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1. Introduction to Governing Equations
The Equations of motion contain the time and space derivatives that require initial
and boundary conditions for their solution.
Generally we don’t forecast all eddy motions, we pick a cut-off eddy size and be-
low this we include only the statistical effects of turbulence.
Mesoscale and synoptic models : cut-off is on the order of 10 to 100km.
Large Eddy simulation : cut-off is on the order of 100m.

However, averaging the equations leads to a situation where there are more
unknowns than equations - the so-called closure problem. The closure problem
leads us to consider the second-moment equations with particular attention to the
turbulent kinetic energy (TKE) equation.
There is no analytical solution to the complete set of equations. So we must either
simplify the equations and solve analytically, or use numerical models.

Remember, turbulent flows are rotational and three dimensional, they are dis-
sipative so energy must be supplied to maintain the turbulence, fluid motions are
not predictable in detail, the rates of transfer and mixing are orders of magnitude
larger than the rate of molecular diffusion.

1a. Methodology

• Step 1. Identify the basic governing equations for boundary layer.

• Step 2. Expand dependent variables into mean and turbulent parts.

• Step 3. Apply Reynolds averaging to get mean variables within turbulent
flow.

• Step 4. Obtain equations for turbulent departure from mean.

• Step 5. Obtain prognostic equations for turbulence statistics, like turbulence
kinetic energy.

2. Equation of State
p = ρRTv (1)
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where p is pressure, ρ is the density of moist air, Tv is the virtual absolute
temperature and R is the gas constant for dry air (R = 287J/(kgK)

2a. Mean and Turbulent Parts
p̄+ p′

R
= (ρ+ ρ′)(Tv + T ′v) (2)

p

R
+
p′

R
= ρ̄Tv + ρ̄T ′v + ρ′Tv + ρ′T ′v (3)

2b. Reynolds Averaging

p

R
= ρTv + ρ′T ′v (4)

because ρ′T ′v << ρTv

p

R
= ρTv (5)

Equation of state for mean variables

2c. Equation for Turbulent Part

If we subtract equation 5 from 3:

p′

R
= ρ̄T ′v + ρ′Tv + ρ′T ′v (6)

By dividing equation 6 by p̄/R = ρTv, and neglecting the term that looks like
ρ′T ′v/(ρTv), we obtain the linearized perturbation ideal gas law

p′

p̄
=
T ′v
Tv

+
ρ′

ρ̄
(7)

Within the boundary layer, we can neglect the pressure perturbation over av-
erage pressure, and we can say that:

−T
′
v

Tv
=
ρ′

ρ̄
(8)

Which is stating that warmer (colder) than average air is less dense (more
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dense) than average. This also allows us to substitute temperature fluctuations in
place of density fluctuations.

3. Conservation of Mass
∂ρ

∂t
+
∂(ρUj)

∂xj
=
∂ρ

∂t
+ Uj

∂ρ

∂xj
+ ρ

∂Uj
∂xj

= 0 (9)

Because the definition of total derivative: dρ
dt

= ∂ρ
∂t

+ Ui
∂ρ
∂xi

dρ

dt
+ ρ

∂Uj
∂xj

= 0 (10)

Within the boundary layer, dρ
dt
/ρ <<

∂Uj

∂xj
, so we use the incompressibility

assumption:

∂Uj
∂xj

= 0 (11)

3a. Mean and Turbulent Parts

∂(Uj + u′j)

∂xj
= 0 (12)

3b. Reynolds Averaging

∂Uj
∂xj

= 0 (13)

Conservation of mass for mean variables

3c. Equation for Turbulent Part

Subtracting equation 14 from 12:

∂u′j
∂xj

= 0 (14)

Conservation of mass for turbulent variables
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3d. Flux form of advection terms

The equations of motion have the advection term: Uj ∂ζ∂xj .

Using continuity equation, we know that ζ ∂Uj

∂xj
= 0. Then,

Uj
∂ζ

∂xj
= Uj

∂ζ

∂xj
+ ζ

∂Uj
∂xj

=
∂(Ujζ)

∂xj
(15)

4. Conservation of Moisture
∂q

∂t
+ Uj

∂q

∂xj
= νq

∂2q

∂x2j
+

Sq
ρair

(16)

Where q is the specific humidity (mass of water per unit mass of moist air), νq
is the molecular diffusivity for water vapor in the air, Sq is moisture source term.

