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1. Universal Derivation for Variance terms
1. Begin with the prognostic equation for the perturbation of the variable ζ ′.

2. Multiply by 2ζ ′ and convert the terms 2ζ ′ ∂ζ
′

∂t
into ∂(ζ′)2

∂t

3. Reynolds average

4. The terms that look like u′j
∂ζ′2

∂xj
can be turned into flux form by using the

continuity equation multiplied by ζ ′2 (which is equal to zero). u′j
∂ζ′2

∂xj
+

ζ ′2
∂u′j
∂xj

=
∂ζ′2u′j
∂xj

1a. Example: Momentum Variance

If we take equation ??, and multiply by 2u′i, we obtain:

2u′i
∂u′i
∂t

+ 2Uju
′
i

∂u′i
∂xj

+ 2u′iu
′
j

∂Ui
∂xj

+ 2u′ju
′
i

∂u′i
∂xj

= (1)

−2u′iδi3
θ′v
θv
g + 2fcεij3u

′
iu
′
j −

1

ρ

∂p′

∂xi
+ 2νu′i

∂2u′i
∂x2

j

+ 2u′i
∂u′ju

′
i

∂xj

(2)

Then, the terms that look like 2u′i
∂u′i
∂t

will be expressed as ∂u′2i
∂t

∂u′2i
∂t

+ Uj
∂u′2i
∂xj

+ 2u′iu
′
j

∂Ui
∂xj

+ u′j
∂u′2i
∂xj

= (3)

−2u′iδi3
θ′v
θv
g + 2fcεij3u

′
iu
′
j − 2

u′i
ρ

∂p′

∂xi
+ 2νu′i

∂2u′i
∂x2

j

+ 2u′i
∂u′ju

′
i

∂xj

(4)
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1b. Reynolds Averaging

∂u′2i
∂t

+ Uj
∂u′2i
∂xj

+ 2u′iu
′
j

∂Ui
∂xj

+ u′j
∂u′2i
∂xj

= (5)

−2δi3u′i
θ′v
θv
g + 2fcεij3u′iu

′
j − 2

u′i
ρ

∂p′

∂xi
+ 2νu′i

∂2u′i
∂x2

j

+ 2u′i
∂u′ju

′
i

∂xj

(6)

Now we perform several simplifications:

• Last term is 0 because u′i = 0

• Last term on left hand side can be turned into flux form by adding u2
i

∂u′j
∂xj

which is equal to zero by continuity.

• Simplifying the dissipation term to −2ν
(
∂u′i
∂xj

)2

= −2ε(see pg 122 in book
for derivation).

• Put the pressure perturbation term in flux form −
(

2
ρ̄

)
∂(u′ip

′)

∂xi
using the fact

that the turbulence continuity equation is zero.

• Coriolis is zero for velocity variances (try it!)

∂u′2i
∂t

+ Uj
∂u′2i
∂xj

= 2δi3
u′iθ
′
v

θv
g − 2u′iu

′
j

∂Ui
∂xj

+
∂u′ju

′2
i

∂xj
−
(

2

ρ̄

)
∂(u′ip

′)

∂xi
− 2ε (7)

The same is done for the prognostic equations for moisture variance q′2, po-
tential temperature variance θ′2, variance of a scalar quantity c′2.
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2. Universal Derivation for Turbulent Fluxes
Equations for the mean variables in turbulent flow contain divergence terms of
turbulent fluxes u′iu′j , θ′u′j , q′u′j . We can find prognostic equations for these fluxes.

