Kinetic Theory of Gases
Up to this point, we have pretty much covered all the aspects of dry air thermodynamics:  The ideal gas law, the effects of increasing moisture on molecular weight, gravity, hydrostatics, heat content, and adiabatic processes.  Now it’s time to go back through this from a more fundamental viewpoint so you can see where a lot of this comes from. 

Thermodynamics is a somewhat intimidating word, but it actually represents a fantastic set of very simple relationships among temperature, pressure, humidity and other fundamental properties of air related to the energy in air.  The most basic thermodynamics properties of air are:

T – Temperature (measured in K, °C or °F)

p – Pressure (measured in hPa, atm, mbars, psi, or mm Hg)

q – “specific” Humidity (measured in (g H2O(g))/(g air).   (Other measures of humidity include relative humidity, and dewpoint temperature, among others which will be defined later.)

If you throw in the velocity of the air u, and its position, x, you have as complete a description of a “parcel” of air as we need (until we get to chemistry, aerosols, and radiation).  [Note that in my notes I will use bold variables to indicate vectors, and italicized variables for scalars.  I will rely upon Dr. Mullen to review what vectors and their properties are.]  A parcel is any finite, contiguous volume of the atmosphere where these properties are relatively constant throughout the volume.

Sidebar:  Parcels and the continuous fluid approximation: T, p, and q represent a “thermodynamic” description of air’s properties.  Of course we know that a cubic centimeter of sea-level air really consists of trillions of trillions of molecules, and ultimately it is the aggregate characteristics of these molecules that determine the thermodynamic properties of the air.  Making this link between the microscopic and the macroscopic will be one of the goals of this part of the course, since these links prove very useful in providing you with a firm foundation in thermodynamics.

We most often treat a parcel of air as being a continuous fluid. This breaks down when we get too small, because the molecular behavior of the fluid begins to appear at small sizes.  In fact, intermolecular spacings are typically measured in nm (1 nm = 10-9 m), and the average distance a molecule travels before hitting another molecule is typically 10s to 100s of nm.  These are sub-microscopic scales, meaning that they are too small to be probed by a microscope.  The ultimate limit on a microscope’s focusing power is the limitation that light is simply a wave, and that waves can’t communicate information on scales smaller than their wavelengths.  The wavelengths of visible light range from 400 nm – 700 nm, and so this really constitutes a firm lower bound on our ability to probe the atmosphere with a microscope.  Conveniently this is also the scale at which the atmosphere begins to behave like a continuous fluid, and so we consider about 1000 nm (another unit convenient here is the micrometer 1 m = 1000 nm = 10-6 m) as the lower limit in size where we can treat a parcel as continuous.  Depending on the problem at hand, we will be invoking the “parcel” concept for elements of air that range in size from 1 m up to 100s of m.  At scales larger than 1 km, there are very few cases where we can think of the air as having uniform thermodynamic properties.
Over the next several lectures, we’ll discuss in depth each of the thermodynamic properties (T, p, q), their interrelationships and how they relate to the various forms of energy.  Being a 400/500 level course, we are going to be quite thorough with our description of each of these atmospheric properties, and explore their connections physically and environmentally.  The background reading for these lectures should be any thermodynamics you had in chemistry and/or physics, any basic statistics and differential calculus you may have had, and if you’re lucky enough to have had it, statistical mechanics (a.k.a. physical chemistry).

Temperature, Heat, and Internal Energy
What is temperature?  What is heat?  What is internal energy?  Thermal energy? You may know these are related but they are definitely not the same thing.  
Let’s consider a parcel with a mass of dry air of md.  We characterize it by several thermodynamic variables, p, T, mv (water vapor mass), and V, among others which can mostly be derived from these.

The internal energy of a parcel, U, is the energy that is available to flow out as heat.  This is different than the kinetic energy of the parcel’s center of mass (1/2 mu2) or the gravitational potential (~mgz), since these do not flow to neighboring parcels as heat.  There are two main types of internal energy that we consider.  Thermal energy, E, is the kinetic energy of all the random motions of the molecules (random means motions relative to the center of mass).  When this diffuses to cooler nearby parcels, this is a flow of sensible heat.  Latent heat, Lcmv, is the energy that might be converted to thermal energy if the vapor were to condense. If water vapor diffuses to drier neighboring parcels, this is called latent heat transfer.  Thus U = E + Lcmv.
So how is temperature related to heat? You may already think of temperature with following equation you learned in high school chemistry

dQ = Cv dT

where dQ is the amount of sensible heat (in Joules) added to an object, and dT is the resultant increase in the object’s temperature (in Kelvin).  The factor Cv is called the heat capacity of the object (J/K), and it depends on the properties of that object, including its temperature.   The subscript v denotes that the heat is added at constant volume.  This is specified so that the parcel doesn’t have to expend any energy in the process of expanding.
Just because energy is related to temperature does not mean that they measure the same thing.  The distinction between energy and temperature is quite important.  Since different objects have different heat capacities, objects with different amounts of heat can have the same temperature and vice versa.

Example 1:  One parcel of air has 1 kg of mass and is at 288 K.  Another parcel has 2 kg of mass and is at 288K.  The second parcel has twice the mass, twice the heat capacity, and twice the internal energy, even though they are at the same temperature.

This is an illustration of the fact that heat and internal energy are extrinsic properties, and temperature is an intrinsic property.  

Remember:  
Extrinsic properties depend on the amount of substance.
 
