A region's climate is shaped by influences operating on all scales of space and time from microscale to global. Many factors work together to shape the climate of any locality.
This page lists and describes some of the factors that control or help determine the climate of a particular region. There are certainly others. Some of these factors can also be used to explain differences from one day to the next at one given location. For example, a humid, cloudy climate zone will generally have less variability in temperature during the year than a dry, sunny climate zone (the reasons are provided below). For the same reasons, a dry, cloud-free day will generally have a bigger difference between the nighttime low and daytime high temperature than a humid, cloudy day. Some controling factors for climate consist of:
Latitude - most important climatic control, due to the effect is has on the amount of solar radiation reaching the Earth's surface. The seasonal changes in incoming solar radiation, as well as the length of the day, vary with latitude. In general, tropical regions experience little seasonal changes since the amount of solar radiation received changes little during the year. Seasonal changes get more pronounced the further you move away from the tropics toward the polar regions. The largest seasonal changes are found in the arctic and antarctic regions because this is where there are the largest changes in the amount of solar radiation received during the year. If you consider the average temperature over one year, in general areas nearer to the equator are warmer than areas farther from the equator.
The figure above shows the general pattern of precipitation at different latitudes. This is related to where areas of rising and sinking motion are most likely based on the general circulation patterns around the globe. Keep in mind that the positions of the ITCZ (Intertropical Convergence Zone) and the polar fronts move with the seasons. For example, in Northern Hemisphere Summer, the ITCZ moves north of the equator because the maximum solar heating moves north of the equator AND the position of the polar front moves north since the warm/cold boundary is further north. In the Northern Hemisphere winter, both of these features move toward the south. Note that these generalizations concerning temperature and precipitation are due to changes of latitude alone, while the actual climate of a region also depends on some of the other factors listed below.
Elevation - Influences air temperature (since temperatures usually decrease with height by about 6.5°C per 1000 meters or 3.6°F per 1000 ft) and can thus influence whether precipitation falls in the form of rain or snow. A local example is provided by the differences in temperature and precipitation between Tucson and Mount Lemon. Often in the winter precipitation in the valley is in the form of rain, while over the mountains it is in the form of snow.
Another difference between high altitude locations (mountains) and low altitude locations (sea level) is that the daily temperature extremes between day and night are much greater at higher elevations. This is mainly because there is so much less atmosphere above high elevation locations (i.e., less air molecules). During the day, less atmosphere means that it is easier for the Sun's energy to reach the surface and heat it. At night, less atmosphere means fewer greenhouse gases and a weaker greenhouse effect, so the surface cools very rapidly.
Proximity to Mountain Ranges - mountain ranges can affect the climate for considerable distances by stimulating cyclone formation. Another way to state this is that large mountain ranges in the middle latitudes have some influence on the large-scale weather pattern, i.e., the height pattern on 500 mb maps. Locally, orographic clouds and precipitation form on windward facing slopes, while a rain shadow is often found on the leeward slopes. An example of the effect of topography on precipitation is shown in the figure above.
Proximity to Large Bodies of Water - The ocean's
Substance | Specific Heat |
---|---|
Water | 1.00 |
Air | 0.24 |
Granite | 0.19 |
Sand | 0.19 |
Iron | 0.11 |
Therefore, land heats more rapidly and to higher temperatures than water, and it cools more rapidly and to lower temperatures than water. On a very large scale, ocean temperatures are slow to change with the seasons. Compared to the continental land areas, ocean surface temperatures change little between summer and winter. Between day and night water temperatures hardly change at all, while large changes can occur over land surfaces from day to night. The closer a land area is to the ocean, the more it is influenced by the ocean, and the more moderate the climate.
The circulation of the ocean is a another key factor in air temperature distribution.
Ocean currents that have a northward or southward component, such as the warm Gulf Stream in the North Atlantic or the cold Humboldt Current off South America, effectively exchange heat between low and high latitudes.
The circulation of the ocean. |
A good example of the effect of a warm current is that of the Gulf Stream in January, which causes a strong east-west gradient in temperatures across the eastern edge of the North American continent.
Notice the vegetation patterns on the mountain pictured above. |
Relative humidity / Soil Moisture - These often go together. A location with dry surface (like desert rock or sand) will also generally have lower relative humidities. Wet surfaces tend to stay cooler during the day because much of the sun's energy is used to evaporate water, rather than heat the surface. In addition, wet surfaces have a higher specific heat than dry surfaces, meaning that more energy must be gained (lost) to warm (cool) the surface. At night, places with higher relative humdity tend to stay warmer because water vapor is a greenhouse gas. During the day, high concentrations of water vapor directly absorb radiation from the Sun, keeping the ground surface cooler, and may cause aerosol particles to swell so that they also absorb radiation before it reaches the ground. Therefore, desert regions like Tucson tend to have very large temperature swings between day and night compared with a non desert location.
Local topography - Variations in the slope of the ground affects the absorbed sunlight, exposure to winds, and runoff.
Prevailing atmospheric circulation - This last control encompasses the combined influence of all weather systems.
Other Variable Factors:
Cloud cover - All of the above factors influence the amount and type of cloud cover experienced by a local region. In general, clouds are a cooling influence during the day by reflecting solar radiation, and a warming influence at night because they emit infrared radiation (same principle as greenhouse effect for gases).
Nature of the surface - Local surface conditions might shape climate to a considerable extent. Consider the where would you choose to sit (or even stand) on a sunny day in July... Have you noticed differences in temperature as you drive out of Tucson city limits on a summer evening? Some examples:
Anthropogenic effects - Agriculture and other human induced changes in the amount of vegetation might have variable effects on local climate. With less vegetation, the surface has less moisture available for evaporation. As a result, it experiences higher temperatures than the forested region. In addition, urban areas become "heat islands", i.e., warmer than the surrounding countryside for two main reasons:
There are various ways to categorize the diverse climate zones around the world. The link below is just one example. Unfortunately, we don't have time to cover this topic in detail. The Koppen Climate Zones