1. Multiply perturbation equation for ζ ′ by ui and Reynolds average.

2. Multiply the momentum perturbation equation (u′i) by ζ ′

3. Add the two resulting equations

4. Use the continuity equation to get the turbulent transport terms into flux
form-merge any other terms

2a. Example: Moisture Flux

Start with the momentum perturbation equation and multiply by moisture pertur-
bation, Reynolds average.

q′
∂u′i
∂t

+Ujq′
∂u′i
∂xj

+q′u′j
∂Ui
∂xj

+q′u′j
∂u′i
∂xj

= q′δi3
θ′v
θv
g+fcεij3q′u′j−

q′

ρ

∂p′

∂xi
+νq′

∂2u′i
∂x2

j

+q′
∂u′ju

′
i

∂xj
(8)

(last term is equal to zero when Reynolds averaging.)
Similarly, we start with the moisture perturbation equation and multiply by u′i

and Reynolds average.

u′
∂q′

∂t
+ Uju′

∂q′

∂xj
+ u′iu

′
j

∂q

∂xj
+ u′iu

′
j

∂q′

∂xj
= νqu′i

∂2q′

∂x2
j

+ u′i
∂u′jq

′

∂xj
(9)

(last term is equal to zero when Reynolds averaging.) Now we add the equa-
tions 8 and 13, and put the turbulent flux divergence terms into flux form. We also
assume ν = νq.

∂u′iq
′

∂t
+ Uj

∂u′iq
′

∂xj
+ u′iu

′
j

∂q

∂xj
+ q′u′j

∂Ui
∂xj

+
∂(q′u′iu

′
j)

∂xj
= (10)

δi3
q′θ′v
θv

g + fcεij3q′u′j −
1

ρ

(
∂(q′p′)

∂xi
− p′

∂q′

∂xi

)
+
ν∂2(q′u′i)

∂x2
j

− 2ν

(
∂u′i
∂xj

)(
∂q′

∂xj

)
(11)
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neglect Coriolis, pressure diffusion, molecular diffusion of turublent fluxes,
and substitute the last term for 2εuiq

∂u′iq
′

∂t
+ Uj

∂u′iq
′

∂xj
+ u′iu

′
j

∂q

∂xj
+ q′u′j

∂Ui
∂xj

+
∂(q′u′iu

′
j)

∂xj
= (12)

δi3
q′θ′v
θv

g +
1

ρ

(
p′
∂q′

∂xi

)
− 2εuiq

(13)

First term is the storage term, second term is advection term, third, fourth and
sixth are production/consumption terms, fifth is a turbulent transport, term seven is
a redistribution and term eight is a molecular destruction (dissipation) of turbulent
moisture flux).
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3. Turbulence Kinetic Energy
Kinetic energy is defined as KE = 1

2
mM2, where m is mass and M is velocity.

We can also use kinetic energy per unit mass KE/m = 1
2
M2. We can divide into

mean and turbulence parts.

MKE/m =
1

2
(Ū2 + V̄ 2 + W̄ 2) (14)

e =
1

2
(u′2 + v′2 + w′2) =

1

2
u2
i (15)

Where e is instantaneous, we can average over the instantaneous flows to ob-
tain the turbulence kinetic energy (TKE) per unit mass:

TKE/m =
1

2
(u′2 + v′2 + w′2) (16)

Look how the variance will play a very important role in defining TKE. TKE
is one of the most important quantities used to study the turbulent BL. TKE will
tell us whether the BL will become more turbulent or if turbulence will decay.

• Turbulence Production: Buoyant thermals and mechanical eddies.

• Turbulence Suppression: statically stable lapse rate, and dissipated into heat
by molecular viscosity.

There is a clear diurnal cycle of TKE in convective conditions:

Figure 1: Diurnal variability of TKE and different TKE profiles for different static
stability conditions.

We can multiply by 0.5 and obtain the equation for TKE:

∂e

∂t︸︷︷︸
I

+Uj
∂e

∂xj︸ ︷︷ ︸
II

= δi3
u′iθ
′
v

θv
g︸ ︷︷ ︸

III

−u′iu
′
j

∂Ui
∂xj︸ ︷︷ ︸

IV

−
∂u′je

∂xj︸ ︷︷ ︸
V

−
(

1

ρ̄

)
∂(u′ip

′)

∂xi︸ ︷︷ ︸
V I

− ε︸︷︷︸
V II

(17)
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• Term I represents local storage of TKE. TKE storage increases from early
morning with a peak in the early afternoon. ≈ 5×10−5m3/s3. Over oceans,
the storage term can be neglected (small diurnal cycle), which means that
the intensity of turbulence doesn’t change significantly with time.

