Atmospehric Transmission and Beer’s Law 
In the last lecture, we discussed at which wavenumbers a molecule will absorb radiation and factors governing the width of these absorption features (Doppler and pressure broadening).  We also discussed that the efficiency of absorption depends on charge distributions, where dipole moments allow rotational transitions, and vibrational transitions are virtually forbidden for perfectly symmetric molecules like N2 and O2.

How do we quantify the amount of absorption by a molecule at a given line?  Each of a molecules absorption lines has a “line strength”, S, which has units of cm2 m.  For a forbidden transition, S ( 0.  To understand the units, we must consider the process of radiative transfer.

Consider a molecule at some temperature T placed in a beam of light, such as from the direct solar beam.  We measure the amount of radiant energy surrounding the particle in units of spectral irradiance F (W m-2 cm).  Now we place a filter between the light source and the molecule, so that only wavenumbers between  (  + d are transmitted.  The energy absorbed by the molecule per unit time can be measured as a power, P.  Since P ( 0 as d (, we express this as a “spectral” power P/d = P(W cm), which approaches a constant value as d ( 0. A key property of the molecule is the “absorption cross-section, a, = P/F, which has units of m2.  All things being equal, a, is not sensitive to F.a, can be thought of very loosely as the molecule’s “shadow area”.  While it doesn’t depend on F, it does depend on pressure and temperature for two reasons.  1) Pressure and temperature are responsible for line broadening; and 2) temperature is responsible for determining the distribution of electronic, vibrational and rotational states the molecule may occupy.  [Remember, each state is associated with a different set of absorption lines.  For example a warmer molecule has a wider range of rotational states available to it, and this will increase the probability of being in a high J state, and decrease the probability of being in a low J state.]
If we integrate the absorption cross-spectrum across an entire broadened line, we get something called the line strength, which has units of m2 cm-1 if we are in wavenumber space.  That is


[image: image1.wmf]ò

¥

=

0

n

s

n

s

d

S


As it turns out, S is constant per absorption line, irrespective of how broad it is.  That is,
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We also often express the cross-section per unit mass of absorber, to get the “mass absorption coefficient”, k = /ma , where ma is the molecular weight of the absorbing molecule.  k has units of m2 kg‑1.  In the book, S is defined with respect to k.
Transmission through a homogeneous layer
Here we consider what happens when radiation at a specific wavenumber is passing through a layer of atmosphere containing an absorbing gas.  We’ll ignore emission for now.  We consider a “pencil” of spectral radiance having spectral intensity I, passing through a region of space having and absorber of mass density a.  
Each molecule casts a shadow of area .  [This isn’t strictly a correct interpretation, but it works quantitatively, so bear with me…]  For a very thin layer, the shadows don’t overlap.  So the total shadow area by N molecules will be N.  Now if we consider the propagation of a column of radiation of area A through the medium by some distance ds, we will have N = nAds , where n is the number density of absorbing molecules.  The fractional reduction in radiation passed through this layer will be the shadow area, N divided by the area of the column A.  Thus the fractional reduction in radiation,
 dI/I = -nds.
We can express this in terms of the mass density of the absorbers instead of their number density by multiplying n by ma and dividing  by ma to yield:
dI = - Iakds

Now we can consider the absorption of direct sunlight by horizontal atmospheric layer of thickness dz, such as a region of the atmosphere where things are well stratified.  The path the radiation takes through this layer will equal ds = dz/, where  = cosine of the solar zenith angle.  Thus we have

dI = - Iakdz/
We define the quantity akdz = da, which is the absorption optical depth of this layer.  
dI/d= - I
Assuming constant properties with height, we get

I = Ie-/
This is called Beer’s law, and is widely used in remote sensing and atmospheric radiative transfer.    The key property of Beer’s law is that the transmission decreases exponentially as the absorber path increases.  The decay lengthscale is the inverse of the extinction coefficient, (ak)-1 (units m-1).
Note that Beer’s law only works for monochromatic radiation.  We cannot apply it to a spectral region because of the nonlinearity of the exponential function.  That is, if we consider the transmission of a spectral region from  ( 2
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which is NOT the same thing as
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unless ( is constant) or ( << 1 and I is constant).
Solar transmission

If we have multiple absorbers in a given spectral region, we can add their extinction coefficients or optical depths, such that  = (ak(i.  For that matter, we don’t have to only consider gas absorbers.  Scattering and absorption by any species of the atmosphere (gas, aerosol, cloud) each decrease the transmission of a beam.  [Scattering from other directions into a beam and emission by a layer will increase the intensity of a beam, but for now we will only consider cases where this is negligible.]  As a result we generally express the optical depth of the atmosphere in the solar spectrum as
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where the g denotes gas absorption, R denotes gas scattering (i.e. Rayleigh scattering), C denotes cloud extinction (both absorption and scattering), and A denotes aerosol extinction.

The direct solar beam is so concentrated into a small solid angle, that we can treat its transmission through the atmosphere using Beer’s law.  This is tantamount to saying that once light is scattered into another direction, the probability of it being scattered back into the small range of solar incidence angles is negligible.   We call this the “single-scattering” approximation.  We can measure the direct transmission of the solar beam at the surface using a sunphotometer.  The sunphotometer measures the spectral intensity of the sun over a very narrow range of wavelengths (usually 3 – 10 nm) in regions where there is very smooth spectral variation of the atmosphere’s properties.

In the visible part of the solar spectrum there is virtually no gas absorption by the natural atmosphere, except a very small amount O3 < 0.06 by ozone, and a couple of narrow lines of oxygen absorption.  As a result the key factors reducing the solar beam in cloud-free skies are Rayleigh scattering and aerosol extinction.
From Beer’s law, we have
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With a well calibrated sunphotometer, we can use this relation to calculate the solar spectrum from surface measurements by making several measurements at different times of the day, for which  will vary.  Consider N observations during the day, and consider the case where atmospheric properties aren’t changing during the day.  We have
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By plotting ln Ii vs. 1/i, we see that the slope is equal to minus the optical depth, and the y intercept is equal to the log of the intensity of radiation at the top of the atmosphere.  

In fact, even if we don’t know the calibration of our sunphotometer very well, we can still get the optical depth by examining the slope of the estimate what it would report at the TOA using this method – the calculation of optical depth becomes independent of the calibration of the instrument as long as the instrument has a linear response (i.e. Ii = CVi).  In this manner, if we know the solar spectral radiance at the wavelengths of interest, we can calibrate the sunphotometer empirically.  This is called a Langley calibration.

Once we have the optical depth of the total atmosphere at the various wavelengths, we can take knowledge of Rayleigh scattering, and what little gas absorption there is to back out what the aerosol optical depth is.  This is the standard method for getting estimates of aerosol burden through the atmosphere.
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