Basics in Probability
Before getting further into Kinetic theory, it will be useful to review some basic probability and statistics.  Probability, as you know, is a way of mathematically representing the outcome of a random process.  For example, if you have a 6-sided, unweighted die, the probability it will show any given side is one in 6, or 1/6.  

We can represent this by saying that the probability, pi, of rolling a value i is given by:

pi= 1/6 for i = 1…6, 

pi = 0 for i < 1 or i > 6.

The function pi is known as the probability distribution, and when you plot it vs i looks like a box.

We can postulate questions like:  What is the probability of rolling less than a 3?  We write this more formally as “What is the probability of rolling a 1 or rolling a 2?”  When we use the word “OR” this means we need to ADD probabilities.

p(1 or 2) = p1 + p2 = 1/6 + 1/6 = 1/3.

By extension, we must have the condition that the sum of all possible probabilities is equal to 1 (i.e. 100%).
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This is called a normalization condition.

In the case of the die, the probability distribution tells us everything that we KNOW about the die, and tells us nothing about what we don’t know (i.e. the random parts… how it is held in the hand, the speed, direction, and rotation with which it’s thrown, and it’s behavior when it hits the felt…).  Probability tells us what we expect, the realizations tell us what we get.  (You can see there’s an analogy to climate and weather here…)
Statistics is similar to probability, but not the same thing.  Statistics is a way of quantifying what we get when there are lots of realizations.  We use the same notation as probability.  The histogram of grades that you show a NATS class after a quiz is an example of the statistics of the class’s performance.  Suppose you plot a histogram of NATS grades, such that hi is the number of students with grades between 5(i-1) and 5i.  (i.e. you’re grouping grades into 20 bins.)  If you divide by the total number of grades, you’d end up with a normalized histogram, ni,
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If you get lots and lots of realizations of the same exact process, you will end up with a normalized histogram that approaches the form of the underlying probability distribution.  There’s two ways to get lots and lots of realizations of the same process.  The first is to consider the same thing happening to an object lots and lots of times (i.e. roll a die many times in the same way).  The other is to have lots of identical objects doing the same thing (roll a few handfuls of identical dice at the same time).  That is, as N( (, ni ( pi.
Joint Probabilities

I just want to briefly introduce the concept of joint probabilities.  Suppose you roll two dice.  The joint probability is a way of expressing the probability for each unique combination of the two rolls.  For example, what is the probability of rolling two ones?  This is the probability of rolling a 1 on the first die (i.e. p1 = 1/6) TIMES the probability of rolling a 1 on the second die (p1 = 1/6).  Thus the joint probability  J11 = 1/6 * 1/6 = 1/36.  When we think “AND” we multiply probabilities.  When we thing “OR” we add.  Here’s another illustration.  What is the probability of rolling two dice and getting the sum of 3?  There’s two ways to get this: a) rolling a 1 on the first die and a 2 on the second (J12 = p1*p2 = 1/36), OR b) rolling a 2 on the first die and a 1 on the second (J21 = p2*p1 = 1/36).  The probability of rolling a sum of 3 is (J12 + J21 = 1/36 + 1/36 = 1/18).

Now let’s apply this to molecular processes.  The properties of bunch of identical molecules in a parcel at some temperature T can be described by underlying probability distributions.  Each molecule is a different realization.  Since there’s so many molecules, we can just treat the 
Averages using normalized histograms and expectations using probability distributions.

Suppose you have a NATS class with 100 grades, gi, scored on a scale of 1 to 10.  There’s two ways to express the average grade:
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where we define h and n the same as above, but with a bin width of 1 instead of 5.  The second part of the expression uses the normalized histogram to perform the average.

The expectation of a random process is similar to the average of a realized process, but we are just making a prediction – we don’t know how the random factors will play out.  Suppose we had some model probability distribution, pi, for how the grades would turn out (based on some previous experience with these students, etc.)  
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In this case, <g> is an expectation, not an average, simply because we’re using a theoretical probability distribution, not a normalized histogram of actual results.

