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ABSTRACT

Using a linear analytic model and a nonlinear numerical model, the adequacy of the hydrostatic model
is investigated for use in the simulation of sea and land breezes over flat terrain. Among the results it is
found that for a given horizontal scale of heating, the hydrostatic assumption becomes less valid as the
intensity of surface heating increases, and as the synoptic temperature lapse rate becomes less stable. The
spatial scale at which the hydrostatic assumption fails is substantially’smaller than suggested by Orlanski
(1981). For sufficiently stable large-scale thermodynamic stratifications, for instance, aspect ratios of order
unity can still produce nearly identical solutions, regardless of whether or not the hydrostatic assumption
is used. The difference in the conclusions between our study and that of Orlanski is attributed to Orlanski’s
analyses of the characteristic wave equations in the free atmosphere, whereas in a sea-breeze simulation the
requirement that vertical velocity at the ground is zero limits the magnitude of the vertical acceleration.

1. Introduction

There has been considerable discussion regarding
the adequacy of the hydrostatic assumption in me-
soscale meteorological models; however, much of it
has utilized scale analysis in order to estimate the
magnitude of error introduced when the hydrostatic
assumption is used. Such scale analyses are performed
either on the vertical equation of motion alone, (e.g.,
Pielke, 1981, Section 3; Haltiner and Williams, 1980;
Neuman and Mahrer, 1971) or on a linearized set of
the equations of motion (e.g., Pielke, 1981, Section
J; Haltiner and Williams, 1980). Unfortunately, the
use of scale analysis permits only a qualitative eval-
uation of the suitability of the hydrostatic assump-
tion.

In order to more quantitatively determine the error
introduced using this assumption, it is desirable to
utilize models with and without this formulation for
the vertical pressure distribution, Two models are
used in this study—a linear model originally devel-
oped by Defant (1950) and a nonlinear analog to that
model, described in Martin (1981). The analytic lin-
ear model provides the investigator with the ability
to explore the significance of the hydrostatic assump-
tion without the complication of computational er-
rors, whereas the nonlinear model provides the op-
portunity to investigate the contribution of advection
to errors introduced using the hydrostatic relation.
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2. Basic equations

The basic equations used in this study are of the
two-dimensional form used by Defant (1950). They
are
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where the prime and double prime indicate mesoscale
perturbations from the synoptic state and subgrid-
scale fluctuations, respectively. The synoptic state is
indicated by the subscript zero. To simplify the anal-
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ysis, horizontal gradients in the synoptic fields are
assumed zero, as are variations in the north-south
direction. In addition, the Coriolis term is neglected
in the vertical equation of motion [see Pielke, (1981,
p. 197) for the justification], the incompressible con-
tinuity equation is used, and the subgrid-scale fluxes
are assumed horizontally homogeneous. The param-
eter A is identically zero in a hydrostatic model, while
A is equal to unity in the nonhydrostatic version.

a. Linear solution

In Defant’s (1950) original version, advection was
ignored in order to permit an exact analytic solution.
Also,
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were assumed. The formulation used by Defant
(1980) to represent the subgrid-scale fluxes of velocity
are not standard today, but do permit an evaluation
of the relative contribution of subgrid-scale fluxes.

To solve (1)—(5) without advection in the five un-
knowns (i.e., v/, v, w', p' and ¢'), Defant recognized
that #’ and v must be 90° out of phase with w’, p’
and ¢, since the first two dependent variables are ex-
pressed in terms of derivatives of the others. More-
over, the solutions should be a function of height
above the ground surface, rather than simply a pe-
riodic function, since the sea and land breeze does
not extend upward indefinitely. Defant, therefore,
assumed solutions of the form

w(x, z, ) = W(2)e™ sink,.x
p'(x, z, 1) = Kz)e™ sink, x
#(x, z, 1) = B(z)e™ sink,x ,

u'(x,

(7
z, 1) = #(z)e™ cosk,x
v'(x, z, 1) = D(z)e™ cosk,x
with the boundary conditions
w(iz=0)=w((z—>w)=0(z— )=
0 (z=0)= Me™* sink, x,

where M is the amplitude of the maximum mesoscale
perturbation surface potential temperature. In gen-
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eral, w, p, 0, # and D are complex valued variables.
The wavenumber k, is equal to 27 divided by the
wavelength L, of the assumed periodic function. In
this model, 0.5L, corresponds to the size of land in
which the maximum heating occurs 0.25L, inland
from the coast. The frequency w represents the tem-
poral periodic variation in the system which for a
sea—land breeze simulation, corresponds to the diur-
nal period.