Intrinsic properties do not depend on the amount of substance, but rather constitutes an average over the substance.  Intrinsic properties can always be expressed as the ratio of two extrinsic properties.
This is really just a footnote to the discussion of energy-temperature differences, since all we have to do is divide internal energy, E, by the mass of the object, m, and we end up with an intrinsic property,  = U/m, that we call “specific” thermal energy.  In this case we have specific heat capacity (often called specific heat), c = C/m, doing the job of relating specific internal energy to temperature.

 = c T
Even thought they are both intrinsic properties, there are more fundamental differences between  and T.

Example 2:  One parcel of air has 1 kg of mass and is at 288 K.  A liter of water also has 1 kg of mass and is at 288 K.  The air has a heat capacity of 1.01 kJ/K, whereas the water has a heat capacity of 4.184 kJ/K.  Thus the water has more internal energy, even though the two objects have the same mass and temperature.

Example 3:  One parcel of air has 1 kg of mass and is at 288 K.  A liter of water also has 1 kg of mass and is at 288 K.  Exactly 1.01 kJ is added to each object.  The air increases in temperature by 1 K, whereas the water only heats up by about 0.24 K.  Even though the same amount of heat is added to each, the air will be “hotter”.

The more fundamental concept that distinguishes temperature from thermal energy is that temperature describes the direction of heat flow between two objects.   Specifically, objects with higher temperature tend to lose thermal energy to objects of lower temperature. This is one specific consequence of the second law of thermodynamics.  

Example 4:  Consider the heated air and water from example 3.  Now the water is placed in contact with the parcel of air.  Since the air is now 0.76 K warmer than the water, heat will flow from the air to the water until both objects reach the same temperature (somewhere around 288.4 K).  After they are in equilibrium again, ~60% of the heat initially added to the air will have transferred to the water, so that the water now harbors ~80% of the heat initially added to the two systems.

Zeroth Law of Thermodynamics:  Another way of thinking about this is that temperature is a measure of the equilibrium thermal state of an object.  Two objects are in thermal equilibrium if they have the same temperature.  [Note: That there is only one factor that determines the direction of heat flow (i.e. temperature) is the basis for what is called the “zeroth” law of thermodynamics: If two objects are in equilibrium, and a third object is in equilibrium with the first, then the third object must also be in equilibrium with the second.]

First Law of Thermodynamics:  So now that we have reminded ourselves of some basic thermodynamic concepts, we’ll dive more specifically into what heat, temperature, and internal energy are.  First, you’ll just have to swallow the first law of thermodynamics, which states that there is a certain, measurable amount of energy in any system, and that this amount is a constant unless it actually is transported into or out of the system.  Energy is neither created nor destroyed.  Second, there are several forms that this energy can take, and that thermal energy is only one of those forms.  Energy within a system can move among its various forms.   Third, when you let two systems interact with each other, they may exchange energy.   One way in which they exchange energy is heat transfer.  For example, thermal energy will flow from the higher temperature system to the lower temperature system.  When thermal energy flows in this manner it is called “heat transfer”.  In fact this is the key definition of heat, and it is what distinguishes the concept of internal energy from that of heat.  Once it gets there, it is no longer thought of as heat, but is rather just part of the internal energy of the object.  Heat is only heat when it is associated with the transfer process.  Another way in which the two systems may exchange energy is through “work”.  Work accounts for any mechanical interaction, in which one of the objects pushes on the other in some way.  Work is not considered heat transfer, even though it involves changes in the internal energies of the systems.  We’ll dive into the specific formulations of work later, when we discuss pressure.  For now just think of it as a reversible mechanical transfer of energy.  

The first law of thermodynamics can then be expressed in terms of the conservation of the internal energy of a system dU, which will be changed if an amount of heat dQ flows into it, or if it does an amount of mechanical work, dW, on it’s environment:

dU = dQ - dW

Example 5:  I take a cold bottle of Budweiser out of the fridge and leave it out on the counter for several hours.  Heat flows from the surroundings into the bottle, such that dU = dQ, and the beer warms up.  That’s an example of pure heat transfer.  Then I crack open the beer.  The highly pressurized CO2 gas rushes out of the neck of the bottle, pushing the surrounding air out of the way.  This is an example of pure work.  By having to push the air out of the way (and accelerate itself from a rest), the air in the neck is doing work on the surroundings and cools down quite significantly, forming a mist in the neck.  

More concrete examples of heat, energy, and work in the atmosphere will follow after we’ve discussed pressure, but we have more to discuss while we’re still on the topic of temperature.

Measuring Temperature.

A thermometer works by letting it come into equilibrium with some other system at temperature T.  You design the thermometer so it physically shows what temperature (i.e. equilibrium state) it is coming to rest at.  Note that you are measuring the equilibrium state of the system, and NOT its internal energy.  Internal energy is much more difficult to ascertain than temperature, because you would need to 1) know the temperature and the heat capacity of the object, or 2) be able to bleed all the energy out and quantify how much you get – like juicing the lemon to find out how much it’s got.  So, as a result of the 2nd law of thermodynamics, temperature is measured much more readily than internal energy.  

Two types of thermometers are discussed here, the traditional bulb thermometer, and the thermistor.

