Wednesday, Nov. 7, 2012
There's
a common misconception
involving the Coriolis force. You
might have
heard
that
water
spins
in
a
different
direction
when
it
drains from a sink or a toilet bowl in the southern hemisphere
than it does in the northern hemisphere. You might also have
heard that this is due to the Coriolis force or the Coriolis
effect.
The Coriolis force does
cause winds to spin in opposite directions around large scale high and
low pressure
centers in the northern and southern hemisphere. The
PGF starts the air moving (in toward low, out and
away from high pressure) then the Coriolis force bends the wind to the
right (N. hemisphere) or to the left (S. hemisphere).
Here's what you end up with in the case of low pressure (you'll find
these figures on p. 130 in the photocopied ClassNotes):
Air starts to move inward toward
low pressure (the dots show this initial motion). Then
the
Coriolis force causes it to turn to the right or left depending on
which hemisphere you're in. You should be able to say which of
the pictures above is the northern hemisphere and which is the southern
hemisphere picture.
The same kind of idea applies to
high
pressure except that the air starts moving outward (the dots
aren't included here). The Coriolis
force then turns it to the right or left.
There are situations where the PGF is much stronger
than
the
CF and the CF can be ignored.
A
tornado
is
an
example.
The
PGF
is
much
much
stronger
than
the
CF
and
the
CF can be
ignored.
Winds
can
blow
around
Low
pressure
because the PGF points inward.
The wind can
spin in either direction in either
hemisphere.
Note that without the CF, winds can't spin around High
pressure because
there is nothing to provide the needed inward force.
OK, what about water draining from
sinks, buckets, toilets etc.
There's just an inward pointing
PGF, no
CF. Water can spin in either direction in either
hemisphere. What causes the inward pointing PGF? The water
at the end of the spinning water is a little deeper than in the
middle. Since pressure depends on weight, the pressure at the
outer edge of the spinning water is higher than in the center.
This creates the inward pointing pressure gradient (pressure
difference) force.
Water draining from a sink or toilet can spin in
either direction. It doesn't matter where you're located.
But this something we should probably checkout for ourselves, so here
is one of my favorite
optional assignments of the semester.
Here
are
some
additional
examples
of
thermal
circulations
or
large
scale
circulations
that
resemble
thermal circulations.