L19 – Sources of Radiation
Blackbody Radiation
A blackbody is a surface that doesn’t reflect any of the radiation incident upon it – that is, the radiation emitted outward from the surface is completely independent of the radiation incident on that surface.  Black paint attempts to achieve this – at least across the visible spectrum.  The more classic example is a cavity – a small opening to a much, much larger chamber.  Any light entering that cavity will have a minimal chance of ever finding its way back out again before being absorbed in the interior.

The term “blackbody” does NOT mean that the surface doesn’t emit any radiation.  Quite to the contrary, all surfaces emit some radiation (unless they are perfectly reflective – which will be discussed later).  In fact, a blackbody is in a state of thermodynamic equilibrium, and emits radiation according to its thermodynamic temperature T.  By the 2nd law, we understand that the temperature of the radiation in a cavity must equal the temperature of the walls, if they are in equilibrium.

We start with the Planck function, which describes the distribution of blackbody radiation with the wavelength of light.  If you consider some small range of wavelengths between  and  + d, then the intensity (W m-2 Sr-1) emitted by a blackbody in that range is given by
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letting d ( 0, we have the spectral flux density (W m-2 m-1), where the extra m-1 comes from the “per unit wavelength”.  h is Planck’s constant = 6.626 x 10 -34 J s, and k and c are the familiar Boltzmann constant and the speed of light.  It is often convenient to rewrite this as:
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where c1 = 3.74x10-16 W m2 Sr-1 and c2 = 1.45x10-2 m K.

The shape of this function for a few very hot temperatures is given in figure 4.6 of W+H.
[image: image3.emf]
There are several properties of the Planck function that are important.  

1) At ALL wavelengths, the Planck function is an increasing function of T.

2) At short wavelengths,  << hc/kT, it is a very, very strong increasing function of T.

3) This plays out such that at any given temperature, there is a maximum in B. that occurs at
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This is called Wien’s displacement law.  We see this in the warming of an oven coil as it ranges from deep red through orange.
4) The total flux emitted, F, is obtained by integrating the Planck function over all wavelengths (and over the emitting hemisphere, weighted by )

[image: image5.wmf](

)

4

0

/

5

1

0

1

)

(

2

T

d

e

c

d

T

B

F

T

c

l

s

l

p

l

l

p

l

=

-

=

=

ò

ò

¥

-

¥


where  = 5.6696 x 10-8 W m-2 K-4 is the Stefan-Boltzman Constant, corresponding to this Stefan-Boltzmann Law
Note how the very rapid increase with temperature of the shorter wavelengths plays out into a T4 dependence on temperature for the total flux emitted.

We can estimate the temperature of the radiating part of the Sun’s surface (the photosphere) in two ways.  One is to look at where the peak spectral density is, using Wien’s law, and the second is to estimate it from the Stefan-Boltzmann’s law.  Doing so yields temperatures of 6100 K and 5800 K, respectively.  Although the Sun’s surface is not a Blackbody, we can get a clear idea of its temperature from these measurements.
The ocean surface is also behaves very much like a blackbody, but at much, much colder temperatures.  The warmest open-ocean sea surface temperatures are 303 K, for which the emission is 480 W m-2.

Emission and absorption by non-blackbodies.

A surface that reflects or transmits some of the radiation incident upon it is not a blackbody.  The fraction that is absorbed is called the absorptivity, .  This may be a function of wavelength, giving the object some color, i.e.  = .  

Non-blackbodies always emit a smaller amount of radiation than a blackbody does.  We define the ratio of a body’s thermal emission to the blackbody emission as the body’s emissivity, .  

I = B(T)
Kirchoff’s Law (see separate handout) tells us that for non-black bodies, .= .

This is not the same thing as saying that the emission equals the absorption.  Just the fraction of incident radiation absorbed equals the fraction of a blackbody radiation that will be emitted.

The classical example is that of a planet.  On climate timescales, a planet will absorb about as much radiation as it emits, unless it has some significant internal heat source, such as Jupiter.  The amount it absorbs is given by the absorptivity Rp2S0, where S0 is the solar flux at that planet’s mean distance from the Sun, and Rp is the radius of the planet.  The amount the planet emits is equal to its blackbody emission, times the emissivity, times the total surface area of the planet.  In equilibrium,
Rp2<S0 = 4 Rp2
Since we don’t realy know the emissivity of a planet’s radiating surface, we define an effective radiating temperature for a planet, which assumes that the emissivity is unity.  This radiating temperature usually approximates the temperature of the atmosphere or surface.  Thus we have
<S0/4

for a planet in equilibrium.  For the earth we know that S0 = 1368 Wm-2.  For other planets, we need to be aware of the 1/r2 law for radiative fluxes – the farther away and more reflective a planet is, the cooler it’s radiating temperature will be.

It so happens that the earth’s absorptivity is about 69%.  The radiating temperature for Earth is equal to 255 K – a typical temperature about 5 km up above Earth’s surface (globally averaged).  This corresponds to a peak in the Earth’s emitting spectrum of about 11.4 m – deep into the infrared.  If we are to plot the spectral distribution of solar flux at the top of the atmosphere against the spectral distribution of the Earth’s radiation, we see that the two curves are well separated.
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