CHEMICAL KINETICS (S+P Chap. 3)
Here we will discuss the theory and application of rate equations.

Rate equations tell you how fast a given chemical reaction will occur.  As a result you get the rate of change (due to that reaction) of the amount of a given molecule within the parcel of interest.

Example:

NO + O3 ( NO2 + O2
(1)

We can see straight away that the amount of NO and O3 will be depleted by this reaction at the same rate that it produces NO2 and O2.  The rate equations involved are:
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Comment on units and notation:  [X] denotes the concentration of species X.  In gas phase reactions, we usually express this in units of molecules cm-3.  In aqueous solutions, the same notation usually indicates M (moles L-1).  The |1 indicates that we are only considering the effect of reaction (1).  The total rate of change of a gas will be the sum of the source and sink rates due to all chemical reactions involving that gas, as well as any other sources and sinks affecting the parcel under consideration.
By inspection, you see that the units of k1 has to be cm3 molecule-1 s-1.  For this example, k1 = 3x10-12exp(-1500/T) cm3 molecule-1 s-1.  Note that there’s only one rate, and that it’s entirely determined by the reactants –rate of the equation does NOT depend on the product concentrations.  Once the rate is established, you can see what effect it has on depleting the reactants and producing the products.  (We ignore changes in [O2].  It is not a “trace” gas, so reactions like this will have a negligible effect on its concentration in the atmosphere on most timescales of interest.) 
Suppose that Reaction (1) were the only reaction operating on a parcel.  Remember the lifetime of a species can be determined by its amount and removal rate (=Q/R).  We  get these straight from the rate equation via  x= [X] / R1.  For [NO], NO = 1/(k1[O3]).  For [O3], O3 = 1/(k1[NO])  Thus the lifetime of a gas is determined by the concentration of the gas(es) it reacts with (neglecting other sinks).  The example in S+P is for a surface temperature of 298 K, ozone mixing ratio of 50 ppb, and NO mixing ratio of 10 ppb.  The number concentration is calculated from mixing ratio with, ci = [X]n .  Using surface pressure of 1015 mb to calculate n = p/(RT), we get [O3] =  1.3x1012 molecules cm-3 and [NO] = 2.5x1011 molecules cm-3, yielding residence times of 42s for NO and 210s for O3.
Now let’s compute the time rate of change of our products and reactants considering some initial values of [NO]0, [O3]0, [NO2]0, and [O2].  (For [O2], we simply use 0.2n.  Since it only appears on the product side, we’ll not be needing it.)
Then we have:
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Note that we’ve dropped the |1 because we’re asserting that reaction (1) is the only thing going on.  Before we attempt to solve this system of differential equations, first note that NO2 only appears in the third equation, so we’ll just leave this for last.  Next think about what will happen physically.  Both [NO] and [O3] will be depleted at the same rate, so the difference in their concentrations won’t change at all.  Ultimately, one of the two species will run out first, and the other one will then level off at a value equal to that difference.  With this in mind, it’s more clear how to approach the problem.  Suppose we start out with a higher concentration of [O3]0 > [NO]0 (as in the lifetime example above). Subtracting the 1st rate equation from the second rate equation yields the solution [O3] – [NO] = [O3]0 - [NO]0 = c, a constant.  Since we anticipate [NO] will go to zero at large times (there’s no sources in our simple one-reaction case considered here), let’s solve for it first.
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The shortcut solution involves a change of variable to X = 1 + c/[NO], and yields the solution below.  (only for c ≠ 0… for c = 0, the solution is much simpler, yielding a 1/(1+t/)). 
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The qualitative behavior of this solution is the exponential decay of [NO] at large t, and an even faster decay initially in the case that the initial concentrations of the gases are very close (i.e. c << [NO]0).  The details of this solution are not the point – the point is that we have the ability to solve for the concentrations of the gases analytically.
We can also see that this expression is consistent with the lifetime we estimated for [NO] due only to this reaction.  Examining the exponential term that governs the decay at large times, we see that  = 1/(ck1) = {([O3]0 – [NO]0)k1}-1.  This is just saying that at long times, [O3] ( c, and thus  NO = 1/k1[O3].  
Equilibrium Reactions