• Term II advection of TKE by mean wind. Many times is neglected assuming
horizontal homogeneity, however, this might not be valid for heterogeneous
terrain (think of a reservoir).

• Term III buoyant production or consumption term. It can production term if
the heat flux u′iθ′v is positive (associated to thermals over land during day)
or loss term when negative (during land during night). Depends on the flux
of virtual potential temperature. This term is very important for days of free
convection and can be used to normalize the TKE equation, at the surface
Term III=w3

∗/zi. Only acts in the vertical (anisotropic). Static stability tends
to suppress or consume TKE, and is associated with negative Term III, and
this occurs when the surface is colder than the overlying air.

• Term IV mechanical production/loss term. Associated with mean wind
shear in the presence of Momentum flux is in opposite sign of wind shear,
so their multiplication has a negative sign. Largest at the surface, because
of the large wind shear, however, you can have large wind shear at the top of
the ML with geostrophic winds above. Greatest contribution on windy days,
during synoptic cyclones. Except in thunderstorms, W shear is negligible in
the BL. Produces turbulence primarily in the horizontal (anisotropic).

• Term V is the turbulent transport of TKE, how TKE is moved through tur-
bulent eddies. It is a flux divergence term - if integrated throughout the BL,
it is zero, so it only redistributes turbulence (not a production/loss term).
Maximum vertical transport at z/zi = 0.3. Vertical transport dominates in
the middle, horizontal dominates near the surface.

• Term VI describes how TKE is redistributed by pressure perturbations, often
associated to oscillations (buoyancy or gravity waves). Very small pressure
perturbations, cannot really be measured, so this term is usually calculated
as a residual. This term can redistribute TKE but can also drain energy out
of the BL.

• Term VII viscous dissipation of TKE, so the conversion of TKE into heat.
Molecular destruction is greatest for the smallest eddy sizes, so intense
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small-scale turbulence induces larger dissipation. Largest near the surface,
and then become constant, rapidly decrease to zero above the ML. At night
TKE and dissipation vary rapidly with height. Generally, the greatest dissi-
pation will occur where there is largest production - however there is not a
perfect balance.

We can simplify if we align the system with the mean wind, assume horizontal
homogeneity and neglect subsidence (notice that all the partial derivatives in x and
y are zero because of horizontal homogeneity).

∂e

∂t
=
w′θ′v
θv

g − w′u′
∂U

∂z
− ∂w′e

∂z
−
(

1

ρ̄

)
∂(w′p′)

∂z
− ε (18)

3a. Transfer of Energy and Mean Kinetic Energy

Shear production and buoyant production terms are large and positive for large
eddy sizes. There is a cascade of energy away from the large eddies towards
the small eddies. At small eddy sizes, the production is close to zero and the
dissipation is very large. This can be thought of as an inertial process where large
eddies bump into smaller ones and transfer their inertia, the middle portion of the
spectrum is the inertial subrange.

Figure 2: Figure 5.16

We can also evaluate the prognostic equation for mean kinetic energy (MKE).
To do this, we multiply the equation for mean wind by Ui. When you do, you get
a term that looks like u′iu′j

∂Ui

∂xj
, which is the same term as in the TKE equation,

however they have opposite sign.

∂MKE

∂t
= ...+ u′iu

′
j

∂Ui
∂xj

(19)

∂TKE

∂t
= ...− u′iu

′
j

∂Ui
∂xj

(20)

This is telling us that the energy that is mechanically produced as turbu-
lence is lost from the mean flow.
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