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ABSTRACTA finite-difference atmospheric model dynamics, or dynamical core using variable resolution, or stretched
grids, is developed and used for regional–global medium-term and long-term integrations.

The goal of the study is to verify whether using a variable-resolution dynamical core allows us to represent
adequately the regional scales over the area of interest (and its vicinity). In other words, it is shown that a
significant downscaling is taking place over the area of interest, due to better-resolved regional fields and
boundary forcings. It is true not only for short-term integrations, but also for medium-term and, most im-
portantly, long-term integrations.

Numerical experiments are performed with a stretched grid version of the dynamical core of the Goddard
Earth Observing System (GEOS) general circulation model (GCM). The dynamical core includes the discrete
(finite-difference) model dynamics and a Newtonian-type rhs zonal forcing, which is symmetric for both
hemispheres about the equator. A flexible, portable global stretched grid design allows one to allocate the
area of interest with uniform fine-horizontal (latitude by longitude) resolution over any part of the globe,
such as the U.S. territory used in these experiments. Outside the region, grid intervals increase, or stretch,
with latitude and longitude. The grids with moderate to large total (global) stretching factors or ratios of
maximum to minimum grid intervals on the sphere are considered. Dynamical core versions with the total
stretching factors ranging from 4 to 32 are used.

The model numerical scheme, with all its desirable conservation and other properties, is kept unchanged
when using stretched grids. Two model basic horizontal filtering techniques, the polar or high-latitude Fourier
filter and the Shapiro filter, are applied to stretched grid fields. Two filtering approaches based on the projection
of a stretched grid onto a uniform one are tested. One of them does not provide the necessary computational
noise control globally. Another approach provides a workable monotonic global solution. The latter is used
within the developed stretched grid version of the GEOS GCM dynamical core that can be run in both the
middle-range and long-term modes. This filtering approach allows one to use even large stretching factors.

The successful experiments were performed with the dynamical core for several stretched grid versions
with moderate to large total stretching factors ranging from 4 to 32. For these versions, the fine resolutions
(in degrees) used over the area of interest are 2 3 2.5, 1 3 1.25, 0.5 3 0.625, and 0.25 3 0.3125. Outside
the area of interest, grid intervals are stretching to 4 3 5 or 8 3 10. The medium-range 10-day integrations
with summer climate initial conditions show a pronounced similarity of synoptic patterns over the area of
interest and its vicinity when using a stretched grid or a control global uniform fine-resolution grid.

For a long-term benchmark integration performed with the first aforementioned grid, the annual mean
circulation characteristics obtained with the stretched grid dynamical core appeared to be profoundly similar
to those of the control run with the global uniform fine-resolution grid over the area of interest, or the United
States. The similarity is also evident over the best resolved within the used stretched grid northwestern
quadrant, whereas it does not take place over the least-resolved southeastern quadrant. In the better-resolved
Northern Hemisphere, the jet and Hadley cell are close to those of the control run, which does not take place
for the Southern Hemisphere with coarser variable resolution. The stretched grid dynamical core integrations
have shown no negative computational effects accumulating in time.

The major result of the study is that a stretched grid approach allows one to take advantage of enhanced
resolution over the region of interest. It provides a better representation of regional fields for both medium-
term and long-term integrations.
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The developed stretched grid model dynamics is supposed to be the first stage of the development of the
full diabatic stretched grid GEOS GCM. It will be implemented, within a portable stretched grid approach,
for various regional studies with a consistent representation of interactions between global and regional scales
and phenomena.

1. Introduction

The advantage of using nonuniform grids with enhanced
resolution over the area of interest has been discussed in
the context of regional modeling for years (e.g., Charney
1966; Anthes 1970). The downscaling with the nested-
grid approach was applied first to regional forecast models
(e.g., Phillips 1979; the review by Koch and McQueen
1987) and later to regional climate simulations (e.g., Pielke
et al. 1992). The different versions of the Penn State–
NCAR mesoscale model (MM4 and MM5) are most wide-
ly used.

Exceptions are the French (Courtier and Geleyn 1988;
Yessad and Benard 1996) and Canadian (Staniforth and
Mitchell 1978; Staniforth et al. 1991; Coté et al. 1993)
operational models with variable-resolution stretched grids
and the models developed by Paegle (1989) and the Krish-
namurti group (Hardiker 1997).

For limited-area and nested-grid models, the problem
of formulating well-posed or mathematically correct lateral
boundary conditions, is far from resolved in spite of the
four-decade-long effort since the pioneering paper of Char-
ney et al. (1950). This difficult problem has been elo-
quently discussed by Robert and Yakimiw (1986), Oliger
and Sundstrom (1978), Yakimiw and Robert (1990),
Browning et al. (1973), Williamson and Browning (1974),
and Staniforth (1995). As practical compromise solutions,
some versions of the Davies (1976) technique are most
widely used.

Successful nested-grid model integrations are known to
be performed for short-term forecasts. After that, the fore-
cast fields, especially near the fine-resolution area bound-
ary, become contaminated by noise due to the abrupt
change of resolution at the boundary. Applying strong
filters will inevitably result in deteriorating the solution
quality. In other words, the longer-term integrations suffer
from an inaccurate interaction at the boundaries of the area
of interest. Therefore, a nested-grid approach does not
allow one to perform continuous long-term integrations
without updating initial and boundary conditions.

However, nested-grid models are the first ones to be
used successfully in recent pioneering studies on regional
climate (e.g., Pielke et al. 1992). The only way of using
these models to produce regional climate diagnostics is to
periodically update initial and/or lateral boundary condi-
tions after a short period of integration, that is, 1–2 days.
Either observational analyses or global (or larger area)
model forecast fields can be used for this purpose. These
periodic updates of initial and lateral boundary conditions
are a dominating forcing that results in a predominantly
one-way interaction between the coarse- and fine-resolu-
tion areas. Actually, the fine-resolution fields may provide

only a marginal to moderate impact on the coarse-reso-
lution fields within a buffer zone around the area of in-
terest. Formally, boundary conditions could be of a two-
way-interaction type for which the aforementioned prob-
lems still occurs. Along with using fine resolution, the
success of nested grid models is based mostly on intro-
ducing a fine-resolution boundary condition forcing. Also,
it is possible, within this approach, to use nonhydrostatic
approximations for regional models.

Notice that periodic updates of initial conditions makes
the regional integration procedure quite similar, in a sense,
to that of an intermittent data assimilation with longer
periods between data insertion. Namely, regional simu-
lations are not continuous but intermittent, with regional
climate diagnostics produced in between outer boundary
and initial data insertions. The results depend on the type
of boundary conditions used and the type and quality of
inserted data.

Recently, the adaptive grid approach, originally devel-
oped for astrophysics, aeronautical, and other computa-
tional fluid dynamics problems has been discussed and
applied to simple atmospheric models (e.g., Dietachmayer
and Droegemeier 1992; Berger and Oliger 1984; Ska-
marock 1989; Skamarock et al. 1989). The first attempt
to introduce a specific spherical adaptive grid to an at-
mospheric model was undertaken by Kurihara (1965). Ap-
parently, the adaptive grid schemes can be beneficial for
short-term forecasting, paying special attention to mete-
orological phenomena (like fast-moving cyclones) requir-
ing enhanced resolution. However, for regional climate
simulations, along with using finer-resolution fields, the
most important impact is obtained by using fine-resolution
orographic and other physical forcings over the entire area
of interest. Such an impact can be negatively affected by
the gridpoint redistributions applied for adaptive grids to
keep the computational cost under control.

