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Atmospheric Temperature Retrievals 
 
Following the Clive Rodgers text… 

As we have shown, the radiance, L(v), leaving the top of the atmosphere at frequency, v, can 
be written as 
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where X is the atmospheric transmittance.  Consider a set of m measurements of radiance, L(vi), 
made at m closely spaced frequencies.  The frequencies are close enough that the frequency 
dependence of the Planck function can be ignored.  Under these conditions,  
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where 

! 

v  is a representative frequency and Ki(z) = dX(vi,z)/dz. 
The equation is linear in B which is the unknown when we are determining the profile of 

atmospheric temperature.  So each radiance Li is a weighted mean of the Planck function profile 
with Ki(z) as the weighting function. 
 Solving or inverting the equation will cause some problems in part because there are only 
m observations. We therefore write the unknown temperature structure in terms of a set of m 
basis functions, A.  
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where wj is a set of coefficients still to be derived from the observations and Aj is a set of 
functions such as polynomials, zj-1, or sines and cosines, sin(πjz/Z) and cos(πjz/Z), over a finite 
height range (0,Z) in terms of which the profile is being represented. Subbing (3) into (2) yields 
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where  
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So Cij is the ith weighting function times the jth vector of the basis set integrated over all 
altitudes.  Each element can be calculated as long as we use a constituent whose mixing ratio is 
independent of altitude (like O2 or CO2).  We now have m equations and m unknowns that, in 
theory, can be solved exactly. 
 
Formal Exact Solution:    

From (4), we have the matrix equation, L = C w, so  
 w = C-1L (6) 
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This shows that the set of coefficients that are multiplied times the set of basis functions to 
describe T are the inverse of the Cij matrix multiplied times the vector of radiance measurements.  
Plugging this in for the wj’s, we determine the reconstructed temperature profile as follows 
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While this looks reasonable, the problem is equation (7) is Ill-conditioned:  Any experimental 
error in the L measurements is greatly amplified in the solution via the inverse C matrix. 
 
EXAMPLE 
Consider the following example.  Panel A shows the temperature profile.  Panel B shows the 9 
weighting functions. Panel C is the set of 9 basis functions, A, which in this case are sines and 
cosines (only the sines are shown) 

 

 

 
 
There are measurements of upward radiance at 9 frequencies.  There are 9 basis