The assumed solutions given by (7) are substituted
into (1)-(5) which, after simplification, yields

iwil = —keoop + f0— oyl
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These equations, with boundary conditions, are
solved simultaneously for the dependent variables, 7,
D, W, 8 and p, which are now only functions of z. The
solution to this set of linear ordinary differential
equations is discussed in detail in Martin (1981) and
is given by
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And a and b are determined from
P =b=%n+s)

+ Wf(n? + 5 — 4n’s — N2 (15)
It follows that a and b are given by
a= i.\/? (16)

b=+VP?

The choice remains of which roots to choose in
(15) and (16). In order to avoid division by zero, a®
and b* must be opposite roots of (15). Solutions of
the model equations, however, showed that identical
results were obtained whether a® was the first root
and b* the second root of (15) or vice versa. Fur-
thermore, to satisfy the boundary condition w (z —
o) = 0, in conjunction with (10), b must have a
positive real part and ¢ must have a negative real
part. This is no restriction since the square roots of
a complex number will yield one with a positive real
part and one with a negative real part.

With this information, the analytic solution to
Defant’s linear model is obtained. Values of the de-
pendent variables w', p’, &, 1’ and v’ as a function of
X, z and ¢ are determined by calculating the real parts
of (7) and (9) through (13), using (15), (16) and (14)
in order to determine the values of 7%, v, s, ¢, @, b,

a and b. _ '
"~ Fig. 1 illustrates & and w at 6 h after simulated

sunrise obtained using this linear model. The values
. of the parameters used in the model were

B=1°Clkm™; K
ap = 0.758 m3 kg™!

=10m?s7!;

op=4d,=1073s"1 f=1.031 X 10%s7};
. . (17)
£=98ms™?
b, = 273 K; M = 10°C;
ke =27 100 km™!

The symmetric circulation evident in the figure
results because of the horizontal periodicity assumed
in the solutions and the neglect of advective effects
(see Sections 2bl, 2b2). Land and water are differ-
entiated in the model only by the magnitude of k,

[the same dependent variables over water and land -

are always of opposite sign because of the form of the
assumed solution (7)].

This solution illustrates the interrelation between
the dependent variables. Because of the prescribed
heating/cooling pattern in the model, pressure falls

develop in the region of heating, while rises occur-

where cooling is specified. This pressure pattern
- causes horizontal accelerations toward regions of
lower pressure, as required by (1). Since mass con-
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FIG. 1. The horizontal and vertical velocity fields predicted from
Defant’s (1950) model 6 h after sunrise using the input parameters
given by (17). The zero in this and subsequent figures is indicated
by the dotted line.

servation is required from (4), upward motion nec-
essarily results in the region of heating, while subsi-
dence occurs in the areas of cooling.

To examine the relative error between the non-
hydrostatic and hydrostatic amplitudes of a given
dependent variable, the quantity

,(-bnl - '¢nh,
|¢n| + I¢nhl

is calculated, where |¢,| and |¢,,| are the maximum
absolute amplitudes over time and space for a given
set of parameters such as listed in (17). The subscripts
n and nh correspond to hydrostatlc and non-hydro-
static versions. |

Fig. 2 illustrates one such comparison where E is
evaluated as a function of the domain-averaged lapse
rate d6y/0z and L,. As the atmosphere becomes more
stably stratified, according-to Defant’s model, the
hydrostatic relation is a more accurate assumption
for a given horizontal scale of the circulation.

