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Atmospheric Radiative Transfer 
 

We need to understand how energy is transferred via radiation within the atmosphere.  We 
introduce the concept of optical depth.  We will further show that the light moves approximately 
a distance equal to an optical depth of unity and we will use that to gain more insight into how to 
think about radiative transfer. We will also use the Earth as an example to show that optically 
thick atmospheres are convectively unstable. Note that this discussion is in terms of 1D radiative 
transfer in the vertical direction which is the direction of 1st order relevance to radiative transfer. 

 
Suppose we are looking down at the atmosphere observing the IR radiation emerging from 

the atmosphere.  For now, we assume no scattering effects.  We use Beer’s Law where 
 

€ 

dI = −I α dz = −I dτ  (0) 

where I is intensity in watts/m2, α is the extinction coefficient in units of inverse length, z is path 
length and τ is known as optical depth. α‘s units of inverse length represent how much 
attenuation there is per unit length.   

From Kirchhoff’s law, a good absorber is a good emitter and a poor absorber is a poor 
emitter (at the wavelengths where it is a poor absorber).  We need the equation for emission to 
understand how the atmosphere cools itself by emitting IR radiation. 

It can be shown that the radiation emission from a height interval with thickness, dz, is  

 dIv = α(v,z) B(v,T) dz (1) 

where B(v,T) is the Planck function (the black body curve) and α is the absorption coefficient in 
units of inverse length.   

This emitted radiation is then attenuated by absorption as it passes through the atmosphere.  
The radiance from that height interval that leaves the atmosphere is therefore 

 

€ 

dIe υ,z( ) = α υ,z( )B υ,T( )e−τ υ ,z( )dz = dIυe
−τ υ ,z( ) (2) 

where τ is the optical thickness above altitude of emission, z, where 

  (3) 

Note that τ is defined here such that τ = 0 at the top of the atmosphere.  So the spectral intensity 
of the atmosphere is 

 

€ 

Ba v( ) = α v,z( )
0

∞

∫ B v,T(z)[ ]e−τ v,z( )dz  (4) 

There is also a contribution from the emission from the surface, Bs.  So the total emission seen 
from above the Earth is 

 Βt(v) = Βa(v) + Bs 

€ 

e−τm v,z( )  (5) 

where τm is the total optical depth of the atmosphere from the surface to space: 

  (6) 
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There is a variable, X, called the transmission through the atmosphere that is equal to 

€ 

e−τ v,z( ) .  
The vertical derivative of X is then 

 

€ 

dX
dz

=
de−τ υ ,z( )

dz
= −e−τ υ ,z( ) dτ

dz
= α υ,z( ) e−τ υ ,z( )  (7) 

The last sign change comes from the derivative of (3) w.r.t. z.  This allows Ba in (4) to be written 
somewhat more compactly as  

 

€ 

Ba v( ) = B v,T(z)[ ] dX v,z( )
dz0

∞

∫ dz  (8) 

 
The peak altitude of emission 

Now lets look at the vertical level where the most emission comes from.  Assuming 

€ 

B v,T(z)[ ]  does not vary too dramatically with altitude, then the answer is the answer to the 

question: at what altitude does 

€ 

dX v,z( )
dz

 reach a maximum? 

 

€ 

d
dz
dX
dz

= 0 =
d
dz

α υ,z( ) e−τ υ ,z( )[ ] =
d
dz
α υ,z( ) − α υ,z( ) d

dz
τ υ,z( )

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
e−τ υ ,z( )   

 

€ 

0 =
d
dz
α υ,z( ) + α 2 υ,z( )

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
e−τ υ ,z( )  

 

€ 

d
dz
α υ,z( ) = − α 2 υ,z( )  (9) 

 Now, we need to remember get an equation for α is to use an approximate form for it to 
understand the implications of (9).   (In the Hygrometer notes: ) 
 

€ 

α = kv,υ = Sv,υ f υ −υ 0( )  (10) 

where S is the line strength of the absorption line, f represents the shape of the absorption line, 

€ 

υ  
is the frequency of the measurement and 

€ 

υ 0 is the line center of the absorption line.  The line 
shape is due to a combination of Doppler and pressure broadening.  The line strength is given as 

 

€ 

Sv,υ = nm
gi exp −Ei kT( )