Example 1:  Most liquids have a specific volume (the volume taken up per unit mass of a substance) that depends on temperature.  Mercury is one.  So if you allow a known mass of mercury to come into equilibrium with a system at temperature T, and then can measure the volume of that mass, you can infer the temperature.  The actual change in specific volume over a few degrees is quite small.  Thermometers are designed so that most of the mercury sits in a large bulb at the bottom of the thermometer, and then only the “tip of the iceberg” extends up the narrow channel in the shaft of the thermometer.  As the mercury in the bulb expands, it forces the excess volume up the shaft which is then measured.  (The expansion of the amount in the shaft itself is actually negligible – the Hg in the bulb does the heavy lifting here).  Salt water also has an increase in volume with temperature.  The majority of the Earth’s deep oceans (below about 1 km) have temperatures between at 1-4 °C.  Since the oceans average 5 km deep, even a small increase in temperature can result in a large sea-level rise.  The fact that sea level only rises by about 1 mm per year means the ocean expansion is less than 0.2 x 10-6/year, some of which is probably due to glacial melting and not thermal expansion.  That is a great testament to the stability of the deep ocean’s temperature. 

Example 2:  Thermistor:  The most common way to measure temperature in lab applications today is via the thermistor.  Platinum (and other metals) have a resistance that is sensitive to temperature.  By taking a platinum resistor and measuring its resistance (perhaps using a Wheatstone Bridge), one can infer the temperature.  

A Kinetic Interpretation of Temperature

Here is where I will introduce you to a field of statistical mechanics called “The Kinetic Theory of Gases”.  Note that everything we’ve discussed so far about temperature was discovered before it was proven that air, water, and other substances are made of molecules.  However, Boltzmann and others working near the turn of the 20th century used advanced statistical theories to determine that the laws of thermodynamics can be derived when we assume that air is, indeed, made of tiny molecules that bounce around elastically.  

Let’s consider a parcel of air, and examine it molecularly.

Without resorting to thermodynamic concepts, like temperature, pressure and the like, let’s figure out what the properties of the molecules in this box are.  First of all, we have the volume V, and the number of molecules, N.  Note that both of these measures are extrinsic variables – put two like boxes together, and you double both the volume and the number.  We define the intrinsic property “number density” as being c = N/V, which simply describes the concentration of molecules.  

Each molecule has some relevant properties that we need to know.  For our applications, we don’t think of the atoms as carrying internal energy in the form of heat.  (Molecules do have internal energy, for example in the electrons, but for the most part, this energy is fixed so we can ignore this until we get to chemistry and radiation).  You can instead think of atoms as just being hard spheres of mass m and some very small diameter, d [effectively on the order of 1 Å (= 10-10 m)], that bounce elastically off eachother.  For a monotomic gas (one atom per molecule) that’s exactly how we think of them, and each molecule has only one important changeable property – its velocity, v.    So everything in our gas (temperature, pressure, velocity, etc) is going to be related to the velocity, mass, and size of the individual molecules that make up the gas.

Comments on vector notation.  Note that v is a vector, meaning it has 3 components to it, vx, vy, and vz, which represent the speeds along the x, y, and z axes of our chosen reference system.  In the atmosphere, it is customary to choose z as being up, x as being to the East, and y as being to the North, but this is not a strict convention, and when we deal with microscale processes, we don’t even need to think about an absolute reference frame.  We can write out vector notation as follows:  v = vxi + vyj + vzk, where i, j, and k, are called “unit vectors” that, when multiplied by a scalar, yield a vector of that scalar’s length pointing along their respective x, y, and z axes.

Now, if our molecules are diatomic, there is an additional piece of information we need – the rotation of the two molecules about their center of mass.  Since the distance between the molecules is fixed by their chemical bond, there are only two rotational directions they can go, much as a boat on the surface of the ocean can only have two directions it can go (as opposed to the airplane above it, whose velocity vector is 3-dimensional).  [Furthermore, if we consider that the bond can be thought of as a spring, and that the two molecules may vibrate back and forth along this spring, there’s an additional motion to keep track of.  Fortunately, these vibrational motions are too energetic to occur at atmospheric temperatures, so we don’t have to worry about them until we get to radiation.]

Let’s start with a monotomic gas for simplicity’s sake and discuss what average properties our parcel has based on the individual velocities of the moelecules.  Given that each molecule in our monotomic gas is characterized by mi, di, and vi, let’s compute some relevant average properties of our air.  First, we want to know the mass of our air.  The total mass of air in our box = N m = V n m. Like N and V, mass is an extrinsic property.  We often are more interested in the intrinsic properties; the intrinsic property for mass is usually density, , (kg m-3).   is given by M/V = n m. Next, we want to know the fluid motion of the box – the fluid velocity, u.   This is where it gets a little tricky if our molecules don’t all have the same mass.  Usually, the mean fluid motion (an intrinsic property) is defined as the total momentum P divided by the mass M.  The momentum of an individual molecule is just p = mv.  The total momentum is then P = N <p>, where <p> is the average momentum of all the molecules.  So u = <mv>/<m>.  Since for our first example, all our molecules have the same mass, then u = <v>.  This makes sense.  The average velocity of all the molecules is what makes up the total fluid velocity.

We also know from physics that kinetic energy is defined as ½ mv2 [remember that v2 = v dot v = (vx2 + vy2 + vz2)].  So the total kinetic energy of our box is ½ m<v2> = ½ mu2, right?  Wrong!  Suppose that u is zero.  This just means there is no mean fluid motion (no wind or gusts).  The individual molecules, which bounce around randomly, would still be moving and have kinetic energy.  In fact, the kinetic energy of each molecule is ½ mv2, so the total kinetic energy of all molecules is ½<mv2>.  You can easily convince yourself that <v2> and <v>2 are not the same thing.  [If this isn’t obvious, consider a molecule moving to the right at speed v, another moving to the left at speed v.  <v> = (1 – (-1))/2 = 0.  Thus <v>2 = 0.  On the other hand <v2> = (12 + (-1)2)/2 = 2/2 = 1].  In fact, you can show that <v2> is always greater than <v>2.  How?