Another kind of variable-resolution model to be dis-
cussed in this study is based on a stretched grid approach.
With such an approach, grid intervals outside a uniform
fine-resolution area of interest are stretched uniformly over
the rest of the globe. As a result, a single global variable-
resolution grid is obtained. As an option, the spherical grid
can be rotated so that the area of interest is located, on
our choice, over the new, rotated equator area. Such an
approach was introduced by Staniforth for finite-element
models (e.g., Staniforth and Mitchell 1978; Cote et al.
1993; Gravel and Staniforth 1992; and Staniforth 1995).

For a gridpoint model with variable resolution, the
stretched grid approach with the same model used over
the entire globe seems to be attractive because it is free
of the previously mentioned ill-posed problem typical for
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nested grids. The associated additional computational cost
due to stretching versus nesting is not overwhelming. For
example, with a practically acceptable local stretching rate
of about 5%–10%, which is a grid interval change between
the adjacent grid points, the significant part or even ma-
jority of global grid points are usually located inside the
area of interest for a variety of resolution versions.

Schmidt (1977) developed another stretched grid ver-
sion for spectral models (e.g., Courtier and Geleyn 1988).
Within this approach, a conformal coordinate transfor-
mation is introduced. For the French operational model,
one transformed hemisphere with the pole located at cen-
tral France contains western Europe, while another trans-
formed hemisphere comprises the rest of the globe. For
this model, using large total stretching factors of 7–10
works only for short-term forecasting (J.-F. Geleyn 1995,
personal communication). Small to moderate stretching
factors of 2 to 4 are used for promising, successful climate
simulation with the spectral model (Déqué and Piedelievre
1995).

Having established the attractive advantages of the glob-
al stretched grid approach, the legitimate question to ask
is what its limitations are. They should be considered in
the context of various applications to regional forecasting,
data assimilation, and climate simulation, as compared to
the corresponding control runs with time-consuming glob-
al models with uniform fine resolution. Outside the fine-
resolution area of interest, all scales are approximated with
larger truncation errors; however, the small-scale motions
dissipate quickly and their impact on the regional scales
is small. Similar to the situation with limited-area models,
one can assume that it takes a limited time for the incoming
flow approximated on a variable-resolution stretched grid
to reach, affect, and influence the flow over the area of
interest. The regional flow will depend on interactions with
such an incoming large-scale background circulation. A
downscaling due to better resolved regional scales and
regional forcing as well as their interactions will contin-
uously play an important role over the area of interest.
Notice that for the uniformly stretched grid, the incoming
flow is better resolved and more effectively represented
by gradually changing resolution than by a nested grid
with an abrupt resolution change. Therefore, for stretched
grids, the flow coming into the area of interest is better
resolved, especially its large-scale and medium-scale com-
ponents.

The key hypothesis to verify in this study is whether a
significant downscaling or an adequate representation of
regional scales is taking place over the area of interest
(and its vicinity) for both short-, medium-, and, most im-
portantly, long-term integrations with a variable-resolution
(stretched grid) dynamical core.

In this study, the stretched grid approach is developed
and tested for a finite-difference model. Namely, it was
implemented to the Goddard Earth Observing System
(GEOS) general circulation model (GCM) dynamical core
(Suarez and Takacs 1995). The GEOS GCM numerical
scheme, with all its desirable conservation and other prop-

erties, is kept unchanged when using stretched grids. The
approach developed by Held and Suarez (1994) for testing
dynamical cores is used in the study. Experimenting with
a model dynamical core provides an ultimate test of com-
putational properties of a model numerical scheme and its
dependence on resolution, or more specifically, on stretch-
ing factors. Long-term dynamical core integrations are per-
formed with the Newtonian-type rhs forcing (Held and
Suarez 1994) as a substitution for model physics. Using
model dynamical core integrations allows one to investi-
gate the specific impacts of discretized model dynamics
and resolution on full model errors, independently of full
model physics.

In the context of verifying the key hypothesis outlined
above, when testing the stretched grid dynamical core, we
are pursuing the following goals. We are comparing, in
both a medium-range forecast mode and a long-term cli-
mate mode, the results of stretched grid runs against the
corresponding basic control runs with fine uniform global
grids, especially over the area of interest and its vicinity.
We should verify whether there is any degradation of the
synoptic-scale patterns, produced by the control runs, by
the stretched grid runs. We are also making sure that in a
long-term integration mode there is no development of
cumulative undesirable effects of a numerical nature re-
lated to stretched grid approximation of model dynamics.
A particular emphasis is placed on ultimately using the
stretched grid approach for future regional climate mod-
eling applications.

Section 2 is devoted to discussing the basic numerical
problems for variable-resolution, or nonuniform, stretched
grids. A brief description of the numerical scheme and
filtering procedures is given in section 3. Application of
the filtering techniques and the results of long-term nu-
merical experiments with the stretched grid dynamical core
are presented in section 4. Middle-range integrations with
large stretching factor grids are discussed in section 5.
Concluding remarks are given in section 6.

2. A brief discussion of basic numerical
problems for finite-difference approximations
with variable-resolution stretched grids

The rationale for using irregular (nonuniform or
nonequidistant) grids for approximations of atmo-
spheric model dynamics has been discussed in the
introduction. However, there are basic computational
problems arising from grid irregularity. It affects the
accuracy of approximation, computational stability,
computational dispersion, and other properties of fi-
nite-difference schemes. These problems have been
discussed since the 1970s in computational fluid dy-
namics publications (e.g., Roache 1976; Vichnevet-
sky 1987; Oliger and Sundstrom 1978; Fletcher 1988)
for advection equations. For atmospheric models, the
additional numerical problems arising for adjustment
or wave equations using stretched grids are equally
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FIG. 1. The 1D nonuniform (nonequidistant) grid.

important (e.g., Anthes 1970, 1983; Staniforth 1995;
Fox-Rabinovitz 1988).

In this section, we will make comments on the basic
computational problems for finite-difference approx-
imations related to grid irregularity for the 1D case.

a. Accuracy of approximation for spatial
derivatives

To define a nonuniform, nonequidistant, stretched
grid we need to introduce the local stretching rate or
the ratio rj of the adjacent grid intervals Dxj and Dxj21

(see Fig. 1):

Dxjr 5 , (1)j Dxj21

where Dxj 5 xj11 2 xj, Dxj21 5 xj 2 xj21, and x is an
independent variable. Note that rj [ 1 for a uniform
grid, and rj is constant for all j’s for a uniformly
stretched grid. For the latter, grid intervals change
exponentially according to a geometric progression.
Note also that rj . 1 corresponds to a grid with
stretching, or increasing grid intervals in the direction
of increasing x (rightward), and rj , 1 to stretching
in the opposite direction. In the study, we use uni-
formly stretched grids with constant rj’s. (Actually, a
piecewise constant rj’s will be used within a global
stretched grid).

The local stretching rate rj is the basic, defining
local characteristic for a stretched grid. Another basic,
fundamental parameter for a stretched grid is the total
global stretching factor, or the ratio of the maximal
to minimal grid intervals for the entire grid:

DxmaxR 5 . (2)
Dxmin

This parameter represents the total amount of stretch-
ing for a grid.