Z
Cij

c
1− e−hυ ij / kT[ ] = n nm

n
gi exp −Ei kT( )

Z
Cij

c
1− e−hυ ij / kT[ ]  (11) 

where n is the total number density of the bulk gas = P/kBT and nm/n is the volume mixing ratio 
of constituent m of the gas, Ei is the energy of the transition between two energy levels (i and j) 
of the molecule, 

€ 

υ 0=

€ 

υ ij , g is the number of states with Z is the partition function which is 

€ 

gi exp −Ei kBT( )
i
∑  which is the sum of population of all of the available states at a particular 

temperature, T, and Cij is an electromagnetic coupling factor for this particular energy transition. 
 

The main point right now is that S is proportional to the number density of the absorber, 
n.  This in general falls off exponentially with altitude.  

So we plug a simple exponential form in for α(z) = α0 e-z/H into (9) which results in 
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€ 

−
α0e

−zmax / H

H
= − α0

2 e−2zmax / H   

 

€ 

ezmax / H = α0 H   

 

€ 

zmax
H

= ln α0 H[ ]  

 

€ 

zmax = H ln α0 H[ ] (12) 

Plug (12) into (3) we find the value of τ at zmax at which 

€ 

dX
dz

 reaches a maximum value 

 

€ 

τ v,zmax( ) = α0e
−ξ / H

zmax

∞

∫ dζ = −α0He
−ξ / H

zmax

∞
= α0He

−zmax / H = α0H exp −
H ln α0 H[ ]

H

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟   

 

€ 

τ v,zmax( ) = α0H exp −ln α0 H[ ]( ) = α0H
1

α0 H
=1 (13) 

So indeed 

€ 

dX
dz

 reaches a maximum value around τ = 1.   

 

 
 
 
What is the (spectrally averaged) IR optical depth of Earth’s atmosphere?  
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 We can make a simple estimate of the spectrally averaged optical depth of the Earth’s 
atmosphere from the Kiehl and Trenberth figure below. 
  

 

Author's personal copy

An imperative for climate change planning: tracking Earth’s global energy Trenberth 21

Figure 2

The global annual mean Earth’s energy budget for the March 2000–May 2004 period in W m!2. The broad arrows indicate the schematic flow of energy
in proportion to their importance. From Trenberth et al. [6""].

Figure 3

Global sea level since August 1992. The TOPEX/Poseidon satellite mission provided observations of sea level change from 1992 until 2005. Jason-1,
launched in late 2001 continues this record by providing an estimate of global mean sea level every 10 days with an uncertainty of 3–4 mm. The
seasonal cycle has been removed and an atmospheric pressure correction has been applied. http://sealevel.colorado.edu/ courtesy Steve Nerem
(reproduced with permission).

www.sciencedirect.com Current Opinion in Environmental Sustainability 2009, 1:19–27
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or La Niña events, and those that are intrinsically part of
climate change, whether a slow adjustment or trend, such
as the warming of land surface temperatures relative to
the ocean and changes in precipitation characteristics.
Regional climate change also depends greatly on patterns
or modes of variability being sustained and thus relies on
inertia in the climate system that resides mostly in the
oceans and ice components of the climate system. A
climate information system that firstly determines what
is taking place and then establishes why is better able to
provide a sound basis for predictions and which can
answer important questions such as ‘Has global warming
really slowed or not?’ Decisions are being made that
depend on improved information about how and why
our climate system is varying and changing, and the
implications.
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The average surface temperature of the Earth is 288K.  The radiative equilibrium of the 
Earth is 255 K.  Given an average lapse rate of 6.5K/km, the average altitude where the radiation 
to space is emitted is the altitude whose temperature is 255 K which is (288-255)/6.5 = 5 km.  
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Since this is the average altitude where thermal emission from Earth is leaving into space, this 
must be the altitude where the spectrally averaged optical depth (measured from the top of the 
atmosphere) is about 1.   

The downwelling IR into Earth’s surface is 324 W/m2.   We set this equal to σT4 to find 
the temperature level in the atmosphere where this radiation is coming from. The answer is 
275K.  Again, using an average surface temperature of 288 K and an average lapse rate of 6.5 
K/km, we see that the altitude of this downwelling radiation is 2 km.  Now when measured from 
the surface, this altitude corresponds to an optical depth of 1.   