Let’s define a new velocity variable, v’ = v – u.  This is called the residual velocity, and has the unique property that <v’> = 0.  We do this so we can write: v = v’ + u.  <v2> can then be computed as <v’2> + 2<v’>u + u2.  Since <v’> = 0 by definition, then <v2> = u2 + <v’2>.

Applying this concept to the total energy in the box, we have K = N ½ mu2 + N ½ m<v’2>.  In terms of total mass, we have

K = ½ Mu2 + ½ M<v’2>

Now let’s go back to the laboratory.  We can measure the first term, because the mean fluid velocity is macroscopic.  We can’t measure the second term, but it is still important, as it is a reservoir for a lot of kinetic energy.  The first term is called the kinetic energy of the fluid motion, and the second term is called the “thermal energy”, which is simply the “residual” kinetic energy that is not associated with the mean fluid motion.  So the basic concept for thermal energy (and temperature) is that these are just the result of random (average = 0) molecular motions within the substance.

But now we still don’t have a molecular interpretation of temperature – only internal energy.  And I hope I’ve hammered in the point enough that there is a fundamental difference between the two.  To understand temperature, we need to get a bit deeper into statistical mechanics.

Equipartition of Energy

To understand the difference between internal energy and temperature, let’s look at our formulation for internal energy.

E = ½ M <v’2>  = ½ M <vx’2 + vy’2 +vz’2>

The Equipartition theorem states that <vx’2 >=< vy’2 >=<vz’2>.  That is, that since the molecules don’t care which way they are going, they are equally liable to distribute their energy equally among the three possible directions.
Now let’s switch to the diatomic molecules and consider what will happen if we allow two additional motions of rotation (we’re going to keep m and n the same, so this essentially involves splitting each atom into two, which is a little artificial… but bear with me).  Call these velocities <r<rwhere r is just a modified measure of the distance of the atoms from the molecule’s center of mass, and  is the angular velocity vector (2-dimensional, as discussed above).  Now we have

E = ½ M <vx’2 + vy’2 +vz’2 + r + r>.

And equipartition yields

<vx’2> = <vy’2> = <vz’2> = <r> = <r>

Here’s the main point…. If you have the same amount of thermal energy E, but MORE ways of distributing that energy among types of motion, you will actually decrease the rms speed in any given type of motion.  

So why do we care?

Energy is transferred when molecules collide.  When molecules collide, they interact normal to their plane of collision.  This is a one-dimensional interaction, and does not include all 3 or 5 at the same time. So let’s consider mixing our monotomic and diatomic gases with the same internal energy but different <vx’2> values.  After each collision, it is more likely that the higher vx’ gas (the monotomic one) will transfer some of its energy to the lower vx’ gas (the diatomic one).  So there will be a net transfer of energy from the monotomic gas to the diatomic gas, and in the end the diatomic gas will get warmer and the monotomic gas will get cooler.  This should be reminiscent of Examples 3 and 4 above, where, even though the water and air received similar changes in internal energy, they were not in equilibrium with eachother.

Before getting to the punchline I’d like to summarize:

1) A monotomic gas has 3 “degrees of freedom” for each molecule and a diatomic gas has 5 “degrees of freedom” for each molecule

2) Each “degree of freedom” in a substance receives an equal share of the internal energy.

3) When two gases interact, they exchange energy among individual degrees of freedom – they don’t see whether the gas has 3 or 5, they only see one at a time.

4) Thus, heat will flow from a gas with higher energy per degree of freedom to one with a lower energy per degree of freedom.
Here’s the punchline – since temperature is defined based on the direction that heat will flow, and because energy flows from higher energy per degree of freedom to lower energy per degree of freedom, we can now say that temperature is a direct measure of energy per degree of freedom.  In fact, this is an alternate (statistical mechanics) definition of temperature – a measure of the average energy per degree of freedom for a substance.   Since temperature is measured in K, and energy is measured in J, we need some conversion constant – call it k/2.  (The factor of 2 is in there so we can directly refer to k, which is called “Boltzmann’s constant”) We can now express the thermal energy of a molecule, , per degree of freedom, F, in terms of temperature.

/F = k/2 T
So lets use our “new” kinetic definition of temperature, and relate this to the bulk thermodynamic constants we discussed at the beginning of this section.

E = C T

E = N,

Therefore,

C = k NF/2. 

Remember that k is a constant used only to convert units of K to J.  Think about what this means.  The only reason two different substances will have different heat capacities is because they have different numbers of degrees of freedom of motion.

[So what is a degree of freedom again?  It is the number of places in a system that can hold energy.  We saw a monotomic molecule has 3 degrees of freedom, and a diatomic molecule has 5.  Two molecules together will have twice the number of degrees of freedom.  So the TOTAL number of degrees of freedom for a substance is the number of molecules, N, times the number of degrees of freedom per molecule, F.  We have to be careful to distinguish whether we’re talking about F or NF in these discussions.  If you’re not sure, go back and reread the section with this distinction in mind.]

Example 1:  What is the ideal heat capacity of nitrogen gas vs. that of oxygen gas?  C = k NF/2.  F = 5 since N2 and O2 are diatomic.   C = 5/2 Nk.  In terms of specific heat, we have c = C/M = 5/2 Nk/Nm = 5/2 k/m.  So the higher heat capacity of N2 is only due to its smaller mass (28 g/mol vs. O2’s 32 g/mol).  Note that the heat capacity per molecule is simply 5/2 k.  In these terms, the heat capacity of N2 and O2 are the same on a molecule/molecule basis.  Since the gas law V = NkT/p tells us that volume is proportionate to number, not mass, we see that the heat capacity per unit volume is insensitive to the relative partitioning of N2 and O2.