Now let’s consider what happens when we have a bidirectional reaction.  We will use the acid-base reaction for the dissolution of sulfur dioxide into hydrogen ion and bisulfite, an important first step in the creation of sulfate aerosol, which is responsible for much of the smog experienced in coal-burning regions (e.g. the East Coast, Europe and Asia).
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H2SO3 ( H+ + HSO3-
(1)


H2SO3 (  H+ + HSO3​-
(1f)


H+ + HSO3- ( H2SO3 
(1r)

Note that I have explicitly written out the forward (1f) and reverse (1r) reactions, which each have independent rate coefficients, k1f and k1r.
Let’s assume that both (1f) and (1r) are the only equations exit

we have to worry about.  The forward reaction yields the following reaction rates.
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The reverse reaction yields
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At a pH = 4 (within the range normally experienced by atmospheric particles), k1f = 3.4x106 s-1, and k1r = 2x108 M-1s-1.  When multiple reactions are involved in the source and sink rates of particles, we simply add the contributions of each reaction to the total rate.
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(2a,b)
First, we can see that there is a steady state in the two species’ concentrations when the two rates are equal and the left hand sides of 2a,b are zero.
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Thus at pH = 4 (i.e. [H+] = 10-4), there’s a lot more HSO3- than H2SO3.  To put this in the more familiar Freshman chemistry context looking at the equilibrium constant alone,
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Second, let’s look at the lifetimes of each of these species.  =Q/R.  H2SO3 = 1/k1f = 3x10‑7 s.  HSO3- = 1/[H+]k1f = 5x10-5 s, about 170x longer.  Naturally, the higher concentration species lasts longer.  And if you scratch your head for a bit, you can see why the ratio of the lifetimes is equal to the ratio of the equilibrium concentrations.
Now we want to think about the rate at which we approach equilibrium, giving what we know about the rate equations.  Adding the two rate equations, we see that [H2SO3] + [HSO3​-] = constant =  [H2SO3]0 + [HSO3​-]0 = c.  This just tells us we’re not destroying sulfur, we’re just moving it between two species.  Using this, let’s do the explicit solution for the shorter-lifetime species
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The “lifetime” inferred from this new rate equation for H2SO3 has changed from 1/k1f to the sum of 1/(k1f + [H+]k1r).    So whichever rate is larger (faster) will determine the lifetime of H2SO3 in this equilibrium system. In fact, the lifetimes of the species haven’t changed.  Rather, we’re looking at a new time constant that gives the time to approach equilibrium, which is determined by the faster of the two reactions.  The above equation has a known solution (dx/(1+x) = dln(1+x)).  
Rather than bore you with the derivation (you should do it for yourself) the solution is
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The first term is the equilibrium concentration of 
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.  Like any good equilibrium concentration, it only depends on the rate constants, the other species involved (in this case, pH), and the total amount of [H2SO3] + [HSO3​-] in the system.  The factor in front of the second term looks complicated, but with some algebra and a knowledge of how this reaction must start, you see it’s just the difference between the initial concentration of [H2SO3] and the equilibrium concentration.  No matter whether the forward or the backward reaction is necessary to achieve equilibrium, the system will approach that equilibrium with the faster time constant.

Morals of the story:

· Lifetime of a species doesn’t necessarily equal the time to equilibrium in a coupled system of reactions

· Balanced rate equations for a reversible process yield the equilibrium coefficient Keq
· A nice closed example of how to combine two rate equations to come up with the time dependence of the coupled system.
Collision Theory

The questions we will be answering here are:

  Why is the reaction rate only sensitive to the concentration of the reactants?  Why not the products?  Why does the rate equation take the form that it does?  Where does k come from? 

The first two questions are answered pretty simply if you think about it – why should the reaction rate depend on the products?  Reactions happen when the reactants collide with each other (hence the name collision theory), and transform into the products.  So it’s natural to say that the rate of the reaction should be proportional to the rate of the collisions.

