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1. Radiation Fluxes
The net radiation over land RN0 contains a combination of shortwave and long-
wave fluxes:

RN0 = Rs0(1− αs) + εsR
d
L0 −Ru

L0 (1)

where Rs0 is the surface shortwave radiative flux (positive), Rd
L0 is the surface

downward longwave flux (positive) and Ru
L0 is the surface upward longwave flux

(negative). αs is the shortwave albedo and εs is the surface longwave emissivity
(equatl to the absorptivity, which is the fraction of the incoming long-wave radia-
tion absorbed by the surface. If the surface behaves as a black body, then εs = 1.
The flux of radiation emitted by a black body is given by the Stefan Boltzmann
law as σT 4 where σ = 5.67×10−8 Wm−2K−4 is the Stefan-Boltzmann constant.
Most natural surfaces are grey rather than black so they emit a longwave radia-
tive flux of magnitude εsσT 4 where εs is less than unity. The net radiation can
be measured directly, but we can also evaluate the components on the right hand
side.

1a. Shortwave Fluxes

Radiation emitted by the sun approximates that emitted by a black body with
surface temperature close to 6000K and maximum emitted at a wavelength of
0.48µm (calculated with Wien’s Law). The solar spectrum is confined to .1 to 4
µm (hence shortwave). At the top of the earth’s atmosphere we define the solar
irradiance Sc as the flux of solar radiation passing through a plane normal to the
solar beam at the top of the atmosphere, with the Earth at its mean annual dis-
tance from the Sun, Sc = 1367Wm−2, but this of course changes as the distance
changes.
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Scattering, absorption and reflection reduce the solar flux. When radiation
is scattered by molecules (Rayleigh scattering) account for diffuse component of
shortwave radiation. Total shortwave is the sum of direct and diffuse components.
During the night Rs0 = 0, during the day (sin(Ψ) > 0, the shortwave radiation
can be expressed as:

Rs0 = τaS
app
c sin(Ψ) (2)

where Ψ is the solar elevation angle (angle of the sun above the local horizon),
Sapp
c is the apparent solar irradiance (that varies with time of year), τa is the net

sky transmissivity or the fraction of solar radiation that makes it to the surface.
One simple parameterization for the transmissivity is:

τa = (0.6 + 0.2sinΨ)(1− 0.4σCH)(1− 0.7σCM)(1− 0.4σCL) (3)

Where σC is the cloud cover faction and the subscripts H,M,L are high, mid-
dle and low elevation clouds respectively. If the sun is overhead and there are no
clouds, τa = 0.8, when there are overcast clouds at all levels τa = 0.086. The
determination of the solar elevation angle is a simple geometric exercise:

sinΨ = sinφsinδs − cosφcosδscos
[(

πtUTC

12

)
− λe

]
(4)

where φ and λe are the latitude (positive north) and longitude (positive west) in
radians, δs is the solar declination angle which is the angle of the sun above the
equation in radians, and tUTC is the Coordinated Universal Time in hours. The
solar declination angle is:

δs = φrcos

[
2π(d− dr

dy

]
(5)

where φr is the latitude of the Tropic of Cancer (0.0409 radians), d is the num-
ber of the day of the year (Julian Day), dr (173) and dy is the average number of
days per year (365.25).

We define the albedo (αs)as the fraction of downwelling radiation at the sur-
face that is reflected.

K ↑s= −αsK ↓s (6)

Albedo ranges from 0.95 over fresh snow to 0.4 over light colored soils, 0.2

2



over grass and agriculture, 0.1 over coniferous forests and 0.05 over dark wet soils.

Table A.8 Garrat.

1b. Longwave Fluxes

Results from the emission of the atmospheric gases and the land and water sur-
faces of the Earth. All materials on Earth have a much lower temperature than
the Sun, so that the radiation they emit is at a much longer wavelength. There is
almost no overlap, as the radiation from the Earth is at a 4-100 µm wavelength.In
what follows I will be speaking about longwave fluxes at the surface - a general
discussion on longwave fluxes at any particular height is much more complex.

The upward component of longwave radiation flux is calculated assuming that
the ground, canopy or water surface is equivalent to an infinitely deep grey body
of uniform temperature and emissivity εs

Ru
L0 = εsσT

4
0 (7)

Where T0 is the surface temperature, and σ = 5.67 × 10−8Wm−2K−4 is the
Stefan-Boltzmann constant. Most natural surfaces are almost black with εs greater
than 0.9.

The downward longwave flux is results from emissions of IR radiation from
whole atmosphere and clouds. Low clouds in particular tend to radiate as black
bodies at their cloud-base temperatures. The downward flux is easy to measure,
but numerical computation is not straight forward. It is dependent on tempera-
ture and humidity vertical distributions, clouds and atmospheric composition. For
clear sky conditions:

Rd
L0clear = εacσT

4
a (8)

where Ta is the air temperature near the ground and εac is the atmospheric
emissivity under clear skies. One approximation for the emissivity is εac =
a(ea/Ta)

b where a and b are consants derived to be a=1.24 and b=1/7 when the
vapor pressure of the air in in hPa and T in in K.

Because the downward longwave radiation is affected by cloudiness, several
empirical methods have found:
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Rd
L0 = Rd

L0clear(1 + amb
c) (9)

where mc is the fractional cloudiness and a and b are constants (for the Great
Plains, a=0.0496 and b=2.45).

