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1. Mathematical and Conceptual Tools
Irregular patterns are characteristic of turbulence, however, we can find a mean
value and define an intensity of turbulence (as we saw in previous classes). Fortu-
nately, the spectrum of turbulence shows a clear gap (spectral gap, that separates
phenomena such as fronts and weather systems (on the order of 100 hours and 24
hours) from the microscale eddies (with duration between 10s and 10min). When
we deal with the BL, the motions to the left are considered mean flow, while the
motions to the right constitute turbulence. This is why we define the BL to re-
spond to the surface with time scales of less than 1 hour.
In numerical models, eddies are not modeled directly but parameterized by stochas-
tic approximations or models.

Figure 1: Figure 2.3 Spectrum of Wind
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There is a net transfer of energy from larger to smaller eddies called the ”en-
ergy cascade”. At the smallest scale, the energy is dissipated into heat by molec-
ular viscosity.

1a. Mean and Turbulent Parts

U = u′ + U (1)

u′ represents the flow that varies with periods less than one hour and can be above
or below U , which represents variations larger than one hour. In general we can
have mean and turbulent parts for wind in 3D, moisture, pollutants and heat. V =
v′ + V , W = w′ +W , θv = θ′v + θv, q = q′ + q,C = c′ + C.

i. The Mean You can have a spatial, temporal or ensemble mean. In this class
we will always refer to the temporal mean (unless otherwise stated.

A(s) =
1

P

∫ P

t=0

A(t, s)dt (2)

A(s) =
1

N

N∑
i=1

A(i, s) (3)

Properties of averaging:
(A+B) = A+B
c = c
(cA) = cA

(A) = A

(AB) = AB(
dA
dt

)
= dĀ

dt

In the last equation, notice: average of local slopes equals slope of the averages.

Leibniz’ Theorem:

d

dt

[∫ S2(t)

S1(t)

A(t, s)ds

]
=

∫ S2(t)

S1(t)

[
∂A(t, s)

dt

]
ds+A(t, S2)

dS2

dt
−A(t, S1)

dS1

dt
(4)

Notice that in this case, s refers to space. This theorem is important in BL
studies because the upper boundary (the BL height) is variable in time.
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Figure 2: The IPCC reports generally present ensemble means and temporal
means.

Example:
Find the time rate of change of the average concentration a pollutant (denoted by
c) within the BL, defined by integrating over the depth of the BL from z=0 to z=zi:

d

dt

[∫ z=zi

z=0

c(t, z)dz

]
=

∫ zi

0

[
∂c(t, z)

dt

]
dz + c(t, zi+)

dzi

dt
(5)

d

dt

[
zi

zi

∫ z=zi

z=0

c(t, z)dz

]
=
zi

zi

∫ zi

0

[
∂c(t, z)

dt

]
dz + c(t, zi+)

dzi

dt
(6)
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d

dt
(zic) = zi

dc

dt
+ c(t, zi+)

dzi

dt
(7)

Where the average denotes a spatial average in the vertical direction.

1b. Reynolds Averaging

Remember, a variable can be defined as the sum of its mean and deviations. We
can then average...

A = (A+ a′) = A+ a′ = A (8)

consequently, a′ = 0 as is expected when you are talking about deviations about
a mean.

When multiplying:
(Ba′) = B̄ā′ = 0 (9)

However, notice what happens when we multiply A and B:

(AB) = (A+ a′)(B + b′)

= (ĀB̄ + a′B̄ + Āb′ + a′b′)

= ĀB̄ + a′b′ (10)

The nonlinear product a′b′ is not necessarily zero. In the same manner, a′a′,
a′b′2, a′2b′2 are not necessarily zero AND MUST BE RETAINED to properly
model turbulence.

1c. Variance, Standard Deviation and Turbulence Intensity

Variance: Dispersion of data about the mean.