To get down even closer to the nitty gritty, let’s ask our theory what the root mean square velocity is for molecules in a gas at temperature T.  First, we’ll take our definition of temperature and see that in any given direction (x, y, or z) we have

½ m<vx2> = ½ kT

Or

<vx2> = kT/m

Where m is the mass of a molecule.  But the rms velocity of a molecule in an arbitrary direction (not just x) is defined relative to all three directions <v2> = <vx2 + vy2 + vz2>.  Equipartition gives us <v2> = 3<vx2>, and thus

vrms = sqrt(3kT/m)

If you plug in values for atmospheric conditions, you’ll find you get numbers that fall in the ballpark of the speed of sound in air.  This is not a coincidence, and we’ll dive into this further in acoustics.

Problem/Example 2:  Calculate the rms velocities of air’s main 3 consitutents: N2, O2, and Ar at 288 K.  Note that at the same temperature, their different masses cause them to have different velocities.

So far we’ve only scratched the surface of the kinetic theory of gases and Boltzmann’s pioneering work in statistical mechanics.  But to dive deeper, we need to first understand the concept of atmospheric pressure, which we will approach shortly.  

Temperature in Earth’s atmosphere

This is an atmospheric science course, not just gas physics, right?  At this point, we’re going to discuss temperatures in Earth’s atmosphere to give you a feel for its variation in space and time.  

FIGURES OF ANNUAL AVG TEMP

VERTICAL PROFILES OF TEMP
The greatest variation in temperature occurs vertically.  The warmest spots on earth (annually averaged) are in Tropical desert regions, due to the large amount of sunlight received there, and the lack of the moderating influence of water on surface temperature.  A spot in Ethiopia currently holds the highest annual average at 94 °F (35°C).  The warmest open oceanic temperatures occur in what is called the “warm pool” region of the tropical Pacific (near Indonesia), at about 30°C.  Surprisingly, if you rise 18 km above that spot, you land yourself in the coldest region in Earth’s atmosphere, at about -100°C (again, annually averaged).  We will learn later exactly why the coldest spot overlies the warmest.  

The region of Earth’s atmosphere where temperature decreases steadily with height is called the Troposphere.  The rate of decrease with height (- dT/dz) is called the lapse rate, .  The actual lapse rate varies from about 5 K/km in the tropics to around 9 K/km in very stable regions.  The global average is about 6.5 K/km.  

You may not have learned in introductory courses that the reason the troposphere exists is due to the greenhouse effect.   Most of the sunlight received by Earth is absorbed by the surface.   The atmosphere is what releases that energy to space through infrared terrestrial radiation.  The energy absorbed by the surface must be transferred to the atmosphere before it can be reemitted to space.  Since the surface is not going to do work on the atmosphere (the surface is not moving, or stirring up the atmosphere mechanically), there must be a heat transfer process involved.  We just learned from the 2nd law of thermodynamics that heat can only flow from hot to cold.  So the surface must be hotter than the atmosphere.  The mechanism is that the surface simply accumulates solar energy until it is hot enough so that the heat then flows thermodynamically to the atmosphere, (and the atmosphere then returns this energy to space).  The heat transfer from the surface to the atmosphere occurs in a number of forms:  radiative, evaporative, and sensible (conductive), each of which does the job more or less efficiently in different places on earth.

Not all solar radiation passes through the atmosphere to the surface.  In fact, most of the solar radiation at wavelengths less than about 0.35 m (ultraviolet) is absorbed high in the atmosphere through “photochemical” reactions.  (These are simply chemical reactions that get energy by absorbing light, usually in the ultraviolet part of the spectrum).  Above some height in the atmosphere called the tropopause (18 km in the tropics, lower as you progress towards the poles) the vertical temperature profile is controlled by this absorption of ultra-violet light.  There are different layers above the troposphere that are created by different photochemical reactions.  

Just above the tropopause is the stratosphere, where ozone (O3) is formed from oxygen that has reacted with light having wavelengths below 250 nm.  Absorption of UV light by ozone and oxygen heats the stratosphere.  The reason that temperature gradually increases with height is because the ultraviolet light that provides energy for these reactions is slowly depleted as it passes down through the stratosphere, so that the lower layers have less light to absorb.  In fact, the ozone that is found below about 25 km was mainly produced at much higher altitudes, and got to the lower stratosphere by the slow stratospheric transport.  Above the stratopause, which occurs at about 50 km, the atmosphere starts cooling with height again in a region called the mesosphere.  Why would it start cooling again, now that you are getting up to an altitude where the ultraviolet light is most intense (least depleted)?   You probably know that air gets thinner (less dense) as you get higher.  The process for production of ozone becomes less efficient at such low air densities, because it requires a “3-body reaction”, where three molecules have to collide with one another within a very short time span.  Above 50 km, the 3-body collisions become so infrequent, that ozone production becomes increasingly difficult.  Above about 90 km (at the mesopause), the atmosphere begins warming with height yet again in the “thermosphere”.  Here, the heating is due to very short (< 0.2 m), high energy photons ripping electrons off of the main components of the atmosphere: O2 and N2, creating electrically charged ions.  The thermosphere and the upper part of the mesosphere is called the ionosphere, and has interesting electrical and radiative properties due to the large concentration of these ions.  Also in the thermosphere, the atmosphere has become so rarified that even 2-body collisions among molecules become increasingly rare.  As a result, the chemical composition of the gases here becomes stratified by molecular weight.  