Let’s derive a collision rate conceptually.  First, think of yourself as an NO molecule cruising through mainly empty space.  After some time, dt, you will have travelled a distance vdt, where v is your velocity in the direction you’re going.  Now consider that there is some concentration of ozone molecules out there, [O3].  For now suppose the ozone molecules aren’t moving.  You will collide with an ozone molecule if you get closer than some distance d to it.  You can imagine the two molecules as billiard balls of different radii, r1 and r2.  For this case, the distance d would be r1 + r2.  The closest you will ever get to the ozone molecule will be the point where the vector between your center of mass and its center of mass is perpendicular to your velocity vector.  If that distance is less than d, then a collision will occur.  So with the help of a figure, you can see that a collision will occur if an ozone molecule’s center of mass is within the volume carved out by the cylinder whose cross-sectional area is d2, and whose length is vdt.  So in some time dt, you’ve carved out a “collision volume” dV = d2vdt.  (we have to assume the volume is much longer than wide).  The probability of a collision occurring in time dt is equal to the probability that there’s an ozone molecule in that volume.  Macrospcopically, the number of ozone molecules in a volume is given by [O3]dV.  For [O3]dV << 1, we simply interpret this as the probability, dP, a single ozone molecule will be in the volume.  So to recap, an NO molecule with a “collisional cross-section” of d2 (with respect to ozone) will have a probability dP = [O3]d2vdt of colliding with an ozone molecule of in time dt.  Now let’s consider that there are [NO] NO molecules out there per unit volume.  Since each NO molecule in the volume will have the same collision probability, dP, then the number of collisions per unit volume will be dNC = [NO]dP = [NO][O3]d2vdt, and the rate of collisions, RC, would equal dNC/dt.  In general,
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nA,B are the concentrations (in molecules cm-3) of reactants A and B.  AB is their collisional cross-section, and vAB is their mean relative velocity (we are now allowing the ozone molecules to move about with their Maxwellian velocity distribution.  I won’t go into the proof, but it can be done).  
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Where 
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is the “reduced mass” of the two molecules.
Now, if every collision led to a reaction, then RC would simply be equal to the reaction rate R1.    But this isn’t the case for a number of reasons.  First, there are repulsive intermolecular forces that push the molecules apart as they get close.  This repulsive force can be expressed as an energy barrier of amount Ef.  The Boltzmann factor helps us out by telling us that the probability a collision will have enough energy to break this barrier is exp(-Ef/RT).  But having the energy isn’t enough.  If the “blow” between the molecules is not head on, and if the energy is significant, the repulsive forces can actually deflect the molecules, effectively reducing the collisional cross-section.  Finally, when the molecules do collide, two things have to happen: a) the orientation between them has to be right to get the new transitional bonds to form, and b) the excess energy of bond formation has to be directed to the bonds that need to be broken and not returned to the bonds you just formed – this is not a guarantee, and the more complex of a structure that you’re trying to make, the more rare this will be.  Typically, these factors are accounted for by a modification of Ef and the introduction of a new term, exp(S/R), where S relates the change in entropy involved in getting the molecules to collide just right and then redistribute the energy from the original bonds to the new ones.
After all this it should be OBVIOUS (() that the proper form for RAB and k should be
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where is a collision efficiency due to factors discussed above (that we’ll never use again) and E is related to Ef, but in the end is determined empirically from experiments.
Photochemical Reactions
Photochemical reactions are just like bimolecular reactions discussed above, but they occur due to the collision between a photon and a molecule instead of two molecules.   It’s actually simpler, because the relative velocity between a photon and a molecule is always the speed of light, c, and there are no intermolecular “repulsive” forces to worry about.  The two things we need are the photon concentration, n, and the “absorption cross-section”, which is analogous to the collision cross-section times the collision efficiency terms discussed in bimolecular theory.  Consider the following example:


O3 + h ( O2 + O(1D)
(3)

The analogy from our molecular collision rate would be 


[image: image18.wmf]c

k

k

n

n

R

A

A

A

A

AB

n

n

n

n

s

=

=


We will see later when we discuss radiation, that the photon density is rarely used in radiation.  Instead, we talk about the intensity of radiation, I, which is related to a flux of electromagnetic energy coming from a specific direction per unit solid angle.  But the flux of a quantity is just the density times the velocity, so we have 
n c = ( I d
Where the integral is over all directions the radiation could be coming from.  The quantity on the RHS of the equation is called the “actinic flux” (which is not really a flux at all, but is rather related to the total radiant energy incident on a small sphere).  Subbing this in for n and noting that the speed of light terms cancel, we get
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Implicit in the calculation of jA is that we are including in I all the wavelengths of light that would be involved in the photochemical reaction.  For reaction (3), the photolysis of ozone will be proportional to its concentration times jO3.  jO3 is a property both of ozone and the incident light field, and is usually calculated or estimated using a radiative transfer code or some basic assumptions.  The absorption cross-section, however, is primarily temperature and pressure dependent, and doesn’t depend on the incident radiation field.
Pseudo-Steady-State Approximation
Above, we examined the equilibrium reaction, which is a two-reaction system with a single equilibrium timescale – the difference in rates only determines the equilibrium state, not the time it takes to achieve this state.  A system of three or more equations, however, can involve two timescales.  If one of these timescales is very rapid compared to the other, we can simplify things by assuming the species involved in the faster timescale reaction(s) are in equilibrium amongst themselves.  This greatly simplifies the expression for the time dependence of the whole system on the longer timescale.  