σ2
a =

1

N − 1

N−1∑
i=0

(Ai − Ā)2 (11)

This is a measure of dispersion of the population. When N is very large (as it is
for most BL studies) N ≈ N − 1, and because a′ = A− Ā,

σ2
a = a′2 (12)
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and this is true for winds and scalars.
When you see variables such as u′2, q′2, θ′2v , you can interpret as variances. As

the mean wind increases, usually the intensity of turbulence increases.

1d. Covariance and Correlation

Using N ≈ N − 1, we define the covariance as:

covar(A,B) =
1

N

N−1∑
i=0

(Ai − Ā)(Bi − B̄)

=
1

N

N−1∑
i=0

a′ib
′
i

= a′b′ (13)

The nonlinear products have the same meaning as covariances. They indicate
the degree of common relationship between variables.

For example, if A represents temperature and B represents vertical velocity.

T ′w′ > 0 This is the most common case, lower 80% of the mixed layer.
T ′ > 0 and w′ > 0: Warmer than average air rises (during the day when
ground is warmer than air).
T ′ < 0 and w′ < 0: Cooler than average air sinks because of higher density.

T ′w′ < 0 Not very common
T ′ < 0 and w′ > 0: Cool air rises due to mechanical turbulence in the early
morning.
T ′ > 0 and w′ < 0: Warm air sinks because of mechanical turbulence.

i. Linear Correlation Coefficient Indicates the normalized covariance:

rAB =
a′b′

σaσb
(14)

Where the two variables are perfectly correlated if rAB = 1 and perfectly
negatively correlated when rAB = −1
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Figure 3: Fig2.7 Correlation Coefficient profiles in the convective mixed layer

Example: From the virtual potential temperature (K) and vertical wind veloc-
ity (m/s) data below, calculate the mean and standard deviation for each variable,
the covariance and the linear correlation coefficient between variables.

Table 1: default

w θv
0.5 295
-0.5 292

1 295
0.8 298
0.9 300

1e. Summation (shorthand) Notation

This will save us (a lot) of space and writing.

m, n and q are integer variable indices 1,2 or 3.
Am is a velocity vector (U,V,W).
xm is a component of distance (x,y,z).
δm is a unit vector (i,j,k).

If there are no free indices, the variable is a scalar.
One free index, a vector.
Two free indices, a tensor.

Kronecker Delta (scalar)

δmn =

{
1 for m=n,
0 for m 6= n

Alternating Unit Tensor (scalar)
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Figure 4: Example of calculation of variance, covariance, correlation coefficient

εmnq =


+1 for mnq=123, 231 or 312
−1 for mnq=321, 213 or 132
0 for any two or more indices alike.

Rule 1 Whenever two identical indices appear in the same term, it is implied that
there is a sum of that term over each value (1, 2, 3) of the repeated index.

Rule 2 Whenever one index appears unsummed (free) in a term, then that same
index must appear unsummed in all terms in that equation. Hence, that
equation effectively represents 3 equations for each value of the unsummed
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index.

Rule 3 The same index cannot appear more than twice in one term.

i. Example, equation of motion

∂Am
∂t

+Bn
∂Am
∂Xn

= −δm3g + fcεmn3Bn −
1

ρ

∂p

∂Xm

+
1

ρ

∂τmn
∂Xn

(15)

Rule 1 Sum over repeated indices.

∂Am
∂t

+B1
∂Am
∂X1

+B2
∂Am
∂X2

+B3
∂Am
∂X3

= −δm3g + fcεm13B1 + fcεm23B2 + 0−

1

ρ

∂p

∂Xm

+
1

ρ

(
∂τm1

∂X1

+
∂τm2

∂X2

+
∂τm3

∂X3

)
(16)

Rule 2 Different equation for each free index.