4a. Mean and Turbulent Parts

∂q

∂t
+
∂q′

∂t
+ Uj

∂q

∂xj
+ Uj

∂q′

∂xj
+ u′j

∂q

∂xj
+ u′j

∂q′

∂xj
= (17)

νq
∂2q̄

∂x2j
+ νq

∂2q′

∂x2j
+

Sq
ρair

4b. Reynols Averaging

We perform Reynolds Averaging on 18 and express the turbulent advection term

in flux form u′j
∂q′

∂xj
=

∂u′jq
′

∂xj

∂q

∂t︸︷︷︸
I

+Uj
∂q

∂xj︸ ︷︷ ︸
II

= νq
∂2q̄

∂x2j︸ ︷︷ ︸
III

+
Sq
ρair︸︷︷︸
IV

−
∂u′jq

′

∂xj︸ ︷︷ ︸
V

(18)

Conservation equation for mean total moisture

• Term I represents storage of mean moisture

• Term II advection of mean moisture by mean wind
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• Term III mean molecular diffussion of water vapor

• Term IV mean net body source term for additional moisture processes

• Term V Divergence of turbulent total moisture flux

4c. Equation for Turbulent Part

Subtracting Equation 18 from 18 :

∂q′

∂t
+ Uj

∂q′

∂xj
+ u′j

∂q

∂xj
+ u′j

∂q′

∂xj
= νq

∂2q′

∂x2j
+
∂u′jq

′

∂xj
(19)

Prognostic equation for the perturbation part (q′).

5. Conservation of Scalar Quantity
∂C

∂t
+ Uj

∂C

∂xj
= νc

∂2C

∂x2j
+

Sc
ρair

(20)

Where C is the concentration of a tracer (mass of scalar per unit mass of moist
air), νc is the molecular diffusivity for that scalar in the air, Sc is net source term.

5a. Mean and Turbulent Parts

∂C

∂t
+
∂c′

∂t
+ Uj

∂C

∂xj
+ Uj

∂c′

∂xj
+ u′j

∂C

∂xj
+ u′j

∂c′

∂xj
= (21)

νc
∂2C̄

∂x2j
+ νc

∂2c′

∂x2j
+

Sc
ρair

5b. Reynols Averaging

We perform Reynolds Averaging on 26 and express the turbulent advection term

in flux form u′j
∂c′

∂xj
=

∂u′jc
′

∂xj
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∂C

∂t︸︷︷︸
I

+Uj
∂C

∂xj︸ ︷︷ ︸
II

= νc
∂2C

∂x2j︸ ︷︷ ︸
III

+
Sc
ρair︸︷︷︸
IV

−
∂u′jc

′

∂xj︸ ︷︷ ︸
V

(22)

Conservation equation for mean tracer C

• Term I represents storage of mean tracer C

• Term II advection of mean tracer by mean wind

• Term III mean molecular diffusion of tracer

• Term IV mean net body source term for additional tracer processes

• Term V Divergence of turbulent total tracer flux

5c. Equation for Turbulent Part

Subtracting Equation 26 from 26 :

∂c′

∂t
+ Uj

∂c′

∂xj
+ u′j

∂C

∂xj
+ u′j

∂C ′

∂xj
= νc

∂2c′

∂x2j
+
∂u′jc

′

∂xj
(23)

Prognostic equation for the perturbation part (c′).

6. Conservation of Heat
The First Law of Thermodynamics includes contributions from both sensible and
latent heat. Remember that water vapor not only transports temperature, but also
the potential to release or absorb additional latent heat during phase change.

∂θ

∂t
+ Uj

∂θ

∂xj
= νθ

∂2θ

∂x2j
− 1

ρCp

∂Qj∗
∂xj

− ∂LpE

ρCp
(24)

Where νθ is the thermal diffusivity, Lp is the latent heat associated with the
phase change of E (Lv=2.5×106 J/kg (gas-liquid),Lf=3.34×105 J/kg (solid-liquid),
Ls=2.83×106 J/kg (gas-solid)).
Q∗j is the component of net radiation in the jth direction, and Cp is the specific
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heat of moist air, related to the specific heat of dry air Cpd = 1005Jkg−1K−1 by
Cp = Cpd(1 + 0.84q)