Using irregular (nonuniform, nonequidistant) grids
results in a loss of the accuracy of approximation (see,
e.g., Roache 1976; Thompson 1984; Thompson et al.
1985; Fletcher 1988). For example, the well-known
centered finite-difference approximation of the first
derivative of a discrete function provides the second-
order accuracy only for a uniform grid for which Dxj

5 Dxj21 and rj 5 1.
For a nonuniform grid with Dxj ± Dxj21 and rj ±

1, the accuracy of approximation becomes only of the
first order. For a nested grid, which is characterized
by an abrupt change in resolution and, correspond-
ingly, in the local stretching rate rj, the second order

of approximation is lost completely. For a moderately
smoothly stretched grid with rj close to 1,

rj 5 1 1 O(Dx). (3)

Although the second order of approximation is for-
mally lost, the accuracy of approximation is close to
that of the second order. A similar loss in the accuracy
of approximations takes place for higher derivatives
of a discrete function and for higher orders of the
accuracy of approximation.

b. Coordinate transformation from a physical to
computational space

The coordinate transformation for the example of
a uniformly stretched grid with rj 5 r 5 constant can
be derived from geometric progression expressions
for stretched grid intervals (see Fig. 1),

Dxj 5 r jDxo, (4)

and for the coordinates of stretched grid points,
jr 2 1

j21x 5 Dx (1 1 r 1 · · · 1 r ) 5 Dx ,j o o r 2 1

j 5 1, 2, . . . , (5)

where Dxo is the first grid interval starting from which
the grid is stretching rightward, in the original phys-
ical space or coordinate system. In the transformed
coordinate system, the original nonuniform grid be-
comes a uniform one, with the constant grid intervals
for all j’s.

c. Comments on computational stability, dispersion,
and wave propagation and reflection

For the same centered-difference schemes applied
to both uniform and nonuniform grids, the CFL (Cour-
ant–Friedrichs–Lewy) computational stability crite-
rions have similar forms. It is also true for compu-
tational dispersion characteristics. However, the sub-
stantial difference is that space intervals Dx are func-
tions of x for nonuniform grids.

For the 1D linear advection equation approximated
with a centered-difference scheme, the CFL compu-
tational stability criterion and the computational dis-
persion relation have the corresponding forms

DxminDt #
c

and

c
n 5 sin[k(x)Dx(x)], (6)

Dx(x)

where c 5 const is the advection speed, n the fre-
quency, and k is a wavenumber.

Therefore, a time step is controlled by the fine-
resolution grid interval over the area of interest for
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which Dxmin 5 Dxo (Fig. 1). Note that using semi-
implicit schemes is desirable for variable-resolution
models to improve their computational efficiency.

Propagation and reflection of a wave group enve-
lope, or wave packet, in a uniformly stretched grid
(Fig. 1) for the linear 1D advection equation approx-
imated with either a centered-difference or the Crank–
Nicolson scheme, has been thoroughly investigated in
a seminal paper by Vichnevetsky (1987).

It is worth noting that an interesting computational
reflection effect for a wave packet takes place for the
grid with the finest grid interval in the vicinity of x
5 0 and with grid increments increasing monoton-
ically and symmetrically in both directions from that
point. For the initially rightgoing wave group, the
reflection occurs at the point xR with the group ve-
locity G 5 0. The resulting motion becomes leftgoing
and the second reflection occurs at a symmetric point
2xR where also G 5 0. Therefore, the energy is
trapped in the domain (2xR, xR) in a kind of a ‘‘well.’’
This effect of the double reflection or ‘‘ wave trap-
ping’’ was first shown by Giles and Thompkin (1985).

Finally, for nonuniform grids, a spurious scattering
effect takes place. It is enhanced for a nonuniformly
stretched grid with rj ± const, as discussed by Vi-
chnevetsky and Turner (1991).

A general solution for these computational prob-
lems arising from grid irregularity is to introduce dif-
fusion-type filters and uniformly stretched grids.
These are necessary tools for controlling the different
kinds of computational noise discussed in this section
(e.g., Vichnevetsky 1987; Fox-Rabinovitz 1988).
Specifically, small-scale components of the flow and
their transformations should be carefully controlled.

3. The GEOS GCM dynamical core with a
stretched grid

The study is done using the GEOS GCM dynamics
or dynamical core with a stretched grid. The model
numerical scheme, with all its desirable conservation
and other properties, is kept unchanged when using
stretched grids. Using the dynamical core allows us
to address the numerical problems due to grid irreg-
ularity on the sphere in the medium-range and long-
term integration modes. The finite-difference dynam-
ical core originally developed by Suarez and Takacs
(1995) for a uniform grid, with a possibility to run it
on nonuniform grids, is used in the study. The design
of the filters to run on stretched grids is one of the
main objectives of the study.

a. Brief description of the dynamical core

The model dynamical core has been developed by
Suarez and Takacs (1995) as a module updating the
time tendencies to include the adiabatic effects of the
dynamics. The strict modular approach is intended to

allow for implementing the ‘‘plug-compatible’’ rules
introduced in Kalnay et al. (1989) for structuring
model physics parameterizations. The designed dy-
namical core is nearly ‘‘plug compatible.’’ It is used
as a model dynamics component in the GEOS GCM
(Takacs and Suarez 1996).

For our experiments, we adopted the approach de-
veloped by Held and Suarez (1994) for calculations
with dynamical cores. Along with model dynamics,
all model filters and a time stepping, or a state variable
update, are implemented. Moreover, as a substitution
for model physics, it also includes a simple linear
damping of the velocities in lower model layers and
temperature relaxation to a prescribed ‘‘radiative
equilibrium’’ (Held and Suarez 1994). This Newto-
nian-type temperature forcing depends on latitude and
pressure and is symmetric for both hemispheres about
the equator.

More specifically, the previously mentioned damp-
ing and relaxation terms are introduced in the mo-
mentum and energy equations, respectively, in the
form (Held and Suarez 1994)

]v
5 · · · 2 k (s)vv]t

]T
5 · · · 2 k (w, s)[T 2 T (w, p)], (7)v eq]t

where w is the latitude, p the pressure, v the wind vector,
T the temperature, and

2T 5 max 200 K, 315 K 2 (DT) sin weq y5 [
kp p

22 (Du) log cos w ,z 1 2 1 2 6]p p0 0

s 2 sb4k 5 k 1 (k 2 k ) cos w max 0, ,T a a s 1 21 2 sb

k 5 k max[0, (s 2 s )/(1 2 s )],v f b b

1
21 21s 5 0.7, k 5 1 day , k 5 day ,b f a 40

and

1
21k 5 day , (DT) 5 60 K, (Du) 5 10 K,s y z4

21 21p 5 1000 mb, k 5 2/7, c 5 1004 J kg K .0 p

(8)

The temperature Teq is symmetric about the equator. The
friction and relaxation coefficients kv and k f decrease
with height and in the boundary layer reach the maxi-
mum values of 1 day21 and ¼ day21, respectively.