With a value of 86y/dz = 1°C (100 m)~’, for in-
stance, the maximum error isdess than 2% even with
L, = 1 km, whereas an equivalent level of accuracy
is not attained for 86y/dz = 0.01°C (100 m)~! until
L, =~ 10 km. Fig. 3 shows a similar analysis for the
magnitude of the exchange coefficient for heat, K,
which is assumed a constant in a given solution of
Defant’s model. As the rate at which heat is mixed

E=2 (18)
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FIG. 2. Relative error in vertical velocity E,., between non-hydrostatic and

hydrostatic models. 36,/9z

in the model increases, the hydrostatic relation be-
comes a poorer assumption for the pressure distri-
bution in the model. With values of K = 10> m? s™!
and L, = 1 km, for example, the maximum error is

is in units of °C km™',

about 4%, while it increases to over 14% for K = 10°
m? s~ [The sensitivity of the results to different val-
ues of oy and o, were also examined (Martin, 1981).
For oy = g, = 1073 s}, for instance, the maximum
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FiG. 3. Relative error in vertical velocity E,, between non-hydrostatic and
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error introduced when the hydrostatic assumption
was used was only 1% even for L, = 1 km. Smaller
values of o5 and ¢, resulted in even smaller errors.]

These results are at variance to conclusions reached
by Wipperman (1981) and Orlanski (1981). Wipper-
man suggested that the hydrostatic assumption is only
valid for horizontal scales = 10 km, while Orlanski
claimed that H,/Ax < 1 is needed before the hydro-
static assumption can be accurately applied. Both of
these studies, however, examined only wave equa-
tions where no boundary conditions were applied.
Thus, their conclusion regarding the hydrostatic as-
sumption is only valid for meteorological systems
where internal gravity wave propagation in the free
atmosphere is the dominant disturbance. Consistent
with the study discussed here, however, Wipperman

found the hydrostatic assumption to. be valid for

smaller scales when the atmosphere is more stable.
He also stated that increased wind speed has the same
effect as decreased thermal stability.

b. Nonlinear model

A nonlinear model can be used to investigate the
influence of advection on the adequacy of the hy-

drostatic assumption. In contrast to the linear solu-

tion, the horizontal scale of heating is not, in general,
equal to the horizontal scale of the resultant meso-
scale circulation.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 40

The form of equations used in the nonlinear nu-
merical model are given in Table 1 and are derived
from (1)—(5) with the addition of advection in the
prognostic equations. To approximate the individual
terms, forward time differencing is used with centered
in space differencing for the remaining terms, with
the exception of the advection terms where upstream
spline interpolation (e.g., see Mahrér and Pielke,
1978) is used.

The nonhydrostatic model was derived, as origi-
nally suggested by Pielke (1973), by first differentiat-
ing (1) with respect to x, and (3) for A = 1 with respect
to z, and adding using (4) to eliminate the time ten-
dency terms. After rearranging, a Poisson equation
for the perturbation pressure is obtained. Tradition-
ally, that equation is used to calculate pressure in a
numerical nonhydrostatic model. An alternative for-
mulation, however, is to differentiate (1) with respect
to x, and (3) for A = 0 with respect to z and adding.
The result is a Poisson equation for the hydrostatic
pressure. Subtracting the Poisson equation for the
hydrostatic pressure from the Poisson equation for
the total pressure yields a Poisson equation for the
nonhydrostatic residual R (i.e., R = p’ — p’y where
p' is the perturbation pressure and p is the hydro-
static component of the perturbation pressure). The
hydrostatic component is calculated from (3) with

= 0, straightforwardly, using vertical integration.

The Poisson equation for R is given in Table 1.

TABLE 1. Hydrostatic and nonhydrostatic nonlinear analogs to Defant’s (1950) model.

Nonlinear analog to the Defant (1950) model
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FIG. 4. Computation of a local nonhydrostatic effect in a numerical model.

One advantage of using such a formulation for R
is that the Poisson equation need only be computed
locally within a model domain outside of which F(x,
z) is arbitrarily small, as illustrated schematically in
Fig. 4. The boundary conditions are also specified
easily (i.e.,, R = 0).

To check the numerical model code, an experi-
ment was performed which used equivalent initial
and boundary conditions [i.e, as given by (17)] as
applied to create Fig. 1. To be consistent, all the ad-
vection terms were removed in the calculations. The
numerical results, shown in Fig. 5, correspond closely
with the analytic results (Fig. 1), indicating that the
computational code has been formulated consistent
with Defant’s model.

Before illustrating comparisons of hydrostatic and
nonhydrostatic results for different horizontal scales
of heating, several other aspects of the model results
will be discussed in order to examine the influence
of the assumed lower boundary condition on the spa-
tial scales of the solution. In these experiments a rel-
atively large value of L, was chosen in order to assure
that the hydrostatic assumption is valid.

