L15.  Carnot Cycle for Water
We asserted the Clausius-Clapyron Equation as being
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Now it’s time to understand where that comes from.  

Let’s recap where we’ve been with the 2nd law.  First, we asserted that heat only flows from hot to cold, not in the reverse direction.  If we quantify entropy with dS = dQ/T, the entropy of two systems increases when heat flows from the hotter one to the colder one.  So the 2nd law can also say that entropy increases in a spontaneous process.  In statistical mechanics, we made some handwaving arguments that expressed entropy in terms of the number of configurations a system can be in.  When you allow two separate systems to interact, you invariably increase the number of states available to the combination, and increase the entropy as a result.  The actual macroscopic state which is observed is the most probable one – usually the homogeneous one.
Then we considered the complication of work.  First, we considered how the thermodynamic state changes when “pure” work is done – that is, with no heat transfer and no change in entropy.  In this case, internal energy is used to do the work.  cvdT = - pd.  This can also be written as cpdT = dp if our system is controlled by pressure instead of by volume.  Next we considered what happens when both heat and work are transferred.  We now have, dq = cpdT - dp. The trick here is to divide by T so that (dq)/T = cpdlnT – Rdlnp.  We did this so that the relationship between dlnT and dlnp is a constant when no heat is added.  If we hadn’t divided by T, there would be a loose temperature dependence in the relationship between dT and dlnp.  It is interesting to note that by dividing by T we have also isolated the change in entropy ds = dq/T = cp dln.  where  is defined by dln = dlnT + (R/cp)dlnp.  to isolate how much heat has been added to a system that might also be doing work.  By isolating heat transfer, we also isolate the change in entropy irrespective of any work that is done.  
Note that entropy increases with the log of the potential temperature.  This is a “sub-linear” function.  So the more heat you add, the less entropy you add per unit heat (i.e. ds = dq/T).  So high temperature objects have high entropy, but they also have a lower entropy per unit heat content.  This is called high-quality heat.

Next we talked about heat engines.  We found that heat can be used to do work if you have energy from a heat source and can dispose of some of it at a colder heat sink.  Since the heat transferred at high temperature has lower entropy per unit heat delivered, a perfect engine seeks to conserve entropy by delivering less heat at the lower temperature, converting the balance of the heat input into the work of the engine.  For the perfect heat engine, 

Q1/T1 = Q2/T2 = W/(T1 – T2)

Now let’s start thinking about latent heat.  This is a new complication.  When defining heat, we considered condensation to be a source of latent heat.  However, when thinking about “moist adiabatic” processes, we noted that the latent heat was internal to the system, and could be thought of not as an input of heat to the system (dq), but rather as a conversion of internal energy from latent heat to dry static energy. 

The clausius clapyron equation tells us when a vapor will be in equilibrium with a liquid.  The way it’s derived in this book is a good trick.  They basically set up a heat engine consisting only of liquid water and its vapor.  In the normal Carnot heat engine, the ideal gas law tells us that a warm gas will do more work in an expansion than a cold gas.  (p = RT), and this is how we convert high quality heat to work.  Our “water heat engine”, works the same way, but we get the added benefit that  itself is also a strong function of T.  It’s a double whammy.  So in the cold compression cycle of a water engine, you’re compressing against less gas than when you compress against a warm water engine.  This greatly magnifies the efficiency of the engine between two temperatures compared to when there’s no phase change.  
The trick used here to calculate vapor pressure as a function of temperature is to make all the changes slow, so there is zero net entropy production.  In a zero-net entropy production engine, the fraction of heat converted to work has to be the same as the fractional temperature difference between the warm and cold sides.   Since the net work is directly related to the change in vapor pressure, the fraction of heat absorbed converted to work is related to the change in vapor pressure divided by the heat needed to evaporate this vapor.  If we know the latent heat of vaporization, it’s then a slam dunk.
Here we go:  Consider a small mass of water, mw, with a piston sitting on top of it with no vapor at all.  It’s at temperature T, and has volume Vl = mw/l.  Then we connect it to a heat bath, also at temperature T, and pull the piston up slowly.  In equilibrium, the vapor pressure in the space between the piston and the water is es(T).  As we slowly expand the piston, heat flows from the bath, into the water, and provides the energy to both evaporate enough vapor to stay at es(T), and to do the work of expansion against the piston.  All the water will be evaporated when Vg = mw/v, which, by the ideal gas law, will be Vg = mwR*T/(Mwes(T)).  The total heat extracted from the heat source is Lvmw + es(T)*(Vg-Vl) = Lvmw + mwR*T/Mw, where we note that Vl << Vg at the temperatures we’re interested in.  Next we turn down the temperature of the heat sink by -dT, but keep the volume fixed at Vg.  Since es(T – dT) = es(T) – des, some of the mass will condense out, releasing heat of condensation to the heat sink.  Next we compress the piston at the lower temperature (T – dT) and vapor pressure (es(T) – des), until all the vapor is condensed back into the liquid .  The heat extracted from the system Q2 = Lvmv + es(T-dT)*Vg.  The net work done, Q1 – Q2 = W = desVg.  Now if we did this slowly enough, there should have been no change in entropy in the system, which means that Q1/T = Q2/(T – dT) = W/dT.  We know everything but es(T) and des, so let’s use this engine to calculate it.  Q1/T ~= Lvmv/T.  W/dT = (des/dT)Vg.  Setting these equal to one another (which is saying that entropy didn’t change) allows us to calculate
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QED.

Note that this expression tells you what the change in vapor pressure with temperature is, but it doesn’t tell you what the vapor pressure is.

When we look at the vapor pressure over ice, we see that the latent heat of sublimation, Ls > Lv.  Thus the slope of es,ice(T) is greater than that for vapor.  The two curves cross at 0°C.  So below 0°C, the vapor pressure over ice is lower than that over water.  So when liquid water is in the presence of solid ice, the water will evaporate at the same vapor pressure where the ice will grow by deposition.  Likewise, ice at temperatures > 0°C would evaporate at vapor pressures where liquid water will condense.  It is common to find liquid water in the atmosphere below 0°C in a “super-cooled” state.
The latent heat of melting, Lm = Ls – Lv = 3.3 x 105 J/kg.  It is almost an order of magnitude smaller than the latent heat of vaporization.  However, it can play a role in cloud dynamics by providing an extra source of heat between the 0°C and -40°C levels.
As an exercise, let’s consider the freezing of water drops in air.  As supercooled drops freeze, they release energy of freezing.  This actually increases the temperature of the frozen part to 0°C, and increases the temperature of the surrounding liquid as well.  At what temperature does a drop have to be to completely freeze without expelling heat to the air?
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