To consider why stratification happens, examine the molecular speeds discussed in Equation ().  Note that the rms velocity of a molecule goes like sqrt(kT/m) where m is molecular weight.  In the absence of 2-body collisions, the molecules actually follow “ballistic” paths under the effects of gravity (throw a rock, and it also follows a mainly “ballistic” path).  We will be discussing Earth’s gravitational field and Newtonian mechanics shortly, but here’s a quick primer as it applies to ballistic trajectories.  If this doesn’t look familiar to you, go back to your Undergrad or high school physics book before next lecture and refresh yourself.
mg = mdvz/dt

vz = vz0 – gt

z = z0 + vz0t -1/2 gt2                                            FIGURE
z(max) happens where vz = 0, where t = vz0/g

z(max ) = z0 + ½ vz02/g

vz(t=0) ~ sqrt(kT/m)
z(max) = z0 + ½ (kT/mg)

Note that this solution predicts that heavier molecules – when they enter the ballistic range – don’t get as high as lighter ones.  This explains the fractionation of molecular weight with height in the upper atmosphere, called the heterosphere.  Below this, in the homosphere, molecular weight is relatively constant, because the timescale for the molecules to separate out by weight is much longer than the timescale where atmospheric motions mix everything up.  

[At the risk of really getting ahead of ourselves, I’m going to throw this one last bit in…  If the atmosphere were “isothermal”  (i.e. constant temperature from surface to top), it would also tend to be perfectly at rest (no turbulence or circulations, which are usually driven by heat transfer.  No temperature difference means no heat transfer.).  In the isothermal, perfectly still case, we would end up with a situation where a molecular species would become stratified by its molecular weight:

n(z) = n0 exp(-mgz/kT)

(This is one realization of what is called the Boltzmann Factor in statistical mechanics.  We will be seeing more of this later.)  One can think of two species with different masses (say N2 vs O2), and compute the ratio of their concentrations with height.  Suppose at the surface the ratio was 4:1.  How would this vary with height?  

n1(z)/n2(z) = n10/n20 exp[-(m1-m2)gz/kT]

The ratio of nitrogen to oxygen would decrease with a scale height of about 60 km.  So at about 6 km (~500 mb), you would expect the nitrogen ratio to be 4.4:1, since nitrogen is lighter and should extend higher into the atmosphere.  Some of the first experiments in atmospheric chemistry attempted to find this fractionation, and the investigators were quite surprised to find no variation with height at all.  You might mistakenly attruibute altitude sickness on there being less “oxygen” in the air (relative to nitrogen).  This isn’t the case.  In fact the O2:N2 ratio is extremely stable up through the mesosphere.]

Now let’s get back to the ground, and discuss variations of temperature from Equator to Pole.  Figure The tropics receive more sunlight than do the poles on average.  As a result, the tropics are warmer than the poles, and this sets up “poleward” thermal heat transfer processes (…for the same reason that the difference in temperature between the surface and the troposphere drives thermal heat transfer vertically).  The atmosphere is very thin compared to the Equator-pole distance (10s of km vs. 1000s of km), and so the main mechanisms of transport involve advective flows of the atmosphere and the oceans, not radiative ones.  Here, poleward currents are warmer than the equatorward ones.  This type of heat transport is called “advective”, which really just comprises primarily horizontal transport of latent (evaporative) and sensible heat (internal energy).

Now let’s consider the time domain of temperature variations.  The importance of sunlight is quite clear in the diurnal range of temperatures (day-night differences).  The seasons also play a major role in determining temperature, basically due to variations in the amount of solar radiation received.  While Equatorial regions receive a steady flow of sunlight year round, the extremes between winter and summer grow greater as one moves towards the poles.  This is reflected in more extreme seasonal surface temperature variations as one moves from the equatorial regions to the polar regions.  While Fairbanks Alaska regularly reaches -40 °C in the winter, it also regularly hits > 32°C (>90°F) in the summer.  In contrast, the tropical warm pool rarely varies by more than 2°C year round.

Anther factor controlling temperature variations is caused by ocean-land differences.  Ocean temperatures vary far less than that of land surfaces.  This is due to 4 reasons.  1) Water has higher heat capacity than air, so the same amount will cause a smaller temperature increase; 2) Evaporation acts as a thermostat on water temperature, since evaporation rates increase with temperature; 3) Heat transfers very rapidly to depths of 10s of m in the ocean due to convective mixing; on the other hand, heat can only transport conductively through land, and this is slow.  4) Sunlight absorption penetrates deeply into the ocean mixed layer.  In contrast, there is only a very shallow layer of land surface that does the lion’s share of the absorbing.  This thin layer has a much lower heat capacity and warms very quickly as a result.  

Problem/Example 1:  Predictions of climate change suggest that CO2 has increased the radiative heat flux by X W/m2 averaged over the ocean surface.  Given that the ocean mixed layer is typically about 100 m deep, you can think of this as a X J heat input every second to a volume of water that is 1x1x100 m3.  How long would this steady excess of energy take before the ocean mixed layer increases in temperature by 0.5 K?

OK wow.  We wanted to start by talking about temperature, and we have already covered a fairly broad survey of thermodynamics, statistical mechanics, Newtonian mechanics, and certain mechanisms in Earth’s energy budget.  These are not just random sidebars, but are actually introductions to some fundamental concepts that will be revisited as we go through the course.  When we have completed these concepts, I’ll review them, and then, hopefully, the picture will come together very nicely.