• Term I storage term

• Term II advection term

• Term III mean molecular diffusion diffusion

• Term IV source term associated to radiation divergence

• Term V source term associated to latent heat released during phase change

6a. Mean and Turbulent Parts

∂θ

∂t
+
∂θ′

∂t
+ Uj

∂θ

∂xj
+ Uj

∂θ′

∂xj
+ u′j

∂θ

∂xj
+ u′j

∂θ′

∂xj
= (25)

νθ
∂2θ

∂x2j
+ νθ

∂2θ′

∂x2j
− 1

ρCp

∂Qj∗
∂xj

−

1

ρCp

∂Qj∗′

∂xj
− LvE

ρCp

6b. Reynols Averaging

We perform Reynolds Averaging on 26 and express the turbulent advection term

in flux form u′j
∂θ′

∂xj
=

∂u′jθ
′

∂xj

∂θ

∂t︸︷︷︸
I

+Uj
∂θ

∂xj︸ ︷︷ ︸
II

= νθ
∂2θ

∂x2j︸ ︷︷ ︸
III

− 1

ρCp

∂Qj∗
∂xj︸ ︷︷ ︸

IV

− LvE

ρCp︸︷︷︸
V

−
∂u′jθ

′

∂xj︸ ︷︷ ︸
V I

(26)

Conservation equation for heat

• Term I represents storage of heat

• Term II advection of heat by mean wind
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• Term III mean molecular conduction of heat

• Term IV mean net body source associated with radiation divergence

• Term V mean net body source associated with latent heat release

• Term VI divergence of turbulent heat flux

6c. Equation for Turbulent Part

Subtracting Equation 26 from 26 :

∂θ′

∂t
+ Uj

∂θ′

∂xj
+ u′j

∂θ

∂xj
+ u′j

∂θ′

∂xj
= νc

∂2θ′

∂x2j
+
∂u′jθ

′

∂xj
− 1

ρCp

∂Q′j∗
∂xj

(27)

Prognostic equation for the perturbation part (θ′).

7. Conservation of Momentum
When discussing Einstein’s (summation) notation, we used the example of the
equation of conservation of momentum:

∂Ui
∂t︸︷︷︸
I

+Uj
∂Ui
∂xj︸ ︷︷ ︸
II

= −δi3g︸ ︷︷ ︸
III

+ fcεij3Uj︸ ︷︷ ︸
IV

− 1

ρ

∂p

∂xi︸ ︷︷ ︸
V

+
1

ρ

∂τij
∂xj︸ ︷︷ ︸
V I

(28)

• Term I represents storage of momentum (inertia).

• Term II advection

• Term III vertical effect of gravity

• Term IV Coriolis effect where fc = 1.45 × 10−4 sin φ (φ is latitude)

• Term V pressure gradient forces

• Term VI viscous stress
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Remember that the viscous stress in Term VI can be expressed as: τij =

µ
(
∂Ui

∂xj
+

∂Uj

∂xi

)
, so

1

ρ

∂τij
∂xj

=
µ

ρ

∂

∂xj

(
∂Ui
∂xj

+
∂Uj
∂xi

)
= ν

∂

∂xj

∂Ui
∂xj

+ ν
∂

∂xi

∂Uj
∂xj

(29)

Because of the conservation of mass ∂Uj

∂xj
= 0

Term VI = ν
∂2Ui
∂x2j

(30)

∂Ui
∂t︸︷︷︸
I

+Uj
∂Ui
∂xj︸ ︷︷ ︸
II

= −δi3g︸ ︷︷ ︸
III

+ fcεij3Uj︸ ︷︷ ︸
IV

− 1

ρ

∂p

∂xi︸ ︷︷ ︸
V

+ ν
∂2Ui
∂x2j︸ ︷︷ ︸
V I

(31)

7a. Mean and Turbulent Parts

I will use Boussinesq approximation (explained in pages 83 and 84). This ap-
proximation neglects density variations in the storage term but retains them in the
gravity term. This is essentially what will drive buoyancy in the equations of mo-
tion, and when applied to the vertical momentum equation it ensures that warmer
than average air is accelerated upward.
in practical terms we will replace every occurrence of ρ with ρ̄ and replace every
occurrence of g with

(
g − (θ′v/θ̄v)g

)
∂(Ui + u′i)

