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1. Evaporation
Evaporation is the phenomenon by which a substance is converted from the liquid
state into apour. Evaporation requries energy to supply the latent heat of vapor-
ization. From the perspective of the atmospheric scientist, much of the problem
relates to determining the surface humidity (air’s humidity at the humidity rough-
ness height zq. For a wet surface q0 is the saturated value q∗0 .

1a. Evaporation from Wet Surfaces

Evaporation from a saturated surface where q0 = q ∗ (T0) is closely related to the
concept of potential evaporation (Ep) which is the maximum possible evaporation
from a given surface. Using the above equation for humidity measured at two
different levels, we can define the latent heat flux of evaporation as:

LvR̃ = Q̃E =
ρLv(q2 − q1)

raV
(1)

we can express this equation in terms of vapor pressure since q ≈ 0.622e/p

Q̃E =
ρLv0.622(e2 − e1)

p raV
(2)

=
ρcp(e2 − e1)

γ raV
(3)

where γ = cpp

0.622Lv
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If your surface is saturated, we can take measurements at only one height
because the vapor pressure at the surface is the saturation vapor pressure.

Q̃E =
ρcp(e

∗(T0) − e(T ))

γ raV
(4)

Remember that we have also defined the sensible heat flux as:

Q̃H =
ρcp(θ0 − θ)

raH
(5)

And since the total radiation is: RN −G0 = H0 + λE0:

Q̃E = (RN −G0) −
ρcp(θ0 − θ)

raH
(6)

We will now express this relationship in terms of absolute temperature, by
assuming that the correction is negligible, that is: T (p/pr)

−Rd/cp − T ≈ 0 where
z is the elevation above the reference level, then:

Q̃E = (RN −G0) −
ρcp(T0 − T )

raH
(7)

We define:

∆ =
e∗(T0) − e∗(T )

T0 − T
(8)

Then,

Q̃E = (RN −G0) −
ρcp(e

∗(T0) − e∗(T ))

∆ raH
(9)

Now, let’s manipulate this equation:

Q̃E = (RN −G0) −
ρcp[(e

∗(T0) − e(T )) + (e(T ) − e∗(T ))]

∆ raH
(10)

∆Q̃E +
ρcp(e

∗(T0) − e(T ))

raH
= ∆(RN −G0) +

ρcp(e
∗(T ) − e(T )

raH
(11)

we can express the second term on the left hand side as a function of Q̃E:
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∆Q̃E + Q̃E
γraV
raH

= ∆(RN0 −G0) +
ρcp(e

∗(T ) − e(T )

raH
(12)

we finally obtain the expression for latent heat of vaporization:

Q̃E =
∆(RN −G0) + ρcp

raH
(e∗(T ) − e(T ))

∆ + γraV
raH

(13)

This equation has a two-term structure suggesting that the evaporation from a
saturated surface has both energy and aerodynamic contributions. This equation
has proven successful at modeling evaporation when applied to water surfaces,
saturated soil and vegetation with wet foliage. It can be applied at hourly and
longer-term.

Many times, this equation, called the ”Penman Equation” is presented as:

Q̃E = LvR̃ =
∆

∆ + γ
(RN −G0) +

γ

∆ + γ
Ea (14)

where

Ea =
0.622λρ

PraH
(e∗(T ) − e(T )) =

ρ

raH
(q∗(T ) − q(T )) (15)

In this way the two-term structure is clearly evident. In the original formu-
lation of Penman (1948) he proposed an empirical equation for Ea, however, we
can express Ea using similarity theory and the expression for raH . Solving this
equation also requires an Iterative method. We follow almost exactly the same
procedure as before (first assume neutral conditions), calculate the latent heat flux
using the Penman equation, the sensible heat can be calculated directly from the
net radiation as Q̃H = RN −G0 − Q̃E . Then, as before, we calculate the Monin-
Obukhov and begin iterations.
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1b. Evaporation from Wet Surfaces in the absence of Advection

If the air above a surface is completely saturated, the second term in the Penman
equation drops. And the evaporation can be expressed as:

Q̃E =
∆

∆ + γ
(RN −G0) (16)

Investigations have shown, however, that these conditions are rarely encountered,
if ever. However, based on this idea Priestly and Taylor (1972) used this relation-
ship to find an empirical relation for evaporation over wet surfaces in conditions
of minimal advection.

Q̃E = αe
∆

∆ + γ
(RN −G0) (17)

Where αe is a constant that ranges from about 1.2-1.3 over advection-free
water surfaces and moist land surfaces with short vegetation. This relationship
has been found to work remarkably well, and furthermore has been modified to
include different vegetation stresses to use with remote sensing (Fisher et al. 2008)

1c. Bowen Ratio Method

Bowen Ratio is the ratio between sensible heat and latent heat.

B0 =
Q̃H

Q̃E

=
ρcp(w′θ′)s

ρLv(w′q′)s
(18)

We can express these in terms of the bulk transfer coefficients:

B0 =
cpCHU(θ0 − θ)

LvCEU(q0 − q)
=
cp(θ0 − θ)

Lv(q0 − q)
(19)

If we know the sensible heat flux, it is quite easy then to determine the latent
heat flux. As an aside, if we know the flux of any other scalar (like CO2) which
has a similar transfer coefficient we can also use it in the expression.