So we know that from space to an altitude of 5 km is approximately a spectrally averaged 
IR optical depth of 1 and from the surface to an altitude of 2 km, the change in IR optical depth 
is about 1.  What is the spectrally averaged optical depth change between 2 and 5 km? 

The pressure at 5 km is about 550 mb.  So the amount of atmospheric mass above 5 km is 
about 55% of the atmosphere. The pressure change between the surface and 2 km is about 200 
mb (=1000mb - 800mb) or about 20% of the atmosphere.  The pressure change between 2 and 5 
km is about 800 mb - 550 mb = 250 mb.  So, based on this relation between optical depth and 
mass, my guess is the spectrally averaged IR optical depth across this interval is slightly less than 
unity.  So the spectrally averaged IR optical depth of the entire atmosphere is about 3. 

The reason the gradient of optical depth w.r.t. to atmospheric mass increases at higher 
pressure and temperature is a combination of increased water vapor at warmer temperatures and 
the fact that at higher pressure the spectral interval between the absorption lines fills in as the 
lines broaden.   

Comment on Venus, Earth and Mars:  Venus has an enormous CO2 atmosphere.  
Bill Nye says because of the massive amount of CO2 Venus has an enormous greenhouse 
effect.  Mars has more CO2 in the atmosphere than Earth.  Does it have a big greenhouse 
effect? No.  Why not? 
Simple layered radiative transfer model for optically thick atmospheres. 
 

Consider an atmosphere divided into vertically stratified layers.  The vertical thickness of 
each layer is defined to be such that the change in the spectrally averaged optical thickness 
across the depth of the layer is unity. 
 We can then write the radiative transfer equilibrium solution in the following 
approximate way.   Note that we are assuming convection and diffusional energy transfer are 
negligible. 
 

 
 
 
 
 
Starting from the top, at optical depth 1 we have radiative equilibrium with no IR coming in from 
the top, radiation coming in and being absorbed from the layer below and the layer itself 
radiating both up and down.  We can write this as 

 

€ 

2σT1
4 =σT2

4  
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For the second layer, the energy into the layer is coming from the layers immediately above and 
below the 2nd layer.  The layer itself again emits both up and down.  So the radiative equilibrium 
condition is 

 

€ 

2σT2
4 =σT1

4 +σT3
4  

This generalizes to  

 

€ 

2σTi
4 =σTi−1

4 +σT1+1
4  

At the surface we have 

 

€ 

σTn+1
4 =σTn

4 + Fsol  

Where Tn+1 is the surface temperature under n atmospheric layers and Fsol is the solar flux 
absorbed by the surface. 
 Clearly the temperature fo the top layer must be the radiative equilibrium temperature.  
The temperature of the second layer is 21/4 Teq.  The temperature of the third layer is  

 

€ 

T3 = 2T2
4 −T1

4[ ]1/ 4 = 2*2T1
4 −T1

4[ ]1/ 4 = 3T1
4[ ]1/ 4 = 31/ 4T1 

The general solution to the vertical temperature structure is Ti = i1/4 Teq.   
 

Now we can compare this optically thick radiative-only atmospheric temperature 
structure with that of Earth.  Temperature T1 is 255K.  Temperature T2 is 303K and T3 =336.  As 
the table shows, given the altitudes of the optical depths of 1, 2 and 3 levels in the atmosphere, 
we can determine the lapse rates when the vertical energy exchange is via radiative only.   
 
Optical Depth T (K) Altitude (km) dT/dz (K/km) 

1 255 5 -16.1 
2 303 2 -16.2 
3 336 0  

 
The issue is that the temperature gradients are larger than the dry adiabat.  So when the 
atmosphere move to get hot enough to radiatively transfer the absorbed solar energy back out to 
space, it becomes convectively unstable and begins to transfer some of the energy upward via 
convection.  This shows that a purely radiative atmosphere is convectively unstable and is never 
actually achieved for atmospheres where the (spectrally averaged) IR optical depth exceeds 
unity.  So convection kicks in and transfers energy vertically and we have a radiative-convective 
troposphere.  This is why the tropopause on planets and moons with major atmospheres is a bit 
above the τ =1 level in the atmosphere.   
 
 