1) EFFECT OF SURFACE HEATING

Fig. 6 illustrates two numerical experiments per-

formed using the initial parameters given by (17),

except M = 1°C in the first simulation. Since the
spatial pattern of the linear solution is identical re-
gardless of the magnitude of the amplitude M of sur-

face heating, Defant’s model predicts a solution of

the form illustrated by Fig. 1, for both M = 1°C and
M = 10°C. From (9)—(13), the magnitude of the per-
turbations are only multiplied by M, but with no al-
teration in the vertical or horizontal scale of the cir-
culation. '

The nonlinear results, in contrast, show a marked
difference between M = 1 and 10°C. For the smaller
magnitude of heating, the linear and nonlinear results
are almost identical. For M = 10°C, however, the
horizontal scale of the low-level convergence is much
smaller and of the low-level divergence larger than
expected from the linear solution. Such asymmetry
develops because the advection enhances the con-
vergence of the region of heating, thereby causing a
larger horizontal pressure gradient. This increased
pressure gradient generates additional convergence

20
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F1G. 5. The numerical analog to Defant’s (1950)
model using input as in Fig. 1.
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F1G. 6. The simulation of the sea breeze using the numerical analog of Defant’s model with M = 1°C (top) and
10°C (bottom), withéut (left) and with nonlinear advection included.

due to horizontal advection, and this positive feed-
_back continues until frictional retardation or the cool-
ing of the surface limits the horizontal velocity ac-
celeration.

With regard to the hydrostatic assumption, how-
ever, the reduction in horizontal scale due to nonlin-
ear advection, indicates that a nonlinear model must
be used in order to examine the importance of non-
hydrostatic pressure forces when advection is signif-
icant.

2) EFFECT OF SPATIAL DISTRIBUTION OF THE SUR-
FACE HEATING

Fig. 7 (left) was created assuming a sinusoidal form
of surface heating [i.e., as given following (7)] with
nonlinear advection included. Fig. 7 (right) illustrates
results when the same magnitude of heating is used
(i.e, M = 2.5°C) with L, = 50 km, but the spatial
temperature perturbation is assumed uniform over
land and identically zero over water. Such a specifi-
cation corresponds more closely with reality.

As compared with Fig. 7 (left), the low-level con-
vergence is broader and less intense than when the

sinusoidal form of surface heating is used. The result

is that the horizontal scale of the horizontal circula-
tion is larger than would be expected if the heating
were sinusoidal. Perhaps the major reasons for the
difference are that with sinusoidal heating: 1) hori-
zontal accelerations are produced from both the left
and the right of the location of maximum heating;
and 2) the temperature decrease at the water surface
when the spatial periodic function is used creates a
maximum of 20°C, rather than 10°C difference be-
tween the land and water.

3) EFFECT OF THE HYDROSTATIC ASSUMPTION

In order to illustrate the effect of the hydrostatic
assumption, it was elected to perform calculations
using the sinusoidal heating function. Although less
realistic than uniform heating over land, it should
provide a minimum lower bound on the use of the
hydrostatic assumption since the spatial scale of the
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FIG. 7. The simulation of the sea breeze using the numerical analog of Defant’s model with nonlinear advection for (a)
sinusoidal surface heating function of the form given following (7); and (b) for a spatially constant value over land [i.e., 8’

(z = 0) = Me™ over land; zero otherwise].

circulation is expected to be smallest for this situation.
It also permits a direct comparison with the analytic
results discussed in Section 2a. '

Figs. 8 and 9 illustrate two simulations with L,
= 6.25 km and with L, = 3.125 km. The initial and
boundary conditions are identical [and correspond
to those given by (17)] except M = 2.5°C and the
period of the heating is 3 h for the L, = 6.25 km
simulation, and 1.5 h for the L, = 3.125 calculation.
Although this shortening of the time of heating was
necessitated by limitations in available computer re-
sources, it would be expected to enhance the non-
hydrostatic effect. Thus, if the hydrostatic and non-
hydrostatic results closely agree for these simulations,
they would be even more closely in agreement for
heating over a diurnal period.

As evident in the figures for the time of maximum
heating over land, the results do closely correspond.
The maximum differences between hydrostatic and
nonhydrostatic simulations for the same scale of hor-
izontal heating are:

L,=6.25km L, = 3.125 km
Max E, 5.8% 5.7%
E, 1.6% 3.0%

- E, 16.0% 18.0%
E, 0.8% 4.7%
E, 10.0% 40.0%
Au 31 cm s™! 28 cm s~!
Av 0.3cms™! l.5cms™!
Aw 15cms! 35cm s™!
Af 0.006°C 0.011°C
Ap 0.022 mb 0.040 mb .