For a finite-difference approximation, the horizontal
staggered Arakawa C grid (Mesinger and Arakawa
1976) and the vertical staggered Lorenz (1960) grids
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FIG. 2. The latitudinal (a) and longitudinal (b) stretching factors as
piecewise constant functions.

are used. Basically, the numerical scheme is close to
that of the UCLA GCM. The equations of motion are
written in the form used by Sadourny (1975), Burridge
and Haseler (1977), and Arakawa and Lamb (1981).
Using some simplified assumptions, the scheme pro-
vides conservation of energy and potential enstrophy.
The continuity thermodynamic and moisture equation
approximations provide conservation of mass, potential
temperature, and moisture (Suarez and Takacs 1995).
For a uniform grid, the scheme is of a second-order,
except for the horizontal advection of vorticity and po-
tential temperature by the rotational component of the
flow, which is of a fourth-order accuracy (Suarez and
Takacs 1995; Takacs and Suarez 1996).

In the vertical, there are 20 sigma levels (Phillips
1957) spaced as in the GEOS GCM (Takacs et al. 1994).
The vertical differencing is done according to the Ar-
akawa and Suarez (1983) conservation scheme. The
time-integration scheme employs the leapfrog scheme
and a Robert–Asselin time filter (Robert 1966; Asselin
1972). It is combined with the economical explicit
scheme (Brown and Campana 1978; Schuman 1971;
Fox-Rabinovitz 1974). Following Brown and Campana
(1978), a three-time-level averaging operator is applied
to the pressure gradient force to provide stricter control
of gravity wave instability. It results in using larger time
steps and does not require any significant changes in
the numerical scheme, except for introducing the certain
order in which the model equations are integrated. The
dynamical core structure allows for the pole rotation
(Takacs and Suarez 1996) so that the area of interest
can be located away from the poles and near the equator,
for example. A stretched grid design and the corre-
sponding polar and Shapiro filter modifications for a
stretched grid are described below.

b. Stretched grid generation

Relying upon considerations discussed in section 2, the
smooth, uniformly stretched grid has been designed for
dynamical core experiments. In other words, the local
stretching rate rj [Eq. (1)] is kept constant and within not
more than a 5%–10% deviation from unity. The total glob-
al stretching factor R [Eq. (2)], or the ratio of the coarsest
to finest grid increments used in the experiments, ranges
from moderate to large values of 4 to 32.

The area of interest contains a uniform fine-resolution
latitude–longitude grid. It allows us to resolve maximally
the regional prognostic fields as well as orographic and
other physical boundary forcings. On the opposite side of
the latitudinal circles covering the area of interest, we have
only one coarse-resolution grid interval. In between the
area boundaries and this maximally remote grid interval,
the grid intervals are uniformly stretched (Fig. 2). Namely,
the grid intervals h(x) depend on x as h(x) 5 hmin 1 ax,
where a 5 r 2 1 and hmin is the minimal grid interval
over the area of interest. This stretching on both left and
right sides from the area of interest is done with constant

local stretching rates r. More specifically, for the grid de-
sign, the grid intervals increase from the right boundary
to the farthermost, coarse grid interval with a constant
local stretching rate rl. If one continues to move from the
coarse grid interval to the left boundary, the grid intervals
decrease with the constant local rate r 5 1/rl. As a result,
the local stretching rate for a latitudinal circle covering
the area of interest is actually a piecewise-constant function
(Fig. 2a). Namely, r [ 1 over the area of interest, r 5
const . 1 from the right boundary to the farthermost,
coarse grid interval, and r 5 1/const , 1 from the far-
thermost, coarse grid interval to the left boundary.

For the longitudinal circles covering the area of interest,
the stretching procedure is quite similar. Starting from the
area boundaries, the grid stretching is done with constant
local stretching rates in both directions toward the poles.
Therefore, for longitudinal circles covering the area of
interest, the local stretching rate is also a piecewise-con-
stant function (Fig. 2b). As a result, a stretched grid is
defined globally, with arbitrary local stretching rates in
both latitudinal and longitudinal directions. When the area
of interest is shifted, or is nonsymmetric in respect to the
equator, and the local stretching rates are the same in both
directions, we obtain larger meridional grid intervals over
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FIG. 3. The global stretched grid with the rectangular area of interest with fine resolution located over the United States region, or from
258 to 508N and 1258 to 758W.

one of the poles than over the other. Therefore, when the
area of interest is located near the pole, the coordinate
rotation is desirable.

Practically, when generating a stretched grid, the total
global stretching factor is introduced as the first input pa-
rameter, defined by setting the fine resolution over the area
of interest and the coarse resolution over the farthermost
grid interval. Then, the input parameters for a rectangular
(in latitude by longitude coordinates) area of interest are
defined. The local stretching rates are calculated auto-
matically by positioning the uniformly stretched grid
points between the area of interest boundary and the re-
mote coarse grid interval. The developed stretched grid
generator automatically defines the grid with prescribed
stretching parameters. Such a portable automated stretched
grid generation procedure, with the previously mentioned
input parameters, allows one not only to design stretched
grids with different areas of interest and stretching param-
eters, but also to introduce time-dependent or moveable
stretched grids an option similar to adaptive grids. The
stretched grid used in this study is presented in Fig. 3.
The area of interest is the rectangle covering the United
States. For this stretched grid, the northwestern quadrant
has the best variable resolution, whereas the southeastern
quadrant is the least-resolved one. Two other quadrants
have a medium variable resolution that is enhanced either
in latitudinal or longitudinal direction.

For the grids considered in section 5, the computational
gains are approximately 6, 10, and 16 times for the total
stretching factors of 8, 16, and 32, correspondingly. The
reduction of computation time for stretched grids versus
the corresponding uniform fine-resolution grids depends

on the size of the area of interest (it could be only a part
of the United States, for example). Also, the remote coarse-
resolution area may contain not just one grid box, as con-
sidered above, but a significant part of the globe (e.g.,
Staniforth and Mitchell 1978; Cote et al. 1993). For dif-
ferent practically feasible stretched grids, the gains in com-
putation time are ranging from several times to 1–2 orders
of magnitude. In other words, using the stretched grid
approach allows one to achieve such a variable fine re-
gional–global resolution that is not possible otherwise (i.e.,
for uniform fine-resolution grids), even with the most pow-
erful computers available now and in the foreseeable fu-
ture.

c. The polar and Shapiro filters

Two horizontal filters are used at every time step (Tak-
acs et al. 1994). The first is a high-latitude, or polar, Fourier
filter applied to all dependent variable tendencies. The
polar filter allows us to avoid linear computational insta-
bility due to the convergence of the meridians near the
poles. In other words, it prevents decreasing the time step
due to a violation of a CFL criterion near the poles. The
filter is applied poleward of 458 latitude. Its strength varies
gradually when approaching the poles, by increasing the
number and damping rate of affected zonal wavenumbers.

The Fourier transformation coefficients for a latitudinal
circle are scaled by a filtering function

2
cosw 1

F 5 5 6cos(p/4) sin[(i/l )(p/2)]M

i 5 1, 2, . . . , l , 2p/2 # w # p/2. (9)M
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FIG. 4. The 6-day integration with the stretched grid dynamical core for the sea level pressure (a) and
surface temperature (b), with filtering on the global uniform fine-resolution grid. The contour interval for the
sea level pressure is 3 hPa and for surface temperature 3 K. Here, SG (2 3 2.5 to 8 3 10) stands for the
stretched grid with uniform 28 3 2.58 resolution over the area of interest stretching to 88 3 108. Note that
in the absence of orography the sea level pressure and surface pressure are the same.

