Recap from Lecture 3:

Universal form of ideal gas law: p = nRT
Vertical Strucure of atmosphere

· Pressure decreases monotonically w/ height, and can be used as alternate vertical coordinate system

· Local peaks in temperature are set-up by where solar radiation is absorbed by O2, O3, and surface.  Layers of atmosphere (troposphere, stratosphere, mesosphere, thermosphere) are determined by sign of lapse rate (+,-,+,-; respectively)

· 90% of mass in troposphere – lapse rate positive because of greenhouse effect

· We have a greenhouse effect (surface warmer than atmosphere) because of selective absorption in the atmosphere – sunlight passes through atmosphere, but infrared cannot.  Composition of atmosphere determines this.

· Rate of decrease of temperature in troposphere largely affected by the expansion of rising air, causing it to do work and cool.

· Sources and sinks of variable gases determine their vertical profile.  Vertical profile of fairly long-lived gases (permanent gases + CO2) is constant up to about 80 km (homosphere) because the atmosphere is well mixed on these timescales.  Above this (heterosphere) molecular weight and chemistry can affect vertical profiles.

We now focus our attention on the troposphere, and explore why we have a decrease in temperature with height.

Basic Thermodynamics
At the end of Friday’s lecture, we sought out to explain why the change in temperature was linear.  I’ll continue on this line, only to refresh you memory on basic applications of thermodynamics in the atmosphere, and to introduce the “parcel of air” concept.  Then we will go much more in depth into thermodynamics and revisit the equations first introduced here.
The change in internal energy a parcel convectively rises some distance dz (or dp if we’re using a pressure coordinate system) is given by
dE = -dW + dQ

Where dQ is the heat crossing into the parcel from outside, and dW is work done by the parcel on the environment. 
dW = pdV,
where V is the volume of the parcel.
cVmdT = -pdV

where we’ve set dQ = 0 because of our adiabatic assumption

Here, we can invoke the ideal gas law again (in the form pV = mRT), and say that

d(pV) = d(mRT)

 pdV + Vdp = mRdT
This simply states that, for consistency with the ideal gas law, that if temperature changes, there must be some change in either the volume or the pressure (or some combination of the two).  Now we sub in the energy conservation equation from above, and end up with
mRdT + mcVdT = Vdp

dT = dp/cp
So if a parcel is adiabatic and experiences a change in pressure, the change in temperature will be proportionate to the change in pressure divided by the density.  Here, we can go in one of two directions.  To explain the linearity of temperature change with height, we’ll invoke the hydrostatic relation from above dp = -gdz to yield
dT = - g/cp dz 

= -D dz
Where D is called the dry adiabatic lapse rate, and is just about 9.8 K/km.  The fact that the troposphere shows a lapse rate less than this just highlights the importance of the addition of heat to the atmosphere by cloud condensation, which we’ll get into much later.  This was just to illustrate why we expect temperature to change linearly with height, to first order.  Convince yourself that this equation also means that the change in energy of the parcel (using heat capacity at constant pressure) is equivalent to the change in gravitational potential energy of the parcel, assuming adiabaticity and hydrostatic conditions. 

If we use pressure as our vertical coordinate system instead of temperature, we analyze the previous line of thinking using the ideal gas law instead of the hydrostatic equation 
dT =RT dp/pcp
which yields

dT/T =R/cp  dp/p
aka

dlnT =R/cp  dlnp
Integrating between two pressure levels yields
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for adiabatic parcels.  If you sub-in the constant dry adiabatic lapse rate to find T2 as a function of z, you will see that the resulting function p2(z) does not look like the hypsometric equation, which assumed constant temperature with height.  Thus an “isothermal” atmosphere, which leads to the hypsometric equation, is not an “adiabatic” profile, which leads to the following
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What equations would you use to determine what the pressure profile is for an atmospheric profile with known (but not necessarily adiabatic) lapse rate? 
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