∂A1

∂t
+B1

∂A1

∂X1

+B2
∂A1

∂X2

+B3
∂A1

∂X3

= 0 + 0 + fcB2 + 0−

1

ρ

∂p

∂X1

+
1

ρ

(
∂τ11

∂X1

+
∂τ12

∂X2

+
∂τ13

∂X3

)
(17)

∂A2

∂t
+B1

∂A2

∂X1

+B2
∂A2

∂X2

+B3
∂A2

∂X3

= 0− fcB1 + 0 + 0−

1

ρ

∂p

∂X2

+
1

ρ

(
∂τ21

∂X1

+
∂τ22

∂X2

+
∂τ23

∂X3

)
(18)

∂A3

∂t
+B1

∂A3

∂X1

+B2
∂A3

∂X2

+B3
∂A3

∂X3

= −g + 0 + 0 + 0−

1

ρ

∂p

∂X3

+
1

ρ

(
∂τ31

∂X1

+
∂τ32

∂X2

+
∂τ33

∂X3

)
(19)
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It is clear that using equation 20 is much more compact than using equations
17, 18 and 19. This is why we use Einstein’s notation in this class. This equa-
tion represents the conservation of momentum equation, and will be discussed
later...the more familiar way of expressing this equation is:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −δi3g + fcεij3Uj −
1

ρ

∂p

∂xi
+

1

ρ

∂τij
∂xj

(20)

2. Conceptual Tools
2a. Kinematic Flux

Flux is the transfer of a quantity per unit area per unit time. You can have mass,
heat, moisture, momentum and pollution fluxes (among others). Table 2 presents
the fluxes in their regular and kinematic form.

Table 2: Flux and Kinematic Flux

Quantity Flux Kinematic Flux
Symbol Units Equation Units

mass M̃ kgair
m2s

M = M̃
ρair

m
s

heat Q̃H
J
m2s

QH = Q̃H

ρairCP
Km

s

moisture R̃ kgwater

m2s
R = R̃

ρair

kgwater

kgair

m
s

latent heat Q̃E = LvR̃
J
m2s

QE = Q̃E

ρairCP
Km

s

momentum F̃ kg(m/s)
m2s

F = F̃
ρair

m
s
m
s

pollutant X̃
kgpollutant

m2s
R = X̃

ρair

kgpollutant

kgair

m
s

where Lv = 2.456 J/kg at 20◦C, CP = 1005 j/(kg K)is the specific heat of air
and ρair = 1.12 kg/m3 is the density of air, which is taken as a constant because
the density change across it can be neglected.

The advantage of kinematicfluxes is that we can easily measure them di-
rectly (wind speed, temperature, specific humidity, concentration) as opposed to
heat, momentum etc. (for the regular fluxes). We can transform between regular
and kinematic fluxes:
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If we know Q̃H = 365W/m2 then we can calculate QH = Q̃H/(ρairCP ), so
QH = 365W/m2/(1.12kg/m3 ∗ 1005J/(kgK)) = 0.3Km/s.

Each of these fluxes has three components (one vertical and two horizontal).
However, momentum has an added dimension because the flux in any one direc-
tion can be the flux of U, V or W momentum. There are nine components of the
flux to consider, so momentum is a second order tensor.

Fluxes can also be split into mean and turbulent parts:

Table 3: Mean and Turbulent Fluxes

Mean (Kinematic Advective KA) Turbulent (Kinematic Eddy KE)
Vertical KA heat flux Wθ Vertical KE heat flux w′θ′

Vertical KA moisture flux Wq Vertical KE moisture flux w′q′

Vertical KA u momentum flux WU Vertical KE u momentum flux w′u′

Zonal KA heat flux Uθ Zonal KE heat flux u′θ′

Example:
During the daytime, there is usually a superadiabatic profile close to the sur-
face. Turbulent gusts bring warmer air up (w′ > 0, θ′ > 0) and colder air down
(w′ < 0, θ′ < 0), so w′θ′ > 0, even if w′=0. There is a net transport of heat
w′θ′ > 0 even though there is no net transport of mass w′ = 0. As heat moves up,
the lapse rate is more adiabatic.

