L14.  Entropy and Heat Engines
Entropy is a completely non-sensible concept at the core of thermodynamics.  By non-sensible, I mean it isn’t something that we directly observe about an object, like its temperature, conductivity, or heat capacity.  However, every system in complete thermodynamic equilibrium (i.e. where all spontaneous processes have run their course) has a specific value of entropy that depends on the other state variables of that system (i.e. T, q, p, V, etc).

The first thing to know about entropy is that it is NOT conserved.  When an object exchanges heat with its environment, the amount of energy added to the system exactly equals the amount of energy removed from the environment.  When an object does work on the environment, energy is conserved.  But when an object exchanges heat with the environment, the entropy of the system + environment always increases.  In other words, the entropy of the universe (all systems put together) is always increasing.  The simplest way to quantify this is to consider two isolated boxes of air, each in thermodynamic equilibrium, and each having an equal heat capacity, Cv.  The first is at temperature T1 and the second is at T2.  Thus each system has an internal energy of CvTx.  Since the state of each box is a given, they each also have an entropy, S1 and S2.  Now, when we put these two boxes in thermal contact with one another, so that they can exchange heat, we have the following rule about how energy will change.

CvT1 + CvT2 = 0

That is, total energy is conserved.  Since we’re only allowing heat transfer, and not work, we can define the heat going from system 2 into system 1 as:

Q = CvT1
We have a rule for entropy, which states that

dS1 = dQ/T1, 

dS2 = -dQ/T2, 

You’ll notice that the entropy of the total system is not conserved:

d(S1 + S2) = dQ(T1-1 - T2-1).

If heat is flowing from higher temperature to lower temperature (as it always does) and if we specify dQ > 0, then T1 < T2. This means d(S1 + S2) > 0.  Note that if dQ < 0, then T2 < T1, and we still have d(S1 + S2) > 0.  So d(S1 + S2) > 0 is the same thing as saying that heat flows from hot to cold.
In fact, S is how we keep track of whether a reaction will occur spontaneously or not.  Heat will always flow spontaneously (irreversibly) so that the total entropy increases. Any other change in a system or between systems will occur to increase entropy of the combined system.  For our simple system of two boxes, it simply requires that heat flows from the hotter to the colder system.  But when we include work, phase changes, and chemical reactions, the bookkeeping gets a bit more complicated.
Statistical mechanics arrives at the same relationship for entropy, but using very core statistical concepts.  The first principle is that molecules tend to distribute themselves evenly about the available states of the system.  For example, molecules are far more likely to distribute themselves equally between two sides of a box than they are to congregate all on the same half.  The same works for energy – energy tends to be distributed evenly among the molecules in a system rather than most of the energy being concentrated in just a few molecules.
The second principle in statistical mechanics is that entropy is related to the number of states a given system can have.  How many different combinations can there be for the positions and velocities of the molecules in the box that have a given internal energy?  The more states, the higher the entropy.  So saying that systems always tend towards higher entropy is like saying that systems always change towards increasing the total number of states available to them.  Consider a small box with a divider down the middle.  100 molecules at temperature T are placed in one half of the box, and the other half remains empty.  The probability that a molecule is in the left half of the box is 100% and in the right half is 0%.  There is only one state for the system – all molecules on the left half.  Now we instantaneously (irreversibly) remove the partition.  After the system comes to a new equilibrium, each molecule will have two states – 50% on left, and 50% on right.  There are now 2100 (1.3 x 1030) independent states of the system, where the original configuration (all on left) is only one of these.  In our system, the entropy has increased since the # of available states has increased.  It will now take work to compress all the molecules back to their original side of the box, which will heat them up, and then the heat will need to flow back out to the environment in order to return the system to its original state.  That is, work must be done on the system, converted to internal energy, and then heat must be taken out to return it to its original state.  It will not occur spontaneously.
The same principle applies to thermal energy – there’re a lot more states associated with hot gas than there are with cold gas.  At absolute zero, there’s only one state available to our system – all molecules in their ground state.  Add one iota of energy, and now there’s 100 states available – each of the molecules might be the one holding the energy.  Add another iota, and now there’s 4950 states available, with all possible pairs (including all energy in one molecule) leading to a unique state.  Now consider taking a system with 2 iotas and placing it in contact with an identical system at absolute zero.  Before total entropy described a system with 1 state and a system with 4950 states.  Combined, we now have a system with 19,900 possible states, with the factor of 4 coming in because the energy is no longer confined to one side.  The extra states come from the freedom for the heat to flow from the 2-iota side to the 0-iota side.  That is, heat flows from hot to cold, even while energy is conserved.
So there’s nothing “magic” about entropy.  It simply describes how many states are available to a system, and by inference we can decide how two systems might interact – always to maximize – utilize is a better word --  the total number of states available to the two systems.  For simple ideal gases, heat flowing from hot to cold is simply the consequence of increasing the number of ways the energy can distribute itself.  Equilibration of pressure is another way that the number of positional states maximize themselves.

