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SUMMARY

~_sent method is proposed for the lateral boundary treatment of a limited-area prediction

+¢ method involves the relaxation of the interior flow in the vicinity of the boundary to the external

~ribed flow. A systematic study of the method is undertaken with an (x, 2), linear, primitive equation
: derations of the method for the continuous equations demonstrate the manner in

nalytical consi
od consumes gravity wave energy, error and fine spatial scale potential vorticity near the
i s the usefulness of the method. The

method gives an adequate representation of outgoing gravity waves with and
bient shear flow, and also allows the substantially undistorted transmission of geostrophically

flow out of the interior of the limited domain.
the basis of these results, it is suggested that the method constitutes a promising utilitarian treatment

Jteral boundaries.

1. INTRODUCTION

" Lateral boundaries invariably form an intrinsic feature of numerical weather prediction
podels, since perforce almost all models are not global in extent. Difficulties associated
sith the treatment of these boundaries are partially circumvented in short-term integrations
comparatively coarse grid-point models of planetary and synoptic scale motion. This is
chieved by taking the region of integration to be much larger than the particular region
8 [finterest or by assuming a slip-free boundary at the equator. A somewhat subtler lateral
'ﬁﬁndary problem is posed by regional forecast models. These models require a fine grid-
v wint mesh to achieve the necessary resolution of the relevant sub-synoptic scale phenomena,
9. 4 but the use of the fine mesh is usually restricted, by severe operational, computational or
o 3 ghysical constraints, to a limited region of the complete flow domain. It then follows that

9§ time dependent boundary conditions are required to close formally the initial boundary
w4 value problem posed by a limited-area prediction model.

Two approaches have been adopted for supplying boundary data to the limited-area
« [ models. In one, the boundary data is specified externally with data from an integration
| prformed with a coarser grid and larger domain (e.g. Williamson and Browning 1974;
1 Chen and Miyakoda 1974). For the second approach, the fine-mesh model is dynamically

coupled to the coarse-mesh model to form a single dynamic system (e.g. Harrison and
Elsberry 1972; Price and MacPherson 1973). Phillips and Shukla (1973) referred to these
two methods as the ‘one-way’ and ‘two-way’ interaction methods corresponding to the
dlass of interactions permissible between the limited-region flow and the exterior flow.
: In this paper our principal concern will be with the one-way interaction problem, and
, Il appears to us imperative to recognize that in all practical applications, the available
b?undary data will inevitably contain inherent errors. Data derived from an integration
with a coarser grid over a larger domain will contain characteristic features intrinsic to
that model, and these features will differ from both the development of the atmosphere
| and the fields derived from the finer-mesh regional model. Features in this category include
numerical effects such as those that lead to phase speed errors, and pseudo-physical effects

-
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such as parameterization schemes. A particular manifestation of these effects will be ¢ h ¢
development in the regional model of both gravity waves and balanced meteorologics| {a;
flow on a scale unresolved by the coarse mesh. These effects will render the boundary dap °e
incompatible with the flow of the regional model. - I
Thus it is evident that a lateral boundary treatment should serve a two-fold purpog,

It should be capable of transmitting smoothly into and out of the limited domain the larg.
scale flow resolved by, and implicit in, the external boundary data. It should also adequately |
represent the outgoing gravity waves and fine-mesh-scale meteorological flow inherent in |
the initial data for the limited domain or generated in situ during the time integration, E
Previous lateral boundary treatments for the one-way integration problem have takey e

two disparate forms. In the first approach, pragmatic techniques were employed to reduce §
lateral boundary noise. These include the insertion of a highly diffusive layer contiguous
to the boundary (Benwell ef al. 1971); the use of a ‘divergence-control’ method near the
boundary of the limited domain to match the interior flow with boundary data derived
from a coarser mesh geostrophic model (Okamura 1975); and the modification of the
tendencies near the boundary to induce a smooth transition from model tendencies
interior to the tendencies of the external data at the boundary ( Kesel and Winninghoff I
Perkey and Kreitzberg 1975).
In the second approach, one seeks to satisfy uniqueness and well-posedness i