Here AA = ||[Anplmax — |Anmaxl, With 4 representing
any one of the dependent variables. The subscript
max indicates that these are the largest calculated
values for the entire simulation. E is the same as used
in Figs. 2 and 3, and is defined by definition 18.
The relative contribution to a sea-breeze circula-
tion of the nonhydrostatic pressure residual R is
shown schematically in Fig. 10. Although of relatively

Ly = 6.25km
non - hydrostatic hydrostatic
u’ e 20 20
contour : i } -]
intervail
50.cm s°!

Fi1G. 8. Nonhydrostatic and hydrostatic simulations using the same initial and boundary conditions as given in (17),
except L, = 6.25 km, w = 2x/3 h and M = 2.5°C.
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FIG. 9. As in Fig. 8, except L, = 3.125 km and w = 27/1.5 h.

- small amplitude in the simulations shown in Figs. 8
and 9, the influence of R is to reduce the magnitude

of the sea breeze disturbance, relative to the hydro-

static simulation. The value of R, as illustrated in
Pielke (1972), is largest in the sea-breeze convergence
Zone.

Since the maximum differences in the vertical ve-
locity results for the nonlinear simulation with L,
= 3,125 km and 6.25 km are 18 and 16%, it is clear
that the reduction of the horizontal scale of the sea-
breeze response reduces the applicability of the hy-
drostatic assumption. From the linear model solu-
tions for the-same initial and boundary conditions
used to create Figs. 8 and 9, the differences in vertical

> | - g H ———> —H—>
v + | = T
e H-> —_— | — —>L<;

Nonhydrostatic Hydrostatic Total Pressure

Pressure Pressure
Residual '
R’ + P = P

FIG. 10. A schematic of the relative contributions of the non-
hydrostatic pressure residual and the hydrostatic pressure to the
total pressure at a location over land in the center of the lowest
surface pressure in the sea breeze convergence zone. The arrows
illustrate the instantaneous horizontal ageostrophic winds that
would be expected from this nonhydrostatic and hydrostatic pres-
sure distribution. The nonhydrostatic pressure has its largest neg-
ative value at about the level of the largest upward vertical velocity
in the sea breeze convergence zone. Adapted from Pielke (1972).

velocity at the time of maximum heating between the
hydrostatic and nonhydrostatic calculations are only
1 and 0.1%, respectively.

Therefore, for the initial and boundary conditions .
used here, the simulation ‘with L, = 6.25 km can
justifiably be performed using a hydrostatic model.
Even the case with L, = 3.125 km deviates relatively
little from the hydrostatic result indicating that for
many applications a hydrostatic model can be used
even for that horizontal scale of heating. This con-
clusion is consistent with the linear result and dem-
onstrates that despite the reduction of the horizontal
scale of the forcing by advection, the hydrostatic as-
sumption can be used for spatial scales which are
much smaller than suggested by Orlanski (1981). In
fact, since the vertical and horizontal scales of the
resultant circulation (estimated from the fields of '
in Figs. 8 and 9) are ~1.6 and 1.9 km for the
L, = 6.25 km simulation, and ~1.2 and 0.9 km for

.the 3.125 km case, even with aspect ratios near unity

the results with and without the hydrostatlc assump—
tion are very similar.

The reason for the difference between our results
and those of Orlanski, as suggested in Section 2a, is
that Orlanski examined the solution of the wave

~equation in the free atmosphere, whereas here a me-

soscale simulation forced by surface conditions was
used. Since w' = 0 at the ground is required, vertical
accelerations must necessarily be reduced to a greater
extent near the surface than would be expected at a
higher level. This permits the hydrostatic assumption
to be used with forcing of a smaller horizontal extent.

Orlanski (1981) was concentrating his discussion
on a circulation in which conditional instability was
realized through vertical lifting and saturation. Mar-
tin (1981) performed preliminary experiments in or-
der to examine the influence of superadiabatic layers
above the surface on the hydrostatic assumption.
Although more work needs to be done in this area,
the results reported in that study suggest that the hy-
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