In an adiabatic process, heat does not enter or leave a system.  Therefore the entropy of the system does not change.  So if we increase the external pressure on a thermally isolated system, this will decrease the number of positional states available to it, and simultaneously increase the number of velocity states available to it by the same amount.  Thus an adiabatic process is an isentropic process, and we can say that  (potential temperature) is a measure of entropy.  In fact, we have ds = cpdln.
Carnot Cycle

A Carnot Cycle is an idealized heat engine.  A heat engine uses the fact that cold air is more compressible than hot air.  So it takes less work to compress cold air than hot air.  The cycle starts where you take a mass of cold air in a piston, compress it adiabatically.  Since the temperature is low, then the pressure will be low, and it doesn’t take much work to compress it.  Then you add heat to the compressed gas, increasing its temperature substantially.  Now the pressure is very high, and you allow it to expand at this high force, and it does a lot more work on you than you originally did on it.  The next step is to allow it to cool down the rest of the way until you’re back where you started.  The net result is that the heat you added to the compressed gas was partially converted to work, and partially released to the environment as waste heat.  The efficiency of the energy is the work divided by the heat added.  The heat added in an internal combustion engine is provided by the burning of fuel.  In the book they talk about placing the gas in contact with a conductive heat source.  In any case, the idea is that you can do work if you can get heat into your compressed gas.
The real trick here is to get the heat into the compressed gas.  It takes “high quality” heat to add heat to an already compressed, adiabatically warmed gas.  You need to find something that’s already at a higher temperature to add that heat.  The internal chemical energy stored in gasoline is what powers our cars.  This is high quality (low-entropy) heat, because it can be released at very high temperatures.  The higher temperature an object is, the higher quality heat it can provide.  The quality of heat in a chemical bond is can be measured as a temperature using E/k ~T, where E is the energy released per bond when the reaction proceeds.  If the gas is already at this temperature T, you’re just as likely to take heat out of the gas and create the bond as you are to get heat out of the bond.  You may ask how such high quality heat got into the gasoline?  The answer is that the Sun is very very hot, and produces visible light photons, which are very high quality heat.  Only these high-quality, high frequency photons are capable of driving photosynthesis, which provides/stores the high-quality energy needed to create the complex structures of organic materials.  Fossil fuels, plant matter, etc. can recreate high temperatures when they burn because they are releasing the very high-quality energy they originally got from the Sun.  The moral of the story is that not all energy is equal – low entropy energy that can be released at high temperatures is the best for driving engines.
The Carnot Cycle is a very specialized heat engine that maximizes the efficiency possible given the boundary conditions of the problem (high and low temperature, high and low volume, for example).  It is not a cycle that comes from a practical engine one might make, since the external pressure must be increased and decreased at very specific rates during the process in order to ensure this optimal performance.  But it is useful, because it only involves two processes – adiabatic and isothermal – each of which are easy to manipulate analytically.  And, since it is the most efficient engine that can operate between a set of bounds, it is a useful constraint on engines in general.

So we start with a set amount of gas in a piston of initial volume VA having temperature T2.  Enough force is applied to the piston shaft to keep it at pressure pA.  Then the force on the shaft is slowly increased to a pressure pB, so that the gas, as it compresses to volume VB, does work on the shaft.  The adiabatic compression increases the temperature to T1.  Next, the system is placed in a temperature bath at T1, and then expanded slowly, extracting as much heat from the temperature bath as is needed to compensate for the work of expansion.  Then the piston is isolated from the temperature bath and expanded adiabatically back to temperature T2.  The piston is again put into a bath at temperature T2, and the heat is expelled into the bath as it is compressed back to VA.  Note that heat is extracted at the higher temperature T1, and expelled at the lower temperature T2.  The total work done is simply pdV, integrated through the whole cycle, which is equal to the area enclosed by the path in p-V space.
These notes will be continued to explain where Clausius Clapyron equation come from, and the actual calculation of entropy from the heat engine, which is why it is used as an example.