for the flow in the limited domain. Hence only boundary data corresponding to the t
of information into the domain is specified at the boundary, i.e. only a subset of the
dent variables should be specified at the boundary. The problems associated Wil
approach are further compounded by the discretization schemes employed in
models because the difference equations will usually demand additional purely co
tional boundary conditions. Consideration of this approach has been given by C
(1962) and recently by Kadyshnikov (1973), Davies (1973 a, b), Elvius and S
(1973), Chen and Miyakoda (1974), and Pearson (1974).
It is important to note that the complications associated with this second ap|
accrue from seeking an analytically justifiable coupling between the boundary da
the interior flow for the unmodified system of meteorological governing equatiol
over, in the attendant theory it is presupposed that the required boundary data 3
error. ;
In the light of the preceding discussion, it appears desirable to seek @
boundary formulation that is consonant with the dynamical constraints of the
equations but also alleviates the effect of the inaccurate boundary data. In thi
present one such simple lateral boundary scheme. We systematically adulterate
ing equations to reduce their sensitivity to overspecification of boundary da
doing, a reduction is also achieved in the noise generation at the lateral boun

2. THE BOUNDARY FORMULATION

(@) Outline

We outline the lateral-boundary treatment in the context of a linear, 1?11 mi
system. The system considered can sustain internal and external gravity
advecting meteorological wave. Moreover, with a linearized system we cai £
the role of the boundary treatment. P

We consider linearized, inviscid, compressible flow confined between
walls located at z = 0, D on an f-plane. The flow is assumed independent O Sy
co-ordinate (say y) with an unidirectional basic flow U = U(2) that is in & S
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E (E=fU). The basic thermodynamic state is isothermal so that
&2 = ypolpo = YRTo = constant; and hence § = d(In 6,)/éz = constant.
';yed conventional thermodynamic nomenclature.

the governing equations for the perturbation variables of our system
form (see Ogura and Charney 1962),

u,+Uu,+wUz —fo=—p,— K(u—iu) . ; : (1)

v, + Un, + f(u+U) = E— K(v—0)+ F[v—9] - : (2)
P+ Upy +c?u, = —cX(w. +wS)—K(p—p) - . (3)

¢ equation for the vertical velocity, w,

Wee +(S+ glcAw, = —uy, —(g[c*u; —(Us/c?)ps : )

po(u’, v, W), the momentum components corresponding to the respective
i nents (&', v/, w').

nathematical formulation of the boundary treatment is contained in the terms
ving the function K and the functional F in these equations. An estimate of the time

yment of the flow field in the neighbourhood of the boundary is assumed available
period of interest. This estimate is denoted by the overbarred fields (i, &, p).
function K = K(x) = 0 is continuous and non-zero only in the vicinity of the
The functional F is defined by Flv—1] = [i+ K,(v—79)dx. The integral is evalu-
from the point L* in the interior region to the required point. We note that the integral
7ero only in the boundary region K, = 0.
ese terms act to constrain the prognostic variables in the neighbourhood of the
aries toward the external fully prescribed fields. They can be interpreted as a dynami-
xation, reminiscent of a ‘Newtonian law’ adjustment of the normal velocity, pressure
tential vorticity fields about the external prescribed fields of those variables. The
dependency of the relaxation coefficient, K, contributes to the smooth transition
¢ interior flow field values to those of the field implied by the external data. We note
relaxation coefficient is not a function of the vertical co-ordinate, and, hence, the

(b) Analysis

~ We now elaborate the rationale behind this somewhat obscure formulation. It is
er to consider separately the two cases of purely irrotational flow and the advection
| of potential vorticity.

~ For the former case, we set identically zero the tangential velocity, the Coriolis para-
meter and the externally specified control field (ie. v =f=0, and @& = i=p=0).
urther, we assume the basic mean flow is constant. Subject to these restrictions, Egs.
(-4 can then be rearranged to the form

uatio u, + Uu, = —py —Ku, i ‘ , (5)
i (2p), +U(2p), = (gS)u. —K(Zp), : )

erp
Where 9p < P.. +(S+ g/c?)p,. The dependent variables » and p can be expanded into the

ippropriate vertical eigenfunctions, whereupon the equations for each vertical eigenmode

zontd
®orresponding to the external and internal gravity waves can assume the form

zont
Alany (! +p), +(UEc)ul £p) = K@} £p), - A )
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where ¢; = c (sound speed) for the external mode, -
and ¢? =gS/A?, i=1,2,... for internal modes E:raW
with 9p = —-XAp, and uj= cu, b

