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Diffusion 
 

Diffusion is a net transport of molecules or energy or momentum or … from a region of 
higher concentration to one of lower concentration by random (molecular) motion.  We will look 
at diffusion in gases primarily. 
 
Mean free path 

Molecules in a gas move with a kinetic or thermal velocity related to their temperature.  
Thinking in terms of the billiard ball analogy, molecules move some distance before colliding 
with another molecule and then the two molecules ricochet off in other directions.  The typical 
distance the molecules move between collisions is called the mean free path (λ).  λ depends on 
the number density of the molecules and their collisional crosssection, Ac.  In defining λ, one can 
think of it in terms of the volume per molecule, Vm, which is the inverse of the number density of 
molecules, N, in units of molecules per cubic m in mks units.   

 

€ 

Vm =
1
N

 (1) 

This is the same N we defined in the equation of state for an ideal gas in microscopic units early 
in the class 

 P = N kB T (2) 
 
One can think of this volume per molecule as a cylinder whose area is the collisional 
crossectional area and the length of the cylinder is the mean free path.  Therefore this volume per 
molecule can also be defined as  

 Vm = Ac λ (3) 

So we can combine (1) and (3) to get an equation for the mean free path 

 

€ 

λ =
1
AcN

 (4) 

 
Brownian motion or random walk 
 The next step in understanding diffusion is to understand the net effect of the random 
motion of the molecules that results from these collisions.  The question we have to answer is  

“What is the typical distance a molecule will move away from its initial position after 
some number of collisions with other molecules?” 

This is written as the standard deviation of its position after some number of collisions.  
After one collision it will have moved on average λ in some direction.  After two collisions, it 
will have moved the sum of two vectors each of (mean) length, λ, but the direction of each of the 
two vectors is random.  So the sum of the two vectors must be described in some probabilistic 
way.   

We add two vectors and ask what is the length of the sum of the two vectors.  Vector 1, 
  

€ 

 x 1, is the vector describing the position change in the position of the molecule between the 0th 
collision and the 1st collision.  It is given as  

   

€ 

 x 1 = Δx1 ˆ x + Δy1 ˆ y + Δz1 ˆ z  (5) 
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To understand the net result of a random or “drunkard’s” walk which is the sum of a series of 
random steps, we begin by considering the square of the sum of the first two random steps 
written in Cartesian coordinates and then generalizing to an arbitrary number of steps… 

 
  

€ 

Xn= 2 ≡
 x 1 +
 x 2 = Δx1 + Δx2( )

2
+ Δy1 + Δy2( )

2
+ Δz1 + Δz2( )

2[ ]
1/ 2

  

   

€ 

Xn= 2
2 =

 x 1 +
 x 2

2
= Δx1 + Δx2( )

2
+ Δy1 + Δy2( )

2
+ Δz1 + Δz2( )

2
 (6) 

 

€ 

Xn= 2
2 = Δx1

2 + 2Δx1Δx2 + Δx2
2( ) + Δy1

2 + 2Δy1Δy2 + Δy2
2( ) + Δz1

2 + 2Δz1Δz2 + Δz2
2( )  

 

€ 

Xn= 2
2 = Δx1

2 + Δy1
2 + Δz1

2( ) + 2 Δx1Δx2 + Δy1Δy2 + Δz1Δz2( ) + Δx2
2 + Δy2

2 + Δz2
2( )  

 

€ 

Xn= 2
2 = ˆ x 1

2
+ ˆ x 2

2
+ 2 Δx1Δx2 + Δy1Δy2 + Δz1Δz2( ) (7) 

Now we need to consider the expected value or mean value of 

€ 

Xn= 2
2  = <

€ 

Xn= 2
2 >. 

 

€ 

Xn= 2
2 = ˆ x 1

2
+ ˆ x 2

2
+ 2 Δx1Δx2 + Δy1Δy2 + Δz1Δz2( )  

 

€ 

Xn= 2
2 = ˆ x 1

2
+ ˆ x 2

2
+ 2 Δx1Δx2 + Δy1Δy2 + Δz1Δz2( )  (8) 

The expected value of the length the molecule moves between collisions is the mean free path, λ. 
So 

 

€ 

Xn= 2
2 = λ2 + λ2 + 2 Δx1Δx2 + Δy1Δy2 + Δz1Δz2( )  

 

€ 

Xn= 2
2 = 2λ2 + 2 Δx1Δx2 + Δy1Δy2 + Δz1Δz2( )  (9) 

Now the question is what to do with the expected value of the cross terms.  If the collisions are 
really random as we think and assume they are, then there is no preferred direction and therefore 
no correlation between Δx1 and Δx2 or Δy1 and Δy2 which means  

 <Δx1 Δx2> = 0,         <Δy1 Δy2> = 0,         <Δz1 Δz2> = 0 (10) 

Therefore 

 

€ 

Xn= 2
2 = 2λ2 (11) 

Generalizing this relation to X2 after n collisions gives 

 

€ 

Xn
2 = nλ2  (12) 

The square root of this equation gives us the root of the mean square distance or rms distance a 
molecule will move away from its initial location after n collisions. 

