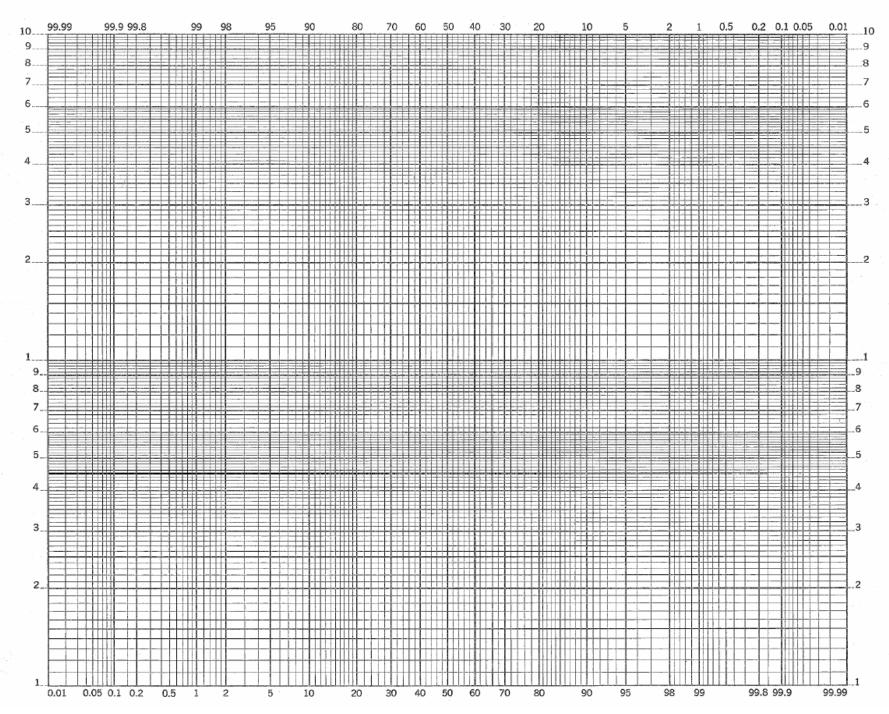


Homework1

Due date: Monday, January 22, 2007


Using the data below, prepare the following number distributions. The first row of the Table has been completed as a guide. Use a spreadsheet or graph paper.

- 1. Plot a simple histogram (n_N vs. D_p; actually column 2, the mean of the size interval).
- 2. Prepare a semi-logarithmic plot of the same data $(n_N^e \ vs. \ ln \ D_p)$. Calculate Δ ln D_p from the first column.
- 3. Prepare a cumulative distribution plot (% less than the indicated D_p vs. D_p)
- 4. Prepare a log-normal plot using the attached log-probability paper (D_p vs. percent-less-than-the-indicated D_p).
- 5. Recognizing that $\overline{D}_{pg} = D_{\text{median}}$ and that $\sigma_g = D_{p 84.1\%}/\overline{D}_{pg}$, read off \overline{D}_{pg} and σ_g from your plot (e.g., Figure 4.12).
- 6. Use these parameters to calculate a continuous log-normal distribution curve and superimpose the curve onto the discrete raw data to check the goodness of fit (see Fig. 14.2 for example).

Size Interval (μm)	Geometric Mean Diam., \overline{D}_{pg} (μ m)	Concentration within Interval, ΔN (#/cm ³)	$n(D_p) = dN/d(D_p) = (\#/cm^3/\mu m)$	In D _p	Δ In D _p	$n(ln$ $D_p) =$ $dN/d(ln$ $D_p)$ $(\#/cm^3)$	Cum. % less than	n(ln D _p) (calculated from eq 1 below)
0.1-0.2	0.14	50	500	-1.956	0.693	72	.99	207.8
0.2-0.4	0.28	460						
0.4-0.7	0.53	1050						
0.7-1.0	0.84	980						
1-2	1.41	1700						_
2-4	2.83	680						
4-7	5.29	100						
7-10	8.37	10	_					
10-20	14.1	2						

$$n_N(\ln D_p) = \frac{dN}{d\ln D_p} = \frac{N}{\sqrt{2\pi}\ln\sigma_g} \exp\left(-\frac{(\ln D_p - \ln \overline{D}_{pg})^2}{2\ln^2\sigma_g}\right)$$
eq 1.

Graduate Students (and Undergraduates for extra Credit) Do Q 4.5.