Here the subscript i refers to the eigenfunction expansions, whilst the remaining subscripg and
denote as before the space and time derivatives. 1

Eq. (7) is in pseudo-characteristic form. The quantities (¥; +p,) are conserved alops ¥
the velocity paths x, = U+c¢; in the non-relaxed regions (K = 0), and suffer a reductioy i :
in amplitude elsewhere. A quantitative measure of the amplitude reduction can be obtajpe |
as follows. Consider the decay of a scalar quantity ¢, advecting with a velocity y intog
relaxation region.

The govering equation is

¢t +T¢x = _K¢,

and let K =0 for 0 < x and K = ax? for x > 0; with ¢ = ¢, at x =0.
Then the total advective change of the pulse is given by

¢ = ¢olexp{(a/3p)x*} for x>0

Thus the scalar ¢ decays exponentially in the relaxation boundary region, with the ‘relaxa- & "
tion’ distance for an e™! reduction in amplitude given by x* = 3/(3y/a). It is clear that &
the relaxation distance of the eigenmodes of Eq. (7) will be a function of their Doppler §
shifted phase speed. The external gravity wave suffers the least amplitude reduction for §
typical meteorological mean-flow speeds.

Let us now consider the advection of potential vorticity. We allow the tangential =
velocity, v, and the Coriolis parameter, f; to be non-zero, but again assume the mean fov
is constant. An appropriate advection equation is obtained by eliminating u, between =
Eq. (6) and the x-derivative of Eq. (2) to yield: :

Q. +u0. = -Kg, . . . (0f

where Q = v, +(f/gS)@p. Thus we again have a first-order hyperbolic equation in pseudos
characteristic form. We can infer that the propagation of potential vorticity into a relaxation §
region will diminish the amplitude of that scalar quantity as given by Eq. (9). Here the
appropriate group velocity is the advective velocity, U, and this implies that the amplit
reduction will be of the order of, or much larger than, that suffered by gravity waves.
The analysis indicates that for this linear system of equations, subject to the stip_
conditions, the relaxation boundary treatment guides the values of the prognostic va
toward those of the externally specified fields. This is achieved in such a way as to redu
the amplitude of outgoing potential vorticity and gravity waves that are perturb:
from the externally specified control fields. The treatment reduces the sensitivity of .
interior flow to the overspecification of the variables at the lateral boundaries. In the
manner the treatment alleviates problems associated with the well-posedness criteria 0t
non-relaxed equations. These properties should have a concomitant effect in reduc
‘noise’ generation at the lateral boundaries.
It must be noted that the analysis did not include the effect of vertical §h63f
mean flow horizontal wind, and nonlinear effects. Furthermore, the conclusions :
here for the continuous equations are not automatically applicable to the difference
tions. We examine the latter question in the next section. 1
We note in passing that an analysis similar to that used here can be applied.
pragmatic techniques mentioned in the introduction. Modification of the tendenc!
carried out by Kesel and Winninghoff (1972) merely reduces the phase speed of wa
they approach the boundary, and it is necessary to provide an additional mecha?
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vent energy build-up and spurious numerical reflection at the boundary. This was demon-
arated by Perkey and Kreitzberg (1975). However, the technique also introduces a spurious
source term for potential vorticity in the boundary region and this can induce spurious
and unacceptable reflection. :

Again, the boundary technique of divergence damping has a beneficial effect upon
small wavelength gravity waves, but it is not designed to treat fine-scale meteorological
flow that develops during the integration. Similar conclusions are applicable to the tech-
nique of introducing highly diffusive regions contiguous to the lateral boundaries.

3. NUMERICAL EXPERIMENTS
(@) The model

A nine-level finite difference model is constructed for the system listed in Egs. (1)—~(4).
The model variables are structured as shown in Fig. 1. Horizontal and vertical mesh
Jengths are set respectively at 60 km and 1-3km and there are 63 grid points in the horizontal.
The boundary relaxation coefficient is given a parabolic spatial dependency and decreases
to zero at a distance of five grid lengths from the boundary.