Pressure, Work, and Gravitation
It has long been known that atmospheric pressure can be used as a better predictor of weather than temperature.  But what is pressure really?  As before, we’ll start with the thermodynamic perspective, move through the kinetic theory, and then look at how pressure is measured and what we see when we measure it.

Pressure is defined as the force that is applied per unit area.  

p = F/A

Since the concept of force may be a bit fuzzy for some of you, let’s review Newtonian mechanics.  First, we need to clarify what we’re talking about.  Newtonian mechanics always concerns itself with the motion of some discrete object that has mass m and vector position x.  F is a force on that object.  Since the force is pushing the object in some direction, it is a vector property; it has units of Newtons.  v is the velocity of the object, which is simply dx/dt.  a is the acceleration of the mass, defined as dv/dt.  Momentum, as discussed above is given by p = mv.  Do not confuse the notation for our momentum vector with the scalar pressure.
Newton’s Laws
1) Objects in motion tend to stay in motion until acted on by a force.

This is a statement of “inertia”.  Simply put it states that v is constant if F = 0.


2) The rate of change in momentum of an object is equal to the sum of forces acting on it.

dp/dt = F.

You may see also this as mdv/dt = F, which is less fundamental, but is good enough for our purposes, since m = constant.  Implicit in this is that if there are multiple forces on an object, you can add the force vectors together to get a net force.


3) For every action there is an equal and opposite reaction.

F12 = -F21
This simply states that if there is some force on an object, then that force is being caused by another object.  Furthermore, the other object will feel an equal force as the first object does, but in the opposite direction.

Example/Problem:  Which of the following values are extrinsic vs. intrinsic:  F, v, m, a, p, p.  Explain.

Example 1: Consider a 10 kg bowling ball at 10 m height with a horizontal velocity of 1 m/s and a vertical velocity of 0.  Calculate it’s position as a function of time until it reaches the ground.  How far does the ground (Earth) come up to meet the bowling ball?  Mass of the Earth: (me = 6 x 1024 kg) 

Now let’s return to our parcel of air.  It, like molecules and bowling balls, is an object, albeit a fluid one.  It has a mass, M, a velocity, u, and can be accelerated.  Being a gas, it also is associated with a pressure, p.  You are probably familiar with the ideal gas law:

p = RT

which relates the pressure of an ideal gas to the mass density, a species-specific gas constant R, and the temperature in Kelvin.  You may have used this in meteorology, simply because the atmospheric composition is relatively fixed, and a single value of R can be used.  

In this course, we will use an alternative formulation, 

p = n k T

here, n is the # of molecules per unit volume, k is Boltzmann’s constant, and p, T are the same as before.  In some cases it is useful to think in terms of moles instead of molecules (6.022 x 1023 molecules/mol), and in this case we use the universal gas constant, R*, and the molar concentration:

p = n* R* T

Because statistical mechanics is much more elegant when we talk about molecules, we’ll stick with that for a while.

What does the ideal gas law tell us?  It tells us that a given parcel of gas Figure exerts a force upon its boundaries that is proportional to its # density and the temperature.  Note that this is very different than a liquid or a solid, which might exert virtually no pressure even at reasonably high number densities and temperatures.  Consider a 1 cm3 parcel of air at 1013 mb (mean sea-level pressure).  This corresponds to a force of 101300 N/m2 = 10.13 N/cm2.  So the force equivalent to the weight of a 1 kg object (1 kg = 2.2 lb) is exerted on the walls of each face of our small cube (including up!  See demonstration).  So why doesn’t the cube just expand and blow up?  The fact is that there is an equivalent parcel of air on the other side of each face of the cube that is also trying to expand with an equal force.  The net result is that the “walls” of the cube have equal and opposite forces on them, they don’t move, and the air in the cube stays compressed. Now if you took this cube and put it in space, where the external pressure is effectively zero, it would blow up and expand ad infinatum.

So what keeps the pressure so high on Earth’s surface, when it’s zero in space?

This leads us to Newton’s other major law, the law of universal gravitation

Fg12 = - G(m1 m2)/r3 r12
Which states that the force felt by object 1 due to object 2 is proportional to each of their masses, divided by their distance squared, and the force is attractive and directly in a line between their centers of mass.  (This actually only works for point masses).

Now this 1/r2 dependence is very important for the satellites that do a lot of our observing for us.  But in Earth’s atmosphere the range of gravitational accelerations felt by an object of mass m is fairly limited.  For the case of Earth’s gravity, m2 = me, r = re + z, and z ranges from 0 – 20 km (in the troposphere) , whereas the Earth’s surface radius, re, starts out at about 6400 km.  This leaves the acceleration due to Earth’s gravity at Gm1/(re + z)2.

We will use Taylor expansions often in this class, mainly to linearize equations.  What is linearization?  Even the most curved lines appear straight if you consider a small enough segment.  Taylor showed that you can express a function in terms of a polynomial expansion of its derivatives evaluated at a given point

f(x) = f(x0) + f’(0)(x- x0) + ½ f’’(0) (x- x0)2 + 1/3! f’’’(0) (x- x0)3….