We can also use the energy equation in combination with the Bowen Ratio to
solve for latent heat if we know the net radiation:
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Q̃E =
RN −G0

1 +B0

(20)

So if we know the mean potential temperature and humidity at a certain height
and at the surface, and we know the net radiation, we can solve for the latent
(and sensible heat). This method has the advantage that we don’t need similarity
functions for the atmospheric turbulence and the formulation is independent of
atmospheric stability.

1d. Potential evaporation (Ep)

Generally, calculations of evaporation from wet surfaces are taken to be measures
of potential evapotranspiration. We need to clarify some concepts. Potential evap-
otranspiration is the maximal rate of evaporation from a large area covered com-
pletely and uniformly by an actively growing vegetation with adequate moisture
at all times.It is important to note, however, that that:

• Transpiration, even at the potential rate, involves stomatal impedance to the
diffusion of water vapor so it is better to use the term potential evaporation.

• Wet or moist surface is not the same as one that has an adequate moisture
supply for the roots of an actively growing vegetation.

• PET is often measured by meteorological data observed under nonpotential
conditions, which would not be the same as air under potential conditions.
So sometimes we call this the apparent Ep or Epa.

NOTE: over short non-wet vegetation with adequate moisture, the evapotranspira-
tion is often similar to the evaporation from open water under the same conditions,
this is likely due to the fact that stomatal impedance is compensated by the larger
roughness values resulting in larger transfer coefficients.

1e. Operational methods for landsurfaces

To predict evaporation operationally, generally we use the potential evaporation
in conjunction with a procedure to derive the actual evaporation from it. Probably
the oldest method is the bucket method.

E = βeEp (21)
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where Ep is the potential evaporation rate and βe is a reduction factor reflect-
ing the moisture availability. In practice we use Epa. The reduction factor is a
function of soil water content. A common assumption is:

βe = 1 for w > w0

βe = (w − wc)/(w0 − wc) for w ≤ w0

wherew0 is a critical soil water content above whichE = Ep andwc is a lower
cut-off value below which E = 0. One difficulty in applying this formulation is
that as the surface dries out βe approaches zero while Ep = Epa tends to become
large so they move in the opposite direction and may lead to an unstable product
of a large and a small quantity.

1f. Evaporation from Dry Vegetation

Evaporation is reduced below the potential rate when the surface humidity is less
than the saturation value. In the leaf surface, there exists a surface resistance to
water vapor transfer through foliage stomata whether the vegetation is under neg-
ligible or sever water stress. We need to introduce a surface resistance denoted
by rs that applies to unsaturated surfaces and most usually to vegetation (when
q0 < q∗(T0) ). In the case of vegetation this represents an effective stomatal re-
sistance to the transfer of water vapor from the internal water sites in the plant to
the leaf exterior. Despite the fact that this is a gross simplification, it does provide
the best available simple description of the surface control on transpiration. Be-
cause evaporation also takes place from the soil suface, the basic idea is usually
extended to include this transport as well. The pores are providing a resistance to
the diffusion of water vapor.

In this case, the latent heat flux is now a function of both the stomatal plus a
boundary layer resistance:

Q̃E =
ρcp(e

∗(T0) − e(T ))

γ raV + rs
(22)

And the equation for the evapotranspiration becomes:

Q̃E =
∆(RN −G0) + ρcp

raH
(e∗(T0) − e(T ))

∆ + γ(raV +rs)
raH

(23)
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We can assume that raV = raH = ra,
we finally obtain the expression for latent heat of vaporization called the Penman-

Monteith Equation:

Q̃E =
∆(RN −G0) + ρcp

ra
(e∗(T0) − e(T ))

∆ + γ
(

1 + rs
ra

) (24)

• rs stomatal resistance of the individual leaf

• ra boundary layer resistance

• RN −G0 flux of net radiation into leaf

• Q̃E flux of latent heat from leaf

• ρ density of air

• cp specific heat or air

The importance of this equation is that it gives evaporation in terms of mea-
sureable meteorological variables (RN , T,D) and known resistances. Although
these resistances are really difficult to estimate in reality. While the physical na-
ture of ra is well understood based on turbulence theory, the conceptual signifi-
cance of the resistance concept remains problematic.

Equations for whole-canopy exchanges are identical to single leaf, except that
the energy balance is for the canopy as a whole. Single layer canopy models are
usually used in numerical atmospheric models where we are interested in scales
that are larger than the canopy scale. Multilayer models are appropriate when re-
solving details within the canopy, so for forest stands. We will deal with single
layer models.

The Penman-Monteith Equation for whole canopy is:

Q̃E =
∆(RN −G0) + ρcp

ra
D

∆ + γ
(

1 + rsT
ra

) (25)

Where rsT is the bulk stomatal resistance of the whole canopy. If rsi is the
resistance for a single leaf, then rsT is the parallel sum of these leaf stomatal
resistances with:
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rsT
=

1

A

∑ LA,i
rsi

(26)

where LA,i is the area of the ith leaf, A is the ground area LAI the leaf area
index is LAI =

∑
LA,i/A, and the approximation generally used is:

rsT ≈ rsi/LAI (27)

The values for several canopy types is listed in Garrat Table 5.1.

While this equation works with a dense canopy, for an open canopy where LAI
< 1, the underlying single source assumption (only transpiration) doesn’t work.
Total evapotranspiration becomes a combination of transpiration from different
plant types and evaporation from open areas. The equation must be applied sepa-
rately to vegetated and bare areas.
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