RELAXATION  REGIONS

‘LW:O
g ______ e [
Ji&k
Z RS (BN s R S Ak
y
> 0, i 5% SR>
<W>
1_______._._._
1 pW=0
60 km
- >
3720 km

Fi ' : : ?
‘8ure 1. Schematic outline of the model’s structure. Cross-hatched region denotes the boundary relaxation

region (K £ 0).

_Tbe difference scheme is second order, centred in space and time, except for the
ICit treatment for the boundary terms. The difference analogue of Eq. (2) has the form

— oty —v]- 1)~ fQAD] — KQANE] ™! -5t )+

Imp]

n+ 1 =%
U =gl

+ (A1) z;, (K; —K;_)@j*! —1.5_';H +oji =3t)) . ' (11)
j=

Wh = ’ ; ; B
€T¢ @ = UA1/Ax, and the summation takes place from a point I* in the interior to the
"®quired pojnt ;. :

E

o e
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Values assigned to the model parameters are as follows: e |
€=33ms™ ! f=13x10"*s";5 =358 x 10" m~!; Ar = 120s; Kloa =415 19~3 4§
For these values, we can infer from Eq. (9) that the amplitude reduction of even the ex __
gravity wave is substantial in the boundary region (typically ¢[pq/py = 2 x 1073, -

A series of numerical experiments were performed with this model to eXaming y, §
behaviour of the boundary treatment under a variety of conditions. i |

(6) Treatment of gravity waves

The first set of experiments were designed to test the technique’s treatment of Olltguin-
gravity waves. For these experiments, the Coriolis parameter and the externally spec
boundary field were set to zero. The initial conditions represented an isolated
pulse with a vertical structure corresponding to a single eigenmode of the shear-fre
and the model atmosphere was assumed to be initially at rest

Pressur _
€ system,
(u = 0) everywhere, Thus ye §

\\ <p>

<6>

7
/ W

= & /'] 1 1 1 1 1 1 1 '}
22 20 18 16 14 12
NUMBER OF GRID POINTS FROM BOUNDARY

Figure 2. Initial perturbations for the experiments on outgoing gravity waves. The pressure perturbaﬁ"&’ :
of the external mode is shown in mb, and the potential temperature perturbation of the first and secon
internal modes is displayed in K.

Vi i

anticipate eastward and westward propagating pulses in the subsequent development
Three initial states were considered, corresponding to the external gravity mode, and the -
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Figure 3. Time variation of the total perturbation energy per unit volume for:— (a) the external mode,

(b) the first internal mode, (c) the second internal mode in case of no shear. Dashed and solid lines correspond

respectively to results with the limited domain with boundary relaxation, and the extended domain.
Horizontal bar denotes time for mode to traverse the boundary region.

first and second internal modes. Fig. 2 depicts the perturbation pressure of the external
mode and the perturbation potential temperature distribution of the internal modes.
Analytical expressions for the vertical dependency of these modes have the forms
exp{gz/c’} (external mode), and exp~'{Nz}[sinnz +n(N— g/c?) ' cosnz], where N =
S+ g/c)), n= In/D, with [ = 1,2, ... for the internal modes.

The results of experiments conducted with and without ambient shear flow are compa-
l"‘-d_with those undertaken over a larger horizontal domain. The results are compared
during a time interval for which boundary influences are absent from the latter integrations.

_A record was kept of the total perturbation energy within the limited domain during
the simulations, Fig. 3 shows the time variation of this energy for the three initial states
When the ambient flow was assumed to be zero. The dashed and solid lines correspond
r‘3?*ll_et‘.twely to the boundary relaxation runs with the limited domain and the results from
the integrations with the extended domain.
interche total energy remains_ constant during the initial phase although there are 'strong
i, anges between the various energy forms. Later the energy level drops rapidly as
. Oundns of the pulse le.ave the region through first the east boundary aqcl .then t.he west
E theaf.‘)’- A phase lag is observed between the energy-level curves and this is attributable

E energy consumption within the domain in the relaxation boundary regions. This

Tesult § 5 . : .
ult is corroborated by noting that the horizontal bars in the diagram correspond to the

R



o T e

PR i

v

PAL 0!

