same, because the linestrength of the absorber is constant and there is an equal amount of absorber mass in the two cases.  But for the vertical profile case, much of the opacity occurs very near the line center, whereas for the surface case (where line broadening has its maximum effect), the line wings are stronger.
For both curves, calculate the spectral absorptivity along the path for the same wavenumber range.

The transmission is exp(-), and since there is no scattering and  + t + r = 1, then absorptivity is given by:  = 1 – exp(-).  This simulates the spectrum that a spectrally flat source of radiation would have after traversing the two paths.
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The point here is that the same mass of material absorbs less when distributed vertically through a column because of the pressure broadening, even though the spectrally-integrated optical depth remains the same.
3.  Construct a simple (3-4 sentence max) argument that blackbody radiation is isotropic, using a similar line of reasoning as was presented in the Kirchoff’s law handout.  [Hint: Consider the emission of a disk or some other non-spherically shaped object placed within a cavity.]

The argument goes as follows.  Consider the interior of an irregularly shaped cavity with unity emissivity.  If the blackbody radiation emitted by the walls was not isotropic, then the interior radiation field would not be isotropic, but would instead depend on the shape of the walls.  If you were to put a coin-shaped object in the interior, the amount of energy it would absorb would depend on whether it was facing a direction of higher intensity or was faced towards directions of lower intensity.  Since the emission by the object in the interior is only sensitive to its temperature, its temperature would depend on its orientation.  This violates the conditions of local thermodynamic equilibrium, in which the temperature of the object in the interior of the cavity can only approach the temperature of the walls.  Thus the emission by the walls must be isotropic and the radiation in the interior of the cavity must be isotropic, irrespective of the shape and emissivity of the walls or the those of the object placed within.

4.  Construct a 4-layer radiation balance model with a stratosphere, upper troposphere, lower troposphere, and surface.  The total solar absorption by the planet is TE4 = S0(/4).  5% of this absorption occurs in the stratosphere, 10% in the UT layer, 15% in the LT, and the remaining 70% is absorbed by the surface.  The stratosphere layer has an emissivity of 2%, the UT has an emissivity of 50%, and the LT  has an emissivity of 90%. The surface has an emissivity of 100%.  Calculate the radiating temperatures of each layer and of the surface.  Lastly, modify the model to require that TUT = TLT – 60 K, and that TLT  = TS – 10 K to simulate the effect of convective instability on the lapse rate of the atmosphere.  What effect does this have on the equilibrium temperatures?  What are the implied convective fluxes between the surface and lower atmosphere?  When calculating the temperatures, use representative values of E = 255 K and  = 0.7.  Hint:  Solve the problem from the top level down, requiring energy balance at each interface between layers.  Use the total upward and downward longwave fluxes initially, and you can solve for the temperatures as you work your way down.  You may use Matlab or Excel to do the calculations – the key think is that you set up the equations properly.

Consider each of the regions of the atmosphere defined above as being a layer i.  Above each layer (at the interface) is a level i.  Each layer has a temperature and is in radiative energy balance.  A consequence of this radiative energy balance is there must be zero net radiaite flux across each level.  As shown in class, it is often more useful to express energy balance at the level instead of for the layer.  Zero net radiative flux means that the (downward) net solar flux plus the downward IR flux equals the upward IR flux.  Furthermore, between two levels we can assert radiative transfer equations for the upward and downward fluxes, based on the emissivities and temperatures of each layer upstream of the radiation flow.  For example for level 1 we have

FD1 = 0 
(Boundary condition on downward IR flux at TOA = 0)

FU1 = 1T14 + (1-1)FU2  (Upward radiative transfer equation)

S0/4 + FD1 = FU1             (Energy balance at the TOA)

We define the total absorbed solar in terms of an effective return blackbody emission by the planet S0/4 = TE4.  This is not a result – it’s a definition of TE based on our TOA energy balance requirement.   Combining the three equations gives
TE4 = 1T14 + (1-1)FU2
(1)

Note that I have not defined the upward flux from level 2 (which is between layers 1 and 2) in terms of the emission by all lower layers – I have just added it as a new variable.  The reason for this will follow.

So all we need to find the temperature of layer 1 is the upward flux from below.  But we can get this from the energy balance at level 2.