At night, there is usually a subadiabatic profile close to the surface. Turbulent
gusts bring warmer air down (w′ < 0, θ′ > 0) and colder air up (w′ > 0, θ′ < 0),
so w′θ′ < 0. As heat moves down, the lapse rate is more adiabatic.

While advective vertical fluxes are very smallW ≈ 0, vertical turbulent fluxes
are non-negligible. However, horizontal advective fluxes are quite large. [Show
histograms].

2b. Stress

Stress is a force that tends to produce deformation in a body [force per unit area].
Pressure, Reynolds Stress and Viscous Shear Stress are the three types of stress
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Figure 5: Figure 2.15, idealized soundings of turbulent fluxes in convective and
stable BL.

that appear in the study of the atmosphere.

i. Pressure Pressure acts on a fluid at rest.
It acts equally in all directions (isotoropic). Isotropic pressure will cancel in all
directions except in the direction normal to the object. Pressure is a scalar (doesn’t
depend on direction).
It tends to compress or expand objects.
At sea level, atmospheric pressure is 1.013 × 105 Pa (N/m2). Kinematic pressure
≈ 82714 m2/s2...And while this is much larger than other stresses, it is almost
always balanced by gravity.

ii. Reynolds Stress Acts when fluid is in turbulent motion.
When we derive the mean equations for the velocity components ui, new terms
of the form ∂(u′iu

′
j)/∂xj arise. They are a result of the nonlinear terms that arise

when we multiply velocities. The terms (u′iu
′
j) denote the turbulent momentum

flux or Reynolds stress.
Physically we can think of this: the rate that air of different speeds is transported
across any face of an object. The object tends to deform [identical to momentum
flux].
Momentum flux in kinematic units |u′w′| = τReynolds. For each cartesian direction
we have three components, for a total of nine components. However, the Reynolds
stress tensor is symmetric, so we only deal with 6 components.... |u′w′| = |w′u′|.
It is important to emphasize that the Reynolds Stress is proportional to the flow,
not the fluid.
Kinematic Reynolds Stress ≈ 0.05 m2/s2

iii. Viscous Stress Acts when there are shearling motions on the fluid.
Real fluid experiences tangential forces with a condition of no-slip at the bound-
ary.
Intermolecular forces tend to drag the fluid adjacent to a moving portion.
Viscous stress depends on the fluid, so water exerts a greater viscous stress than
air. Viscosity is the measure of these intermolecular forces.
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A fluid, for which the viscous stress is linearly dependent on the shear is said to
be a Newtonian fluid.
Velocity gradients are responsible for the rate of strain and deformation.
These gradients are perpendicular to the velocity.

Figure 6: Cartoon of Viscous Stress

In general, for two dimensions:

τij = µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(21)

τij represents the tangential frictional force per unit area in N/m2, where µ
is the dynamic viscosity. We can put it in kinematic form by dividing by ρ (ν =
µ/ρ = 1.4607× 10−5 m2/s)

τij = ν

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(22)

Kinematic viscous stress ≈ 7.304× 10−6 m2/s2.
We usually neglect viscous stress for mean wind but NOT for turbulence.

2c. Friction Velocity

At the surface the magnitude of the Reynolds stress is the total vertical flux of
horizontal momentum measured at the surface:

τxz = −ρu′w′s (23)
τyz = −ρv′w′s (24)

(25)

The total Reynolds stress is:

|τReynolds| = (τ 2
xz + τ 2

yz)
1/2 (26)

We define a velocity scale called the friction velocity u∗, when turbulence is
generated by wind shear, this is a very important scaling variable.
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u2
∗ = |τReynolds|/ρ̄ = (u′w′s

2
+ v′w′s

2
)1/2 (27)

We will also introduce the surface layer temperature scale

θSL∗ =
−w′θ′s
u∗

(28)

And the surface layer humidity scale

qSL∗ =
−w′q′s
u∗

(29)
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