The filter strength can be increased by modifying the
filtering function (12) in the following way:

2 2
cosw 1

F9 5 . (10)5 6[ ]cos(p/4) sin[(i/l )(p/2)]M

It provides not only stronger but also spectrally wider
filtering for the small-scale spectral range. It was used
only for the experiments described in section 5 with the
0.58 3 0.6258 and 0.258 3 0.31258 resolution over the
area of interest but not for coarser-resolution runs.
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FIG. 5. The 6-day integration with the stretched grid dynamical core for the sea level pressure (a) and
surface temperature (b), with direct filtering on the global stretched grid (28 3 2.58 stretching to 88 3 108),
using a coordinate transformation approach.

Another filtering technique used is the Shapiro
(1970) filter. It is applied to all dependent variables,
namely, to the winds, potential temperature, and sur-
face pressure to damp globally small-scale dispersive
waves. It also prevents the computational nonlinear
instability (Phillips 1959) to occur. A Shapiro filter
tendency (]q/]t)SF for a quantity q is

F]q q 2 q
5 , (11)1 2]t T

SF

where q and qF are unfiltered and filtered quantities,
correspondingly, and the parameter T is an adjustable
timescale. Thus, only a fraction Dt/T of the full Sha-
piro filter is incorporated at each time step. Actually,



2952 VOLUME 125M O N T H L Y W E A T H E R R E V I E W

FIG. 6. The zonal annual mean (for the third year of the dynamical core integration, or year
3) vertical distribution of the zonal (a) and meridional (c) wind components for the stretched
grid dynamical core run, with filtering on the stretched grid, using a coordinate transformation
approach. (b) Same as in (a), and (d) same as (c) but for the control dynamical core run with
the global uniform 28 3 2.58 grid. The SG and UG stand for stretched grid and uniform fine-
resolution grid, respectively. The negative values are shown by dashed lines. The contour interval
for (a) and (b) is 5 m s21 and for (c) and (d) 0.5 m s21.
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FIG. 6. (Continued)
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T 5 1.5 h is adjusted in such a way to remove the
smallest two-grid-interval wave in approximately 6
h. The filter is applied separately in the longitudinal
and latitudinal directions.

Its discrete form is
F 2 n 2 nq 5 [1 2 (F ) ][1 2 (F ) ]q , (12)i, j w l i, j

where

1
2F (q ) 5 2 (q 2 2q 1 q ),l i, j i11, j i, j i21, j4

1
2F (q ) 5 2 (q 22q 1 q ),w i, j i,j11 i, j i,j214

and n is a filter parameter. Note that 2n is a filter
order. For 48 3 58 and 28 3 2.58 resolutions, the
sixteenth- and eighth-order filters are applied, re-
spectively (Takacs et al. 1994). Lower-order filtering
corresponds to stronger damping. Usually, stronger
noise is generated by a discretized model nonlinear
dynamics when using finer resolution.

Since the Shapiro filter is not applied to surface
pressure fields, the conservation of mass is not af-
fected. The polar filter is applied only to the tenden-
cies, but not forecast variables, and is conservative
in the zonal direction (for which it is applied). The
polar and Shapiro filters have only a small effect on
total energy and potential enstrophy conservation. All
that is true for the dynamical core with both uniform
and variable resolution. These conservation proper-
ties were carefully checked for long-term integrations.

For the stretched grid versions of the dynamical
core considered below, the strength of filtering, and,
correspondingly, the filter order, is adjusted depend-
ing on horizontal resolution over the area of interest.

d. Filtering on a nonuniform grid

There are two practical ways to account for com-
putational problems arising due to grid irregularity
effects. In one approach, the coordinate transforma-
tion is applied to model governing equations and the
corresponding numerical scheme. A grid transfor-
mation from nonuniform physical coordinates to or-
thogonal, uniform computational coordinates (see,
e.g., Anthes 1970; Wilhelmson and Chen 1982) can
be used. In another approach, the model governing
equations and corresponding numerical scheme are
not modified. This approach is used, for example, for
the adaptive refinement method (e.g., Berger and Oli-
ger 1984; Skamarock 1989; Skamarock et al. 1989).

In this study, the second approach with a smooth,
uniformly stretched grid and no model numerical
scheme modification is used. To account for actual
grid irregularity and to control related computational
noise, two simple versions of the existing model fil-
tering techniques designed for uniform grids are test-
ed. One of them, the interpolation approach, is based

on the global uniform fine-resolution filtering. Name-
ly, the tendency fields obtained at every time step of
the stretched grid model integration are interpolated
first onto the global uniform fine-resolution grid.
Next, standard polar and Shapiro filters are applied
to the uniform grid. Then the resulting filtered fields
are interpolated back onto the stretched grid.

Another version of the filtering procedure was in-
terpreted above in terms of the coordinate transfor-
mation approach. When applied for filters only, it pro-
vides uniform filtering directly on a stretched grid.
Namely, the polar and Shapiro filters are applied di-
rectly to the discrete or grid functions defined as glob-
al stretched grid fields, without interpolations to and
from the global uniform fine grid. Actually, the spe-
cific coordinate transformation following from (5) for
grid points is introduced by a stretched grid generator.
In the transformed coordinate system, the stretched
grid becomes uniform. All filtering is to be done for
the grid.

Actually, it is not even necessary to make a formal
transformation because the filters (9)–(12) do not de-
pend on spatial coordinates (the same is true for the
inverse transformation back to the physical space).
The filters are applied to the grid functions or the
stretched grid fields assuming that the grid is uniform
in the transformed computational space. As a result,
we control noise in a small-scale spectral range, which
depends on variable resolution or stretched grid in-
tervals Dx(x).

4. Basic experiments with the stretched grid
dynamical core

The goals of the experiments presented in this and
the next section are as follows. We investigate the
initial condition, or Cauchy problem, by running sev-
eral-day integrations with realistic mean initial con-
ditions and with two filtering techniques described
above. We are running long-term benchmark integra-
tions to analyze how they stabilize in time, compared
to uniform grid runs such as those performed by Held
and Suarez (1994). The long-term experiments are
essential for the future regional climate applications.
For medium-range integrations, the possibility of us-
ing large total global stretching factors without gen-
erating noise is tested. The integrations allow us to
analyze the quality of the resulting fields versus the
corresponding control experiments.

As a result of the aforementioned testing, the
stretched grid dynamical core is prepared to intro-
duce, at the future stages of the study, the orographic
and other physical forcings within a stretched grid
GCM.

All experiments with stretched grid model versions
are performed with the grid shown in Fig. 3, with the
rectangular area of interest located approximately
over the United States, or from 258 to 508N and 758
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FIG. 7. The annual mean (year 3) differences between the stretched grid and control runs for
the zonal U (a) and meridional V (b) wind components. The contour interval for (a) is 2 m s21

and for (b) 0.1 m s21. The negative values are shown by dashed lines. The GL stands for the global
domain.
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FIG. 8. The annual mean (year 3) differences between the stretched grid and control runs for the zonal
wind component at the surface (a) and the s 5 0.5 or midtroposphere level (b). The contour interval is 1
m s21 for (a) and 2 m s21 for (b).

to 1258W. A bilinear interpolation is used to create
initial conditions on a stretched grid.