TE4(1-1) + FD2 = FU2
(Energy balance at level 2)
FD2 = 1T14


(Downard radiative transfer equation at level 2)
Note that the downward solar flux at level 2 has been reduced by the factor (1-1), due to the fraction of total planetary absorption that occurs in the stratosphere, 1.  Combined this yields

TE4(1-1) + 1T14 = FU2
(2)

Note that (1) and (2) are two equations in terms of 2 unknowns, and thus can be solved.

TE4 = 1T14 + (1-1)[TE4(1-1) + 1T14]
T14 = TE4[1 - (1-1)(1-1)]/[1(2-1)]
T14 = TE4[1+1-11]/[1(2-1)]
Using (1) and (2) to solve for FU2 instead of T14 yields 
FU2 = TE4(2-1)/(2-1)

And to be complete,

FD2 = TE4[1+1-11]/(2-1)
It is significant that we are able to solve for T14 and the fluxes at level 2 irrespective of what is going on below level 2.  We have only invoked radiative energy balance at levels 1 and 2, nothing else, and in return we get a solution for layer 1 temperature and the upward flux below it (at level 2).  In fact, anything else could be going on beneath level 2 at this point, including levels where radiation balance does not occur – i.e. where convective fluxes are responsible for some of the energy transport.  Your solution for the stratosphere is insensitive to processes below as long as there is net radiative balance at level 2.

You can proceed numerically at this point, because it is obvious that even after just one layer, the general expression is getting cumbersome.  For our model, we get T1 = 293 K; T14 = 417.1 Wm-2; FU2 = 235.8 Wm-2; FD2 = 8.3 Wm-2.  The stratosphere is warmer than the planetary temperature, because 1 > 1.  (Convince yourself that if 1 = 1 then T1 = TE and FU2 = TE4).

Proceeding, we have the following equations for the next layer
FU2 = 2T24 + (1-2)FU3 
(Radiation transfer eqn for upward transport)

FD3 = 2T24 + (1-2)FD2
(Upper boundary condition solved for already)

TE4(1-1-2) + FD3 = FU3   
(Net radiation balance for level 3)

Now we already know FD2, FU2 so we’re just solving for FU3, FD3 and T2 using these three independent equations.

TE4(1-1-2) + 2T24 + (1-2)FD2 = FU3
FU2 = 2T24 + (1-2)[TE4(1-1-2) + 2T24 + (1-2)FD2]

T24 = FU2 - (1-2)[TE4(1-1-2) + (1-2)FD2]/[2(2-2)]

FU3 = [TE4(1-1-2) + FU2 + (1-2)FD2 ]/ (2-2)

FD3 = 2FU2 - (1-2)[TE4(1-1-2) + (3-22)FD2]/(2-2)
Note that we solve for the fluxes at level 3 and the temperature at level 2 in terms of level 2’s intrinsic properties and the fluxes for level 2.  There’s nothing special about level 2.  In general, we can solve for the fluxes at level i and the temperature of layer i-1 in terms of the intrinsic properties of that layer and the fluxes at level i-1.  Thus,

Ti4 = FUi - (1-i)[TE4(1-1-2 - …i) + (1-i)FDi]/[i(2-i)]

FUi+1 = [TE4(1-1-2- …i) + FUi + (1-i)FDi ]/ (2-i)

FDi+1 = iFUi - (1-i)[TE4(1-1-2- …i) + (3-2i)FD2]/(2-i)
We proceed numerically from the top down.  Once we’ve found FU4, we solve for FU4 = TS4 directly, which is our lower boundary condition.

The results I get are:

T1 = 293 K 
FU1 = 239 Wm-2 
FD1 = 0 Wm-2


T2 = 236 K 
FU2 = 236 Wm-2 
FD2 = 8 Wm-2


T3 = 265 K 
FU3 = 296 Wm-2 
FD3 = 92 Wm-2
TS = 295 K 
FU4 = 429 Wm-2 
FD4 = 262 Wm-2
For the case where the lower and upper troposphere are fixed to surface temperature by convection, we still have the requirement that FU2.

FU2 = 2T24 + (1-2)3(T2 + 60 K)4 +  (1-2)(1-3)(T2 + 70 K)4
This one is certainly more difficult to solve, and has to be done numerically.

Once these values of temperature are solved for, the net radiative fluxes at levels 3 and 4 can be calculated, and any imbalance has to be the result of convective fluxes.

Problem 4.55.  No solution necessary (just take derivative of transmittance w/ height, and you get w).
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