 

€ 

Xn
2 1/ 2

= n λ  (13) 
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Time and velocity 
Now we must introduce time into the diffusion process.  In order to calculate diffusive 

fluxes and rates of diffusion, we need to know how long it will a molecule take to move a 
distance X away from its initial location.  From (13) we see that the number of collisions required 
for the molecule to move a distance X is given by 

 

€ 

n =
X
λ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 (14) 

The typical time for a molecule to move one mean free path, which is the time between 
collisions, is  

 

€ 

τλ =
λ
vt

 (15) 

where vt is the thermal velocity of the molecule.  Therefore the typical time for the molecule to 
move a distance, X, is 

 

€ 

τλ = nτλ = n λ
vt

=
X
λ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2
λ
vt

=
X 2

vtλ
 (16) 

The average velocity of the molecule in moving a distance X is 

 

€ 

vX =
X
nτ

=
Xvtλ
X 2 = vt

λ
X

 (17) 

So the farther the molecule moves from its initial position, the slower it moves on average.  This 
makes diffusion a very slow process over large distances (but it is quite fast over very short 
distances).   
 
Diffusive Flux 

Suppose we have a horizontal gradient in the density of some quantity, B, which is ρB.  
What is the flux of high ρB into the low ρB area and visa versa via diffusion?  Consider two 
points separated by a distance, Δx.  The difference in ρB between the two points is ΔρB = dρB/dx 
Δx.  The general definition of a flux is the density times the velocity, ρB   

€ 

 v  (check units).  (17) 
provides the diffusive velocity.  The net flux is the diffusive flux in the +x direction minus the 
diffusive flux in the –x direction 

 

€ 

FBnet = ρB x −Δx /2( ) v x −Δx /2( ) − ρB x + Δx /2( ) v x + Δx /2( )  (18) 

 

€ 

FBnet = ρB −
dρB
dx

Δx
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
vtλ
Δx

− ρB +
dρB
dx

Δx
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
vtλ
Δx

 

 

€ 

FBnet = −
dρB
dx

Δx
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
vtλ
Δx

−
dρB
dx

Δx
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
vtλ
Δx

= −2 dρB
dx

Δx
2
vtλ
Δx

 

 

€ 

FBnet = −vtλ
dρB
dx

 (19) 
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Diffusivity and Equations of Diffusion 
 

What is the definition of diffusivity?  The diffusion equations were derived by Adolf Fick 
in 1855.  Fick’s First Law is that the diffusive flux, F, of some substance, B, is given by 

 
  

€ 

 
F B = −D dρB

dx
ˆ x  (20) 

or more generally 

   

€ 

 
F B = −D

 
∇ ρB  (21) 

where D is the diffusivity in units of m2/s. F has units of B-units/m2/s.  This equation form is 
known as “down-gradient” diffusion because the flux is in the opposite direction of the gradient.  
Comparing (19) and (20), it is clear that  

 D = vt λ (22) 

For completeness, Fick’s Second Law is known as the diffusivity equation which 
describes the time rate of change of the density of some quantity, B, due to diffusion 

 
  

€ 

∂ρB

∂t
=∇ • D∇ρB

 r ,t( )[ ] (23) 

If the diffusivity, D, does not vary with position then 

 
  

€ 

∂ρB

∂t
= D∇2ρB

 r ,t( )  (24) 

Note that (23) and (24) are simply versions of the flux divergence equation 

 

€ 

∂ρB

∂t
= −∇ • FB + ˙ B  (25) 

where 

€ 

˙ B  represents a source term because plugging (20) into (25) with no source term yields 

 

€ 

∂ρB
∂t

= −∇ • −D∇ρB( ) =∇ • D∇ρB( )   

which is the same as (23). 
 
 
Putting it all together 
 

The diffusivity, D, can be thought of as a distance times a velocity.  Given the derivations 
we just did about the random motions of molecules in a gas, we can write  

 

€ 

D = Xvx =
Xvtλ
X

= vtλ =
vt
AcN

 (26) 

The thermal velocity has at least 2 definitions.  The rms velocity is 

 

€ 

vt−rms =
3kBT
m

 (27) 
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The average magnitude of the velocity is 

 

€ 

vt−mag =
8kBT
mπ

 (28) 

From the ideal gas law,  

 

€ 

N =
P
kBT

 (29) 

Combining these 

 

€ 

D =
vt
AcN

= a kBT
m

kBT
AcP

=
a
m

kBT( )3 / 2

AcP
 (30) 

where a is the constant for the relevant thermal velocity, either 3 or 8/π.  a1/2 is either 1.73 or 
1.60.  The biggest uncertainty in using this equation is probably the collisional cross-section.   

 

The Diffusivity of Air 
The diffusivity of air at 300 K and 1000 mb, is 2.216e-5 m2/s.  

 
We can calculate the diffusivity of air from (30).  The cross-sectional area of a N2 molecule is 
~2.08x10-10 x 1.6x10-10 ~ 4 x10-20 m2.  The collisional cross-section of two N2 molecules 
colliding should be about 10-19 m2. Using this value yields a diffusivity of air of 2e-4 m2/s.  This 
is a factor of 10 too high indicating that the cross-sectional area at 300 K is actually about 10-18 
m2 and the simple cross-sectional area I used is too low by about a factor of 10.  

 

 
 