For testing numerical procedures suitable for
stretched grid model dynamics, we have chosen the
July mean, or climate fields obtained from the 10-yr
Atmospheric Model Intercomparison Project (AMIP)
(Gates 1992) run with the GEOS GCM, with 48 3 58
horizontal resolution, as initial conditions for depen-

dent variables. Initial conditions of this kind allow us
to reduce the model spinup period as compared to a
state of the rest (with zero initial winds) initial con-
ditions used by Held and Suarez (1994). The clima-
tological initial conditions used here produce strong
disturbances in the beginning of the model integra-
tion, which are due to the differences between the
GCM and the dynamical core such as the absence of
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orography and simplified diabatic forcing. It allows
us to investigate the robustness of the numerical tech-
nique used.

The results of any stretched grid model run are sup-
posed to be compared with those of the corresponding
control run performed with a global uniform fine-res-
olution grid. The purpose of the validation is to assess
how well the stretched grid model is capable of de-
scribing the instantaneous regional and global scales
and phenomena during medium-range integrations
and representing mean circulation characteristics dur-
ing long-term integrations. Also, for both medium-
range and long-term integrations, it has to be verified
that no noise and/or other unrealistic features are gen-
erated.

a. Filtering on a uniform fine-resolution global
grid

As described above, in this case the stretched grid
model is run with filtering on a fine-resolution global
grid with the back and forth interpolation to the
stretched grid at every time step. The 28 3 2.58 res-
olution stretching to 88 3 108 is used for the exper-
iment. The eighth-order Shapiro filter is applied. The
experiment is important for exposing the numerical
problems related to grid irregularity. This seemingly
simple filtering technique appeared to be incapable of
providing the reliable noise control.

After several days of model integration, the prog-
nostic fields are contaminated with strong small-scale
computational noise (Fig. 4). The area of interest over
the United States is not contaminated by noise. How-
ever, the noise pattern is most pronounced over the
North Pole within the coarse-resolution grid boxes
(Fig. 4a). Also, strong noise occurs over South Asia
and the surrounding areas with strong initial gradients
and, most importantly within the coarse latitudinal
resolution grid boxes (Fig. 4b).

Actually, such a result should not be surprising.
Small-scale features have been introduced as a result
of the final interpolation back onto a stretched grid
from the global uniform fine-resolution grid for which
all filtering has been actually done. In other words,
the filtering is done only for fine-resolution scales but
not for those of the stretched grid. The small-scale
noise features appearing within the stretched grid
fields are not resolved for coarser-resolution gridbox-
es outside the fine-resolution area of interest. Namely,
the filtering applied to the fine grid is not enough for
the grid boxes with coarser resolution in one or both
directions. Such noise is exacerbated over the areas
with strong gradients resolved inadequately for the
elongated grid boxes. The solution is not destroyed
momentarily, as would be the case for the linear com-
putational CFL instability. Instead, noise grows dur-
ing several days of model integration before the so-
lution is completely destroyed. The results of this ex-

periment, with globally uniform fine-resolution fil-
tering, demonstrate the development of noise due to
grid irregularity that cannot be reliably controlled by
this version of the filtering procedure for a stretched
grid model.

b. Uniform filtering directly on a stretched grid

The workable solution for the aforementioned com-
putational problem related to grid irregularity is ob-
tained by applying both the polar and Shapiro filters
directly to the global stretched grid fields, without
interpolating back and forth from the global uniform
fine grid. As described above, the coordinate trans-
formation following from (5) is introduced for grid
points when using a stretched grid generator. All fil-
tering is applied directly to the grid functions defined
on the stretched grid, or for the grid transformed into
a uniform one in the transformed coordinate system.
The eighth-order Shapiro filter is used as in the pre-
vious experiment.

The results of the run with this filtering procedure
are presented in Fig. 5. There is no indication of any
computational noise generated during several days of
the stretched grid model integration. Actually, this
noise-free integration is continued in a climate mode,
the results of which are discussed in the next section.

The obtained results show that computational noise
generated by grid irregularity can be effectively con-
trolled by basically the same filtering procedures as
in the original dynamical core applied here to
stretched grid prognostic fields.

c. Long-term benchmark integrations

The experiment discussed in section 4b and the cor-
responding control one with global uniform 28 3 2.58
resolution have been run in a climate mode for 3 yr.
The goal is to compare the benchmark experiment
performed with a stretched grid and the control run
with the uniform fine-resolution grid, in terms of tem-
poral mean fields.

Vertical distributions of the zonal-mean zonal wind
component are presented in Figs. 6a,b. Because of the
symmetric hemispheric rhs forcing used in the dy-
namical core, both hemispheric jets are practically
identical for the control experiment (Fig. 6b). The jet
cores are positioned at approximately the s 5 0.25
level in the vertical and near the 408–458 latitude re-
gion in both hemispheres.

For the stretched grid run (Fig. 6a), with finer res-
olution in the Northern Hemisphere according to Fig.
3, the hemispheric jets are no longer symmetric. This
is due to the fact that both computational errors and
the actual rhs forcing in the dynamical core depend
on resolution. For the Southern Hemisphere with
coarser resolution, the jet gradients, pattern and con-
figuration, especially in the Tropics, are somewhat



2958 VOLUME 125M O N T H L Y W E A T H E R R E V I E W

FIG. 9. The vertical s-level distributions of the annual (year 3) mean wind component for (a)
the zonal wind over the area of interest for the stretched grid run, (b) same as (a) but for the
control uniform fine-resolution run, (c) the meridional wind over the area of interest for the stretched
grid run, and (d) same as (c) but for the control uniform fine-resolution run. The contour interval
for (a) and (b) is 5 m s21, and for (c) and (d) 0.2 m s21. The R (in SG-R and UG-R) stands for
the region, or area of interest, located between 258 and 508N, and 758 and 1258W.
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FIG. 9. (Continued)

different from those of the control run (Fig. 6b). Most
importantly, the Southern Hemisphere jet core is over-
estimated by 5 m s21 and is latitudinally shifted equa-
torward by approximately 108. For the better resolved
within the stretched grid Northern Hemisphere, the
jet position and characteristics are very close to those
of the control experiment (Figs. 6a,b). Similar results

are obtained for the vertical distributions of the zonal
mean meridional wind component (Figs. 6c,d). In the
better-resolved Northern Hemisphere, the meridional
wind distribution for the Tropics and midlatitudes in
the vicinity of the s 5 0.25 level for the stretched
grid run (Fig. 6c) is close to that of the control run
(Fig. 6d). It means that the Hadley cell is well rep-
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FIG. 10. Same as in Fig. 9 but for the area located within the least-resolved southeastern
quadrant, between 108 and 808S, and 08 and 1508E. The contour interval for (a) and (b) is 5 m
s21, for (c) 0.3 m s21, and for (d) 0.5 m s21. The RC (in SG-RC and UG-RC) stands for the
region with coarse resolution.

resented in the stretched grid run (Fig. 6c). For the
Southern Hemisphere, the corresponding meridional
wind distribution for the stretched grid run is under-
estimated (Fig. 6c). It results in weakening the Hadley

cell for the Southern Hemisphere with coarser reso-
lution. Therefore, the results for each hemisphere
strongly depend on hemispheric resolution.