∂t
+ (Uj + uij)

∂(Ui + u′i)

∂xj
= (32)

−δi3
(
g − θ′v

θ̄v
g

)
+

fcεij3(Uj + u′j) −
1

ρ

∂(p+ p′)

∂xi
+ ν

∂2(Ui + u′i)

∂x2j
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We expand the above equation

∂Ui
∂t

+
∂u′i
∂t

+ Uj
∂Ui
∂xj

+ Uj
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ u′j
∂u′i
∂xj

= (33)

−δi3g − δi3
θ′v
θv
g + fcεij3Uj + fcεij3u

′
j −

1

ρ

∂p

∂xi
− 1

ρ

∂p′

∂xi
+ ν

∂2Ui
∂x2j

+ ν
∂2u′i
∂x2j

7b. Reynolds Averaging

We do Reynolds Averaging and express the turbulent advection term in flux form

u′i
∂u′j
∂xj

=
∂u′ju

′
i

∂xj

∂Ui
∂t︸︷︷︸
I

+Uj
∂Ui
∂xj︸ ︷︷ ︸
II

= −δi3g︸ ︷︷ ︸
III

+ fcεij3Uj︸ ︷︷ ︸
IV

− 1

ρ

∂p

∂xi︸ ︷︷ ︸
V

+ ν
∂2Ui
∂x2j︸ ︷︷ ︸
V I

−
∂u′ju

′
i

∂xj︸ ︷︷ ︸
V II

(34)

Conservation of momentum for mean variables. Forecast equation for mean
wind.

• Term I represents storage of mean momentum (inertia).

• Term II advection of mean momentum by mean wind

• Term III vertical effect of gravity

• Term IV Coriolis effect

• Term V mean pressure gradient forces

• Term VI viscous stress on mean motions

• Term VII Influence of Reynold’s stress on mean motions. Also described as
divergence of turbulent momentum flux.

Notice that this means that turbulence must be considered in making forecasts
in the turbulent boundary layer even if we are trying to forecast mean quan-
tities
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7c. Equation for Turbulent Part

If we subtract equation 34 from 34, we get the following equation:

∂u′i
∂t

+ Uj
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ u′j
∂u′i
∂xj

= δi3
θ′v
θv
g + fcεij3u

′
j −

1

ρ

∂p′

∂xi
+ ν

∂2u′i
∂x2j

+
∂u′ju

′
i

∂xj

(35)

Conservation of momentum for turbulent variables. Forecast equation for
turbulent gusts.
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8. Boussinesq Approximation
Let’s look at the momentum equation in the vertical direction (i=3):

dW

dt
= −g − 1

ρ

∂p

∂z
+ ν

∂2W

∂z2
(36)

We can multiply by ρ and expand into mean and turbulent parts:

(ρ+ ρ′)
d(W + w′)

dt
= −(ρ+ ρ′)g − ∂(P + p′)

∂z
+ µ

∂2(W + w′)

∂z2
(37)

Dividing by ρ and rearranging:
We can multiply by ρ and expand into mean and turbulent parts:

(1 + ρ′/ρ)
d(W + w′)

dt
= −(ρ′/ρ)g − 1

ρ

∂p′

∂z
+ ν

∂2(W + w′)

∂z2
− 1

ρ

(
∂P

∂z
+ ρg

)
(38)

1. Assuming the mean state is in hydrostatic equilibrium, the last term = 0.

2. (1 + ρ′/ρ) ≈ 1 in the storage term.

3. (ρ′/ρ)g is NOT negligible - IT MUST STAY!

4. Only for the momentum equation we can neglect subsidence W because it
is always paired with the term w′ which is larger

dw′

dt
= −(ρ′/ρ)g − 1

ρ

∂p′

∂z
+ ν

∂2(w′)

∂z2
(39)

The process of neglecting density variations in the storage term, but retaining
them in the gravity term is called the Boussinesq Approximation. The practical
application of Boussinesq Approximation: Given any of the original governing
equations, replace every occurrence of ρ with ρ and every occurrence of g with
[g + (ρ′/ρ)g] ≈ [g − (θ′v/θv)g]

Notice the physical meaning of equation 39: the first two terms indicate that
warmer than average air is accelerated upward, while the last two terms describe
the effects of pressure and viscous stress on that motion.
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