When you use a Taylor expansion to linearize something, you choose a value of x that is so close to x0 that only the first two terms count.  For example,

(1 + x)n = 1n + n(1)n-1x + n(n-1)/2(1)n-2x2
This simply reduces to 1 + nx + n(n-1)x2/2 …

In the event that nx << 1, then we can drop all but the first two terms as being infinitessimal and we end up with

(1 + x)n = 1 + nx; provided nx << 1

Now we can express the gravitational acceleration as

a = Gme/re2/(1 + z/re)2

Using the Taylor expansion illustrated above with n = -2, we have

a = [Gme /re2 ]*(1 -2z/re) 
The factor out front is the familiar g = 9.8 m/s2.  We can see that at the tropical tropopause, the acceleration due to gravity will be reduced by a factor of 2*(18km/6400 km) = 0.0056, or about ½%.

For most applications, we can treat gravitation as being constant throughout the troposphere at a value of g, recognizing that if we want accuracies better than ½%, we’d better be more sophisticated.  There’s other reasons to get more sophisticated at these accuracy levels – namely that Earth should not necessarily be treated as a point mass, or even spherically symmetric, and also we have to account for the role of Earth’s rotation, and the apparent centrifugal force associated with that.  But let’s put these refinements aside for a moment and come back to the link between gravitation and atmospheric pressure.

So the original question was, what keeps pressure so high at earth’s surface?  I’ll start with the answer – air has mass, and because it has mass it is gravitationally accelerated towards Earth’s surface.  Consider a parcel of air of mass m.  It feels a gravitational force of –mgk.  What opposes this force to keep the air from crashing down to the surface?  Remember our approximation that air exerts an outward pressure of p in all directions, and that this force is opposed by neighboring parcels with the same value of p?  We can oppose the downward acceleration due to gravity of our parcel if the one immediately below it has a pressure that is a bit higher than the one immediately above it.  Figure.    

So since our goal is to ensure the atmosphere doesn’t crash down to the surface, we specify a constraint on pressure so that the net upward force on the lower boundary minus the net downward force on the upper boundary of each parcel exactly balances the gravitational force.  So the pressure above the parcel = p+dp, the pressure below the parcel is p, and the net force on the parcel Fz = 0 = -dp A – mg, where A is the area of the lower and upper boundaries.  Since the shape of the parcel is arbitrary, let’s make it a box of area A and height dz.  Now we have dp A = -  A dz g, or dp/dz = -g.  Now, by using the ideal gas law, we get dp/dz = -pgma/kT.  Since dp/p = dln(p), we have dln(p)/dz = -mag/kT.  The expression on the right should be looking pretty familiar by now.  In fact, in the case that the atmosphere is isothermal, as we explored in the example above, we can integrate the equation to get p=p0exp(-magz/kT) = p0exp(-z/H), where the quantity H = kT/mag is called the “scale height” of the atmosphere.  Since temperatures in the atmosphere range from 200-300K, we get scale heights that range from 6 -9 km.
What we have just examined is called the hydrostatic equation, which relates a pressure profile that perfectly balances gravity for still air.  Normally, the atmospheric profile is given by p = ph(z) + p’(x,y,z), where ph(z) is the hydrostatic case obtained by integrating Eq () for a given temperature profile T(z), and  p’ is the variation of pressure from the hydrostatic case.  Accelerations of air related to turbulence are caused by gradients in p’; ph simply sets up the background profile.

Now that you have the basic concept of hydrostacy down, let’s start looking at a more global view of the problem.  To do this let’s return to gravity and look at some of the implicit assumptions we made.  On the way, I’ll introduce you to concepts of potential energy that will be important as we move on in the course.

We saw that Newton’s law of gravitation between two point sources is given by F = -Gm1m2/r2 rhat.  M1a = Gm1m2/r2 rhat.  Dividing by m1 yields a = Gm2/r2 rhat.  What is powerful about this is it describes the acceleration felt by any object at location r, irrespective of its mass due to the point mass m2.  We can think of a as a “gravitational field” due to mass m2 that exists everywhere, such that any object at location r will feel an acceleration due to m2.  

The next thing to consider is that the Earth is not just a point mass at some distance re beneath the surface.  The proper way to think about things is in terms of the Earth being an aggregation of infintessimal elements of mass, dm, each of which occupy some infintessimal volume dv at some location r.  In fact, by dividing dm/dv, we have a mass density distribution (r), where the field due to the location r is given by da = Gdm/r2 = Gdv/r2.  The acceleration field a is then given by the integral over all the earth
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So in principle, to get the acceleration due to gravity, you need to integrate over the entire Earth’s volume.  Gauss brilliantly showed that if r(r’) is simply a function of distance from the center of mass (spherically symmetric), then the integral reduces to the familiar expression for point masses, but only including that mass on the interior of the sphere defined by the distance r.

In reality, the Earth is not perfectly symmetric, but is actually somewhat oblate.  Furthermore, there are mountains, continents, and sources of variation in the Earth’s crust and mantle that cause significant non-sphericity to the density distribution.

The expression above looks pretty intimidating.  Fortunately, it can be simplified considerably if we invoke the concept of the gravitational potential.  Let’s go back to a point mass and consider the work that must be done to go from point A to point B in the presence of the mass’s field.   There is a concept called work which is equal to the integral of Force applied to an object as it is moved through some distance.  dW = F dot ds, where ds is some infintessimal distance, and dW is the work done.  As it turns out, work has units of energy (J = N m).  Now consider the total work done when moving an object of mass m1 through a gravitational field from point A to point B.  You can quickly convince yourself that the work done is independent of the path taken.  In fact, we can define something called the gravitational potential which is equal to the work done in bringing a point mass from some infinite distance away to the location A.  Since the path that the mass takes is irrelevant to the total work done, we can simply call this V(r).  .  This is not good.  I’ll come back to it later having thought it through more..  
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