Here’s an analogy.  There is a long tank of water with two partitions dividing it into three sections.  The level of the water is initially different in each section.  Now, one of the partitions has a fairly fast leak in it, and the other partition has fairly slow leak.  What will happen over time, is that the two sections connected by the fast leak will rapidly reach an equilibrium, ending with nearly the same water height.  Then, more slowly, the third section separated by the slow leak will come into equilibrium with the first two.  As the height in the third section increases, the height of the first two will decrease together, remaining in equilibrium with one another due to the fast leak between them.  The pseudo-steady-state approximation does for chemical reactions what we are doing above, in assuming the faster part of the system stays in a relative equilibrium while the rest of the reaction proceeds more slowly.   
A number of examples are given in S+P, but we will stick with the first, more general one:
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A + M ( A* + M
(1a,b)


A* ( B + C
(2)

The rates are:
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This really isn’t much different than the equilibrium reaction, except that the equations sum to a net reaction of A + M ( B + C + M, where as an equilibrium equation sums to zero.  S+P argue that PSSA holds when the source and sinks on the RHS of the second reaction are each very large compared to the rate of change of A*.    Taking this statement at faith, we see that [A*] can be expressed in terms of [A]
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Subbing this back into the rate of change of [A], we get
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Normally PSSA equations occur when there  is a rapid interchange between two species (in this case [A] and [A*]), and a more slow reaction comprising a change from the reactants to the products for the net reaction (A ( B + C).  S+P mentions the idea of a chemical family, when A ( B and B ( C, for a net reaction of A ( C.  In this case, there is a PSSA equilibrium between A and B, and C is the end product.  When B is not just an excited state of A, but is its own molecular species, then A and B are often called a “chemical family”.

In the next week, we will use the concepts reviewed today to discuss a range of key atmospheric chemical phenomena.

Problems:  Do S+P Chap 3, 2,4,6,8.
OPTIONAL Supplement:
In giving their example for PSSA, S+P implicitly assumed a separation of scales, and did so by asserting that d[A*]/dt = 0. However, it’s unclear what assumptions about k1f, k1r, and k2 are necessary to justify this assertion.

Here’s a formal development of PSSA that answers this question explicitly.
The system of equations:
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can be written in vector-matrix form as
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Where A is the vector [[A] [A*]] and C is a 2x2 matrix containing the coefficients,
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Further, if we assume that the solutions for [A] and [A*] will have form 

[A] = [A]0exp(-t)

we get
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(1)
This is a classical eigenvalue/eigenvector problem. There are usually two solutions, each with a unique vector Ai (direction only, length is arbitrary) and rate i. For this application, you think of Ai as describing some fixed proportion of [A] to [A*], and i as the rate at which [A] and [A*] will decrease, but only in that exact proportion.  So if, at time t, the concentrations form a vector A = [[A], [A*]], and A is parallel to A1, (i.e., [A]/[A*] = [A]i/[A*]i) then both concentrations will decay at the rate 1.  On the other hand, if the two concentrations are parallel to A2, then they will decay at the 2nd rate 2.  As long as 1 and 2 are different, the A1 and A2 will not be parallel.  If A1 and A2 are not parallel, then ANY initial set of concentrations, A0, can be expressed as a linear combination of A1 and A2.  This just means that if you start with concentrations of [A]0 and [A*]0, you will express this instead as [A]0 = c1[A]1 + c2[A]2, and  [A*]0 = c1 [A*]1 + c2 [A*]2.  (See figure below).  You have to solve for c1, c2. based on the initial conditions and the values of the eigenvectors.  And the final solution will be A = c1A1 exp(-1t) + c2 A2 exp(-1t).  For species A, we have  [A] = c1[A]1exp(-1t) + c2[A]2exp(-2t).  
Suppose 1 >> 2 .  Then the component parallel to A1 will decay very rapidly, leaving only that part of A0 which is parallel to A2 to decay at the slower rate.  At the time where the rapidly varying part has decayed away, but the slower part has not, we know that the entire vector A(t) will be parallel to A2, and thus the ratio of concentrations of [A] to [A*] will be determined by A2.  This is the regime where PSSA kicks in.  PSSA basically assumes that the more rapid reaction has already occurred, and then tells you the rate of the slower reaction, given that the concentrations of [A] and [A*] are in fixed proportions.