TR

P

T Y o T PPt o P Senog o 3

412 ‘ H. C. DAVIES

Figure 4. Instantaneous spatial distribution of (a) the true potential temperature field (solid lines) and error
field (dashed lines), and (b) the true u-component velocity field (solid line) and error field (dashed lines)
The top and bottom of the diagrams correspond respectively to the first and second internal modes. The i
interior of the limited domain is to the left of the boundary relaxation region (cross-hatched area). ;

time for the particular wave mode to traverse the boundary region. It is apparent that the
boundary treatment is effective in consuming the outgoing gravity wave energy and that
only a comparatively small percentage of this energy is available for spurious reflection
to the interior.
The spatial distribution of tne ‘true’ @ and u fields and the corresponding error fields
is shown in Fig. 4 for both the first and second internal modes. The cross-hatched region
corresponds to the relaxation region on the east. We note that the pulse, depicted by the
solid lines, has almost traversed the boundary of the limited domain. The dashed lines depict &
the error field, or the difference between the two simulations, in the interior of the limited &
domain. Weak partial reflection has occurred from the relaxation boundary and the £
resulting error field has a fine scale structure. Comparable results were obtained with the
other external mode simulation. ¥
The time history of the energetics for experiments conducted with moderate shear
(U; =3x107%"") and strong shear (U, = 6 x 10~3s~%) are shown in Figs. 5 and 6. These
results are of some significance since Oliger and Sundstrom (personal communication) j
indicate that the initial boundary value problem for the non-relaxed, primitive equations §
is ill-posed. The theoretical difficulties in trying to establish well-posedness arise when at
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odel. Thus these experiments are pertinent to the restrictions placed upon regional
by the mathematical character of the primitive equations. The results suggest that

cal. It is, however, a truncation effect not associated with the boundary treatment.
se results suggest that, for the model under consideration, the boundary technique
n adequate treatment of outgoing gravity waves irrespective of their vertical
¢ and phase speed. Moreover, the method is simple and affords a considerable
°Mputational benefit since it circumvents the conventional approach of expanding the
bles into the appropriate vertical eigenfunctions at the boundary (Pearson 1974).

(¢) Treatment of quasi-geostrophic flow

esponse of the relaxation boundary region to advecting, quasi-geostrophic flow
~sidered for two forms of limited-domain flow and external boundary data. For the
=4iegory (type I) it is assumed that a physically realistic, but quantitatively slightly

e, estimate is available for the time dependent boundary control fields. This
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Figure 6. As for Fig. 3 but with an ambient mean flow shear given by U, = 6 x 103~

situation resembles a fine-mesh model fed with boundary data derived from a large
domain, coarse-mesh model. For the second category (type II) it is assumed that fine-mesh
scale, geostrophic flow is advecting out of the limited region and that no estimate of the‘
boundary data is available a priori. ;
For these experiments, the perturbation geostrophic flow field is given the form
u=0, ‘
p = Asin(2nX/L)exp{gz/c*},
= (2nA/fL)cos(2n X/L) exp{gz/c*},

with X = (x— Ut), and ¢ = 0 at the initial instant.
Here A and L denote respectively the pressure amplitude and the wavelength of the flow, ;E
and the flow pattern advects with the constant mean flow U. Initial and boundary conditions 4
for the two flow categories are set out in Table 1. \

b
‘E"

TABLE 1. INITIAL AND BOUNDARY CONDITIONS FOR EXPERIMENTS WITH QUASI-GEOSTROPHIC FLOW

Pressure
amplitude Wavelength Mean flow Boundary data

Flow type A(Nm~2) L(m) U(ms~—%) inflow outflow

As for Eq. (12) but with
I 2-5x 102 (61/2)Ax 10 U replaced by (U —1-0)
I 0-833x10*  (61/6)Ax 10 Correct A=p=0,0.=0
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TABLE 2. INITIAL AND FINAL VALUES OF THE CONSTITUENT FORMS OF PERTURBATION ENERGY PER UNIT
" |OLUME IN UNITS OF 2 x 10~ '"*N'm~2, THE symeoLs K.E.(x), K.E.(v), E.E., P.E. REFER RESPECTIVELY TO THE