The differences between vertical distributions of
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FIG. 10. (Continued)

the wind components shown in Fig. 6 are presented
in Figs. 7a,b. These differences are calculated for the
simulated stretched grid fields against the correspond-
ing uniform fine resolution or control run fields. We
are supposed to verify how close the results are of
the stretched grid and control runs. The deviations

from the control run hereafter are called errors. We
realize that these errors include a redistribution of the
uncertainty due to, for instance, the differences be-
tween integrations started from slightly different ini-
tial conditions.

For the error calculation, the stretched grid fields
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here and hereafter are interpolated onto the global
uniform fine-resolution grid used for the control run.
In the better resolved Northern Hemisphere, the errors
are fairly small, mostly within 62 m s21 for the zonal
wind U and 60.1 m s21 for the meridional wind V.
For the Southern Hemisphere with coarser resolution,
the errors are significant, almost an order of magni-
tude larger due to the equatorward shift of the jet and
underestimation of the Hadley cell.

The annual mean errors for the stretched grid zonal
winds for the s 5 1 and s 5 0.5 levels calculated as
the differences between the stretched grid and control
runs are presented in Figs. 8a,b. The errors are smaller
over the best-resolved northwestern quadrant, for
which they are mostly within 61–2 m s21 at the sur-
face (Fig. 8a) and 62–4 m s21 for the middle tro-
posphere (Fig. 8b). Within the northwestern quadrant,
the errors are minimal for the area of interest over
the United States, for which they are at least twice
smaller than for the entire quadrant (Figs. 8a,b). Over
other quadrants, especially over the Southern Hemi-
sphere, the errors are significantly larger.

This conclusion can also be corroborated by con-
sidering the time-averaged zonal mean distributions
of wind components over the fine-resolution area of
interest (Fig. 9) located within the northwestern quad-
rant, and over the large area located in the least re-
solved southeastern quadrant (Fig. 10). For the area
of interest, the patterns of the zonal and meridional
wind vertical distribution are similar for both the
stretched grid and control experiments. The vertical
and latitudinal position and gradients of the jet core
practically coincide (Figs. 9a,b), whereas the jet core
strength is overestimated by 5 m s21 in the stretched
grid run. The corresponding patterns of the meridional
wind vertical distribution are also close (Figs. 9c,d),
although the negative feature is slightly underesti-
mated by approximately 0.2 m s21, and its center is
slightly shifted by approximately 18–28 (i.e., by less
than one grid interval) equatorward for the stretched
grid run.

For the coarse-resolution area in the southeastern
quadrant, the same circulation characteristics are pro-
foundly different for the stretched grid and control
experiments (Fig. 10). The jet core is shifted in the
vertical upward by approximately 25–50 hPa and lat-
itudinally by approximately 88–98 equatorward for the
stretched grid run (Figs. 10a,b). The jet patterns and
gradients are also significantly different. The same is
even more true for the meridional wind distributions
(Figs. 10c,d). These results are consistent with those
obtained for the GEOS GCM by Takacs and Suarez
(1996) on the impact of coarser resolution or lower
order of the accuracy of approximation.

The obtained results show the model sensitivity to
variable horizontal resolution (over the Northern and
Southern Hemispheres, for the global quadrants and
over the area of interest) within a stretched grid. Most

importantly in the context of this study, they show
the ability of a stretched grid model to reproduce cli-
mate patterns, especially over the area of interest and
its vicinity, which are close to those of the control
run with fine uniform global resolution. It appears that
the regional circulation patterns and distributions are
only moderately affected but not really overwhelmed
by the incoming relatively poorly resolved flow.

5. Dynamical core integrations with enhanced
variable resolution and large total global
stretching factors

The results of stretched grid integrations presented
above have been obtained with a total global stretch-
ing factor of 4 and rather coarse variable resolution
for the grid stretching from 28 3 2.58 to 88 3 108. In
view of the basic problems related to finite-difference
approximations with nonuniform grids outlined in
section 2, we should carefully verify the robustness
of the numerical technique for stretched grids with
larger total stretching factors. In this section, we pres-
ent results of medium-range integrations of the
stretched grid dynamical core with finer variable res-
olution and larger total global stretching factors rang-
ing from 4 to 32. The same area of interest as in Fig.
3 is used for the experiments. The following variable
horizontal resolution grids are used: 18 3 1.258
stretching to 48 3 58; 18 3 1.258 stretching to 88 3
108; 0.58 3 0.6258 stretching to 48 3 58; 0.58 3 0.6258
stretching to 88 3 108; 0.258 3 0.31258 stretching to
48 3 58; and 0.258 3 0.31258 stretching to 88 3 108.
For validation purposes, two control experiment re-
sults, with fine uniform global 18 3 1.258 and 0.58 3
0.6258 horizontal resolutions, are used. All these ver-
sions of fine-resolution stretched and uniform grids
are run with the stronger fourth-order Shapiro filter
and stronger polar filter [Eq. (10)]. Initial conditions
are the same as in the benchmark integrations (the
July mean fields from the AMIP run).

The results of the 10-day integrations with the total
stretching factors of 4 and 8 for the global domain
are presented in Fig. 11. Over the area of interest and
the entire northwestern quadrant, both the control uni-
form grid and stretched grid runs are close to each
other in terms of both the amplitude and phase of
synoptic features even for the strong gradient area
over the United States (Fig. 11a,b). The differences
between the stretched grid runs and the control run
over the area of interest are small, less than 1 K (Figs.
11c,d). The differences over the entire northwestern
quadrant are also small, mostly within 2 K. At the
same time, for other quadrants, especially over the
least-resolved southeastern quadrant, the differences
are much larger.

For a more detailed comparison, we consider the
results of the 10-day integrations, with the total
stretching factors of 4, 8, and 16, for the major part
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FIG. 11. The global surface potential temperature fields (a) and (b) and their differences (c) and (d) after 10-day integrations: (a) with the
global uniform 18 3 1.258 resolution grid (the control run); (b) with the grid stretching from 18 3 1.258 resolution to 48 3 58; (c) the
difference field between (b) and (a); (d) the difference field between the run with the grid stretching from 18 3 1.258 to 88 3 108 and (a).
The contour intervals for (a) and (b) are 3 K, and for (c) and (d) 1 K. The SG and UG stand for a stretched grid and uniform grid,
correspondingly. The negative values are presented by dashed lines.

of the best-resolved northwestern quadrant that in-
cludes the area of interest and its large vicinity (Fig.
12). Two control experiment results, with uniform
global resolution of 18 3 1.258 (Fig. 12a) and 0.58 3
0.6258 (Fig. 12b), appeared to be well reproduced by
the corresponding stretched grid runs [Figs. 12c,e (the
left column) and Figs. 12d,f (the right column)] in
terms of the position and depth for all centers, and in
terms of the gradient strength. The fields obtained
with the larger total stretching factors of 8 and 16
using the grids stretching from 18 3 1.258 to 88 3
108 (Fig. 12e) and 0.58 3 0.6258 to 88 3 108 (Fig.
12f) are only slightly smoother than those of the cor-
responding control runs (Figs. 12a,b). The results of
the integrations with the grids stretching from 18 3
1.258 to 48 3 58 (Fig. 12c) and 0.58 3 0.6258 to 48
3 58 (Fig. 12d) represent even minor details of the
corresponding control runs (Figs. 12a,b). The fields
obtained with finer 0.58 3 0.6258 resolution over the
area of interest (Figs. 12b,d,f) have smaller-scale fea-
tures and stronger centers and gradients than those
obtained with coarser 18 3 1.258 resolution over the

area of interest (Figs. 12a,c,e). Notice that the com-
putational costs are reduced by the factors of 6 and
10 for the total stretching factors of 8 and 16, rela-
tively (as compared to the corresponding uniform grid
control runs).

