
History of cRio hardware choice and initial software development

ATOMMS Software Review October 25, 2010

Original Digitization Plan

- In the original ATOMMS proposal, we had planned to use NI PXI hardware located in the WB-57 transition section.
 - IF would be sent to transition section by coax cable
- Transition section is pressurized to 1/3 atm, suitable for most computer equipment (except hard drives).
- Environment sees smaller temperature swings than the WAVES gimbal.

Issue that forced a change in plan

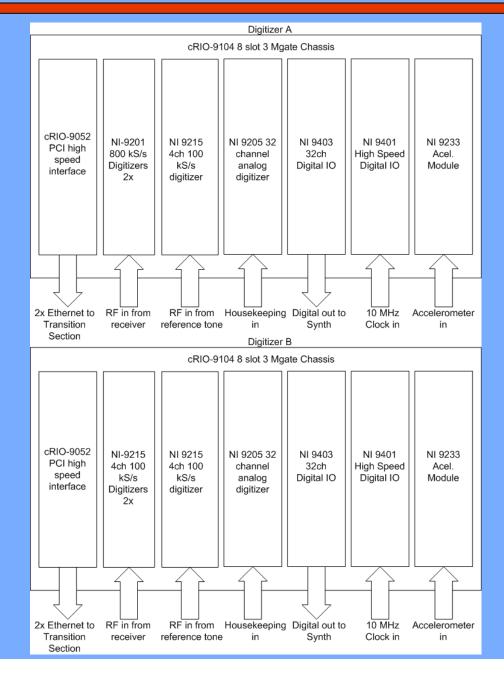
- Cabling in the WAVES gimbal is essentially unchangeable.
 - 4x custom aerospace ribbon cables with various copper wires and 1x 75 ohm video coax
 - Cost to change wiring is minimum \$250k, if NASA will allow it at all. They do not want ATOMMS to permanently change their system.
 - No suitable cabling available in wrap to send IF signals back to transition section.

Compact RIO hardware

- David Thompson at NOAA strongly suggested we find a way to use the Compact RIO hardware.
 - Has been proven to work on the WB-57 at 65 kft at 50 mbar pressure on more than one NOAA experiment (by D.T.).
 - Fundamentally real time; should have good timing
 - Compact, light and low power.
 - Could straightforwardly be integrated with the ATOMMS instrument in the WAVES gimbal.

Basic ATOMMS requirements

- Able to digitize 9x signals at 100 kS/s (ATOMMS A) or 2x 800 kS/s + 1x 100 kS/s signals (ATOMMS B) plus digital I/O, 3 axis accelerometer and analog housekeeping signals.
- 100% duty cycle: no missed samples, stream all data to SSD for 6-8 hour experiment.
- Simultaneous sampling for all science signals.
- Sampling synchronized to external clock for science channels


Compact Rio seemed to fit the bill

- Simultaneous sampling 4ch digitizers available at 100 kS/s.
- 1ch 800 kS/s digitizers available.
- Simultaneous sampling between modules is straightforward.
- Once FPGA code compiles, reliable RT operation for long time periods should work well.
- Synchronization with external clock possible, but only through software. 20ns jitter penalty.

cRio architecture

- Chose 8 slot rio chassis with 3MGate FPGA.
 - Could fit all the necessary modules for ATOMMS A and ATOMMS B.
- Starfabric interface to computer
 - Should simplify code writing compared to normal cRio controller (one less piece of code).
 - Ethernet available in wrap that meets Starfabric spec.
- Flight computers in transition section with SSDs running Labview RTOS would collect and store data, plus provide event scheduling.

ATOMMS Software Review October 25, 2010

Software Development

- The ATOMMS team (pre Robert S.) did not have the labview experience required to develop the ATOMMS Software.
- Buddy Curtis at NI recommended Intaq as a consultant who could help us develop the software.
- Intaq and the UofA agreed on a SOW to develop the core realtime datalogger code with external synchronization. UofA would add all the "bells and whistles" later.

Software Development

- The experience with Intaq was not a good one.
 - Software was delivered very late, and we had to press very hard to get code delivered that met all of the SOW points.
- In initial testing (by Brian Wheelwright) the software seemed to work, but we later found severe problems after data analysis by Rob K. and Dale W.:
 - External clock synchronization did not work at all. Data transfer over starfabric was being synchronized, not the sampling.
 - Tuning the ATOMMS RF synthesizers over digital IO was painfully slow (several seconds needed to complete a tuning command). Should be essentially instant.
- Rather than go back to Intaq, we decided to enlist the help of Robert S. to help fix the code written by Intaq.

Things to keep in mind for possible HW changes

- Space and mass are very limited in the gimbal and on the ATOMMS instruments.
 - Mechanical redesign could be very expensive and time consuming.
- Hardware in gimbal must survive 50 mbar pressure
 - Will probably require testing in a custom pressure vessel (that does not exist). If the HW is small, it could be tested in our existing pressure vessel.
 - This testing is also time consuming
- Wiring in WAVES cable wrap is not changeable on our budget.
 - Have to live with existing wiring and cable length (~25 ft)