| [NETIC ENERGY ASSOCIATED WITH THE i AND 0-VELOCITY COMPONENTS, THE ELASTIC ENERGY AND THE
3 POTENTIAL ENERGY

Simulation
Flow type time (h) K.E.(u) K.E.() E.E. PE.
1 0 0-00 34750 45-5 0
8 0-01 3463-0 464 0
16 0-17 35450 474 0
= 24 032 33980 46°9 0
II 0 0-00 34750 50 0
8 0-84 33010 72 0
16 0-20 34150 9-2 0
24 1-03 3498-0 10-66 0

~ One monitor of the technique’s performance is the time variation of the constituent
rms of the total perturbation energy. Table 2 shows the initial values of these constituents
' and their values after 8, 16 and 24 hours simulation time. The energy levels should remain
" constant during the development but again the relaxation boundary acts to consume some
3 of the energy and vitiates a direct comparison. However, it is noteworthy that the potential
nergy remains zero. This is consonant with the observation that no spurious vertical
ocity is generated by the boundary scheme. The kinetic energy of the u component isa
sure of the spurious external gravity wave energy generated during the integration and
not later consumed in the relaxation boundary region. The maximum grid point error in
‘component was 0-04ms ™" and 0-12ms™" at the end of two runs.

~ The spatial distribution of the true and model derived v-component of the flow fields
t mid-level at the end of the integration period is shown in Figs. 7 and 8. These distributions
emonstrate the phase lag associated with the difference scheme and the constraint on the

v lms'il

= ==1RUE

'ofsl}atial distribution of the true and model derived v-velocity component at the mid-level after
simulation time with a type I flow. Arrow denotes distance moved by pattern in 24 hours, and
the vertical boundaries correspond to the model’s lateral boundaries.
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Figure 8. As for Fig. 7 but a type II flow.
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horizontal derivative in the boundary region. Apart from these discrepancies, the model-
derived distributions bear a close resemblance to the true flow fields, and allows the sub
stantially undistorted transmission of the geostrophic flow into the absorbing bound
region.

An adequate treatment of these two flow categories is essential to the useful application
of limited-grid models. The scheme utilized here appears to accomplish this task. Further
experiments were carried out varying the values of the parameters 4, L and U, and alter-
native formulations for the error in the boundary conditions for type I flows. These "__:.-
ments gave qualitatively similar results to those recorded here. They also suggest that the
effect of the boundary treatment for type I flows is not crucial provided the boundary d
although overspecified, is sufficiently close to the true flow field. The latter result is helpfu
in the interpretation of the performance of earlier cavalier treatments of the lateral bounds-
ries of limited-area models.

4. CONCLUDING REMARKS

A complete extension of the analysis to the three-dimensional, nonlinear, primitive equa-
tions is not tractable, and the applicability of the technique to this system of equation:
a matter for further experimental examination. We note that it is comparatively simple to -

implement the technique for a full primitive equation model, and this is illustrated in the
appendix.
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APPENDIX

A formulation of the boundary treatment for the pressure coordinate system

At} appropriate extension of the lateral boundary layer formulation to three space
mensions is illustrated here for the ‘pressure coordinate’ form of the primitive equations.
- The velocity, continuity and thermodynamic equations take the form,

Vi +(v.Vv+wv, = —V¢p —K(v-V)+F, (V.V+w,=0,

; (@) +(v-VX@,)—p~'w(Inf), = —(pc,) *RQ—K(¢, — ),
ith the following equation for the surface pressure, p¥,
pi+(v.-V)p* —wp* = —K(p*—p*).

; Here we haye adopted the standard nomenclature for the thermodymanic variables,
he V operator refer respectively to the horizontal components and derivatives.
gmn the overbarred variables denote the pre-determined boundary control fields.

- e horizontal vector F takes the form,
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F = [ f : (uK,) dy, f :_(vx,) dx},

where (L*, M*) denote the coordinates of an interior point away from the boundary re oo

In their linearized form these equations satisfy criteria similar to those outlined iy 1.
main text. We also note that an implicit formulation of the boundary layer terms ig aou:
computationally feasible and efficient. -