Problem from Brutsaert: The following data are averages for a typical sum-
mer day in a temperate climate: air temperature Ta = 17.94◦C, RH=66% and
incoming short wave radiation Rs=468 cal cm−2d−1. Calculate RN0 for a surface
covered with short vibrant vegetation. Assume cloudiness doesn’t affect the radi-
ation and that Ta = Ts.

If the wind speed measured at 10m above ground was 10.4 km h−1, Assume
the ground heat flux G is negligible. a) FInd the potential evaporation using Pen-
man’s method. b) Potential evaporation using Priestly and Taylor

2. Surface Energy Balance
The balance of energy fluxes at the surface constraints the total available energy.
The primary forcing of the ABL over land is through absorption of solar radiation.

In the absence of vegetation, conservation of energy at the interface requires
that:

RN0 −G0 = Q̃H + Q̃E (10)

This is the surface energy balance equation, where RN0 is the net radiation, G0 is
the heat flux into the soil, Q̃H is the sensible heat and Q̃E is the latent heat. The
fluxes have units of Wm−2. This equation is exact when horizontal advection is
negligible, and vertical fluxes do not vary with height (as is our assumption in the
surface layer).

Let’s focus on G0. Heat flux to the soil is related to the soil temperature using
the requirement for heat conservation:

ρscs
∂Ts
∂t

= −∂G
∂z′

(11)
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where Cs = ρscs is the volumetric heat capacity (units of Jm−3K−1), ρs is
soil density and cs is the soil specific heat, and z’ is the vertical coordinate in the
soil (positive down). Remember that the heat capacity characterizes the amount
of heat required to change a body’s temperature by a given amount.

The change in temperature for a slab of finite depth can be expressed as:

ρscs∆z
′∂Ts
∂t

= −(G1 −G0) (12)

Where G1 is the heat flux at a depth ∆z′ into the soil. Substituting equation
12 into 10:

RN0 −G1 = Q̃H + Q̃E +
∂Ws

∂t
(13)

where Ws = ρscs∆z
′Ts is the energy storage. For a canopy or layer of veg-

etaion of depth hc, the balance equation at the canopy top can be written in an
analogous form:

RN0 −G1 = Q̃H + Q̃E +
∂Wc

∂t
+Dh (14)

where Wc = ρccchcTc is the energy storage and Dh is a horizontal flux of en-
ergy due to advection (generally neglected).

The values of soil heat flux at the surface or at a shallow depth depend on solar
radiation, soil type and soil moisture content. The subsurface heat flux G at any
level z′ can be described by Fourier’s law for heat conduction in a homogeneous
body:

G = −ks
∂Ts
∂z′

(15)

where ks = ρscsκs is the thermal conductivity. ks depends on soil wetness
because water is a good conductor of heat, while air isn’t. κs is the thermal dif-
fusivity. See Table A7. By replacing equation 15 into 16, we obtain the heat
conduction equation:

∂Ts
∂t

=
ks
ρscs

∂2Ts
∂z′2

= κs
∂2Ts
∂z′2

(16)

In this equation Ts is a function of (z′ and t), and we can solve for Ts and hence
forG using either an analytical solution for simple sinusoidal forcing or numerical
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methods for real world conditions. If we use a pure sinusoidal forcing function
we can get some idea of how diurnal and annual temperature waves penetrate
into the ground. If we assume that the temperature at z′ = 0 (ground surface)
Ts(0, t) = T + A0sin(ωt).
For the diurnal cycle, 2A0 is the diurnal temperature amplitude, T is the daily
average temperature and ω is the angular velocity of the Earth’s rotation (7.292 ×
10−5 rad s−1). For the annual cycle, 2A0 is the annual temperature amplitude, T
is the annual average temperature and ω is the velocity of the earth’s cycle around
the sun (.0172 rad day−1). Using T as the bottom boundary condition, the solution
of of the equation is:

Ts(z
′, t) = T + A0exp

(
−z′

D

)
sin

(
ωt− z′

D

)
(17)

where D = (2κs/ω)1/2 is the damping depth, the depth at which the temper-
ature amplitude has decreased to 1/e of the surface amplitude. For the diurnal
wave and typical soils, D ≈ 0.1m.

• As we go deeper into the soil, the amplitude of the oscillation dampens, and
there is a lag that grows larger as we go deeper.

• Notice that D depends on ω, the frequency of heating. This means that
a longer cycle (like the annual) will have a greater damping depth, which
means that the wave will penetrate deeper into the soil.

• Notice that D depends on the diffusivity. Dry soils will have a smaller dif-
fusivity than wet soils which will have smaller diffusivity than, say, rock.
Again, larger diffusivities mean deeper penetration of the wave.

• Notice that the lag means that there is a delay in the effect of the surface
over the soil. Larger frequency ω means a larger lag.

In reality, however, the temperature is not a sinusoid but is best represented as
a Fourier series. In numerical models the equation is solved using finite difference
forms.

Notice that there is also a phase shift of z′/D. The soil heat flux can now be
determined using equation 15. At z′ = 0 this gives:

G0 = ρscs(κsω)1/2A0sin(ωt+ π/4) (18)
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Figure 1: Soil Temperatures as a function of time for different diffusivities and for
the diurnal and annual cycle
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So that the heat flux is π/4 out of phase with the temperature. In practice,
several heat flux plates are buried in the soil. These plates measure temperature
and the properties of the soil must be known.
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