If we solve the system above, we get the eigenvalues.  
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.

By inspection and some algebra, you can convince yourself that, as long as the rate coefficients are positive, then both eigenvalues are also positive.  PSSA applies only when the timescales of the two eigenvalues are well separated (i.e. + >> -).  This occurs when the ratio in the square-root is << 1.  The factor out front is the sum of all the reaction rates for the three original reactions. The ratio in the square root is the fraction of this total reaction rate due to reaction (1f) times the fraction that is due to reaction (2).  So this will be small whenever either (1f) or (2) are slower than the sum of the three reaction rates.  
Enforcing that this ratio is, indeed, small, we can linearize the square-root term and end up with:
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where we have already enforced that - << +.

You can see that the fast rate,+, basically goes like the sum of all the rates involved in the three original reactions.  (Remember that in the equilibrium case investigated for dissociation of H2SO3, we also had a relaxation to equilibrium by a rate that was the sum of the rates of the forward and backward reactions.)  You can also see that the slower rate, -, proceeds even slower than the smaller of k1f[M] or k2.
Now we need to know what the eigenvectors are, so we can translate this into the time-behavior of [A] and [A*].  We do this by solving the eigenvalue/eigenvector equation (1) above using the eigenvalues we just determined…
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(2a,b,c)
The first eigenvector associated with the more rapid rate shows an increase in [A] for a somewhat larger decrease in [A*].  Since it increases the concentration of one at the expense of the other, we interpret this as a rapid approach to an equilibrium ratio between the two.  The second eigenvector shows [A] and [A*] changing with the same sign, and not in equal proportions.  Thus, when [A] and [A*] exist in the same proportions as in A-, they will slowly deplete towards zero as the net reaction A ( A* ( B + C proceeds. When [A] and [A*] do not exists in the same proportions as in A-, then the more rapid reaction will alter the concentrations of [A] and [A*] until they do exist in the proper proportions. At this point [A] and [A*] will both deplete towards zero at the slower rate, reflecting the steady progress of the net reaction A ( A* ( B + C.

The application of this is best done graphically

[image: image31]
Now let’s use this detailed analysis to see what S+P did for PSSA.  They implicitly assumed a separation of scales, and did so by asserting that d[A*]/dt = 0.  This yields slightly different results than our detailed calculation above.  We see by an analysis of the differences between our estimates of 2 and [A]2/[A*]2 vs S+P’s (3.14) and (3.15), that S+P must assume that k1f[M] << k1r[M] + k2.  In this case, we get the same answer as S+P.  (Optional Problem: Show this).  We can also get a PSSA if k2 is the slow reaction, although this solution will not be substantially different than in S+P.  One key advantage of PSSA over what we’ve done above is that it can handle non-linearities (i.e. if [A] reacts with [A*]), as in the Chapman mechanism.
A*
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A1


Fast reaction parallels this line





A2


Slow reaction parallels this line





A0 gets projected onto A1 and A2.








_1294811036.unknown

_1294833606.unknown

_1295076154.unknown

_1295168504.unknown

_1295175048.unknown

_1295177435.unknown

_1295177442.unknown

_1295174638.unknown

_1295167942.unknown

_1294838635.unknown

_1295075891.unknown

_1294838811.unknown

_1295072983.unknown

_1294838440.unknown

_1294838099.unknown

_1294815999.unknown

_1294816010.unknown

_1294812823.unknown

_1294815988.unknown

_1294813500.unknown

_1294812122.unknown

_1294741835.unknown

_1294810501.unknown

_1294810996.unknown

_1294658223.unknown

_1294722121.unknown

_1294723185.unknown

_1294656879.unknown