For the stretched grid runs, the deviations from the
corresponding control runs or rms errors are calcu-
lated for all model sigma levels (Fig. 13). For both
grids with total stretching factors of 4 and 8, the rms
errors over the area or region of interest are small,
although they are larger for the grid with the total
stretching factor of 8. Over the entire best-resolved
northwestern quadrant, the rms errors (Fig. 13c) are
larger than those of the area of interest but are still
quite moderate. Over the least-resolved southeastern
quadrant, the rms errors are approximately an order
of magnitude larger than those of the area of interest.
For the stretched grid run with finer 0.58 3 0.6258
resolution over the area of interest stretching to 48 3
58, or with the total stretching factor of 8, the rms
errors (calculated against their corresponding control,
or uniform 0.58 3 0.6258 resolution run) are similar
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FIG. 12. The surface zonal wind fields after 10-day integrations for the large part of the northwestern
quadrant (108 to 708N and 208 to 1708W) using the grids with (a) global uniform 18 3 1.258 resolution (the
first control run), (b) global uniform 0.58 3 0.6258 resolution (the second control run), (c) 18 3 1.258 resolution
stretching to 48 3 58 (the TSF of 4), (d) 0.58 3 0.6258 resolution stretching to 48 3 58 (the TSF of 8), (e)
18 3 1.258 resolution stretching to 88 3 108 (the TSF of 8), and (f) 0.58 3 0.6258 stretching to 88 3 108
(the TSF of 16). The TSF stands for the total stretching factor. The contour interval is 2 m s21.

but slightly smaller than those of the grid with the
same total stretching factor of 8 but with the coarser
1 3 1.258 resolution over the area of interest.

Let us compare the spherical harmonic spectra for
stretched grid integrations and the control one pre-
sented in Fig. 14. It is important to find out which
spectral ranges are affected by introduction of global
variable resolution. For both stretched grid integra-

tions, the large- and medium-scale spectral range (for
the total wavenumbers less than or equal to 8) are
very close to that of the control run. The result is
important. These global spectral ranges should not be
significantly affected by model variable resolution for
medium-range integrations. The smaller scales show
the impact of model variable resolution and filtering.
The impact is stronger for the run with the larger total
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FIG. 13. The rms errors for 10-day inte-
grations for (a) zonal wind fields over the
area of interest obtained from two stretched
grid runs, (b) same as (a) but for potential
temperature, and (c) same as (b) but for the
entire northwestern quadrant. The rms er-
rors are shown for the grid stretching from
18 3 1.258 to 48 3 58 by dark circle lines,
and for the grid stretching from 18 3 1.258
to 88 3 108 by open circle lines. Wind errors
are in meters per second and potential tem-
perature errors in kelvins.

stretching factor of 8. Notice that prior to spectra cal-
culations the stretched grid fields are interpolated onto
the corresponding global uniform fine-resolution grid
that affects the smaller-scale spectral range.

Two more successful integrations have been performed
using the grids with the very fine 0.258 3 0.31258 reso-
lution over the area of interest stretching to 48 3 58 (with
the total stretching factor of 16) and to 88 3 108 (with
the total stretching factor of 32). (The last grid has ap-
proximately the same number of grid points as the global
uniform 18 3 1.258 resolution grid.) The resulting fields
are basically similar to those obtained with coarser reso-

lution over the area of interest. They contain smaller-scale
features and stronger centers and gradients. However, it
appeared to be too costly in terms of both the computer
time and memory to perform the corresponding control
run with the uniform global 0.258 3 0.31258 resolution
needed for calculating errors similar to those of Fig. 13.

Note that the requirements on consistent horizontal
and vertical resolution pointed out by Lindzen and
Fox-Rabinovitz (1989) should be applied within the
stretched grid approach. Obviously, the resolution
consistency within a stretched grid should be defined
for the area of interest. The simplest way to implement
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FIG. 14. The spherical harmonic spectra for the temperature fields
at the s 5 0.5 level after 10-day integrations using the grids with
the global uniform 18 3 1.258 resolution (the control run) (solid line),
the 18 3 1.258 resolution stretching to 48 3 58 with the total stretching
factor of 4 (dotted line), and the 18 3 1.258 resolution stretching to
88 3 108 with the total stretching factor of 8 (dashed line).

it for the enhanced horizontal resolution region within
a stretched grid is to consistently increase model ver-
tical resolution globally. The associated additional
computational cost is much less than that of increased
horizontal resolution (with the corresponding de-
crease of a time step). Experiments on consistent res-
olution are planned to be performed later.

The close similarity between the stretched grid in-
tegrations and those of the corresponding control runs
in a medium-range forecast mode, even for large total
stretching factors presented in this section, shows the
robustness and high quality of the numerical solutions
obtained with variable resolution stretched grids.

The results presented in this and previous sections
with various stretched grid model versions are en-
couraging. We can use the basic filtering procedure,
readjusting only its parameters depending on reso-
lution. Using the stretched grid approach allows us to
take advantage of enhanced resolution and the cor-
responding downscaling over the area of interest for
medium-range and long-range integrations.

6. Conclusions

The following conclusions are obtained as the result
of the study.

1) The key result of the study with the variable-res-
olution dynamical core is that an adequate repre-
sentation of regional scales, that is, a significant
downscaling, is taking place over the area of in-
terest (and its vicinity) not only for short-term in-
tegrations but also for medium-range and, most
importantly, long-term integrations.

2) The stretched grid version of a finite-difference
dynamical core with effective filtering techniques
for nonuniform, stretched grids, is developed and

thoroughly tested. It allows one to reliably control
computational noise arising from grid irregularity.
The medium-range and long-term benchmark in-
tegrations of the stretched grid dynamical core
have shown no negative computational effects ac-
cumulating in time. The positive impact from in-
creased horizontal resolution, especially over the
area of interest and its vicinity, is obtained. The
regional prognostic fields and circulation patterns
and distributions are not overwhelmed by the in-
coming relatively poorly resolved flow.

For long-term benchmark integrations, the par-
ticular emphasis is placed on ultimately using the
stretched grid approach for regional climate mod-
eling applications.

3) With adjusted basic filter parameters, stretched
grids with medium to large total global stretching
factors of 4 to 32 have been used. Successful me-
dium-range integrations with summer climate ini-
tial conditions are performed for the grids with
fine resolution over the area of interest (the United
States) of 2 3 2.58, 18 3 1.258, 0.58 3 0.6258, and
0.258 3 0.31258 stretching outside the area of in-
terest to 48 3 58 or 88 3 108. The profound sim-
ilarity to the corresponding control runs with uni-
form fine global resolution is obtained.

4) Stretched grid integrations are performed at sig-
nificantly reduced computational costs as com-
pared to those of the corresponding global uniform
fine-resolution ones. This allows one to use such
fine resolution over the area of interest that is not
possible otherwise for a foreseeable future.

5) The stretched grid dynamical core is planned to
be introduced into the future stretched grid GEOS
GCM.
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