Now let’s apply this to molecular velocities.  Each degree of freedom for a molecule is an independent process.  We will develop a theoretical probability distribution for each process based on physics.   The simplest thing to think of is the velocity in the x direction.  This is a single degree of freedom for a molecule.  Before going into the probability distribution, let’s instead think of the more intuitive histogram of velocities for N molecules in a parcel.  Since velocities are not integral values, lets bin them into groups.  Let’s say hj is the number of molecules having velocity between jvx and (j+1)vx.  The normalized histogram, nj = hj/N.  Suppose it looks like the plot below.
Now there’s two ways to compute the average velocity in the x direction.
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where we have defined vx,j ( jvx.  This definition is an approximation, but works well as vx ( 0.  Think about what happens to hj and nj as vx ( 0.  The narrower the bin, there more there will be.  This means there will be fewer molecules that will satisfy these criteria.  The more stable quantity will be n’j = nj/vx, which just asymptotes to a smooth function while retaining the same number, as vx ( 0.  The fraction of particles in the bin is still nj = n’j vx.  So now we have
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In the limit that vx ( 0, we can write vx ( dvx and vx,j ( vx and n’j ( a continuous function that we’ll call n(vx).  In the limit of very large N, we also have p(vx) = n(vx), where p(vx) is the probability distribution for velocity in the x direction.  The units of p(vx) is fraction of particles per velocity i.e. (m/s)-1.  Now the average can be written
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As an anchor to reality, you must think of the quantity p(vx)dvx  as being the fraction of particles having velocity between vx and vx + dvx.  It represents an infintessimally narrow bin.
Boltzmann Factor and Maxwell’s velocity distribution
One of Boltzmann’s great contributions was the statement that the probability of finding a particle having energy state Ej associated with one of its degrees of freedom (e.g. x-velocity) is given by the following:
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where the denominator is just the normalization condition described before, and M is the total number of possible energy states for that degree of freedom.   This expression works on everything from states of electrons to the formation of matter and anti-matter from high energy photons.  It’s pretty general.  For the simple case of 1-dimensional velocity, quantum mechanics tells us there are the same number of “available states” in any range of velocities with the same width, i.e. dvx.  So we can rewrite the above expression as a continuous function/integral
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where the solution to the integral in the denominator is a clever one figured out by Gauss.  (Note that the prime above is just for the integration – it’s not a residual velocity – we choose a reference frame so <vx> = 0; so there’s no need to explicitly invoke a residual)
This is called Maxwell’s velocity distribution (in one dimension).  Note that this is the familiar “Gaussian curve” with a mean of zero and a standard deviation of sqrt(kT/m).  Because it is symmetric in vx, we can say from inspection that <vx> = 0 without even doing the integral or knowing a-priori the properties of Gaussian curves.
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This is the “classical” form of a Gaussian distribution, where  is the root-mean square defined as sqrt(<x’2>).  This knowledge gives us the result that <vx2> = kT/m.
Table 1.2 in Physics of the Atom is useful for determining the various means one can do on the velocity distribution.  Next we will be using this velocity distribution to determine pressure.  But first, we examine what, exactly, pressure is.  For this I refer to the handwritten notes from yesterday (page 9, I believe) where we discuss the impulse-momentum theorem.

That discussion led us to the following result:  Each collision of a molecule with the wall imparts a momentum on that wall of 2mvx.  Since we’re only interested in the pressure on one face of the wall, we only consider velocities of one sign at a time (either positive for the left face, or negative for the right face).  The impulse momentum theorem tells us that force is just the total change in momentum per unit time.  So the force on the wall is the # of collisions per unit time times the momentum per collision.  Both of these are dependent on the velocity distribution discussed above.  Let’s consider only those particles having velocity between vx and vx + dvx.  We want to know the number of collision of these molecules with an area A in time dt.  All molecules having velocity vx within the volume adjacent to the wall having dV = Avxdt will collide with the wall.  There will be a total of cp(vx)dvx of these particles, as discussed above, per unit volume, where c is the familiar gas number concentration.  Multiplying the two, we get dN = Avxcp(vx)dvxdt.  The total momentum change will be dP = 2Amvx2cp(vx)dvx.  The pressure is the change in momentum dP/A/dt =  2mvx2cp(vx)dvx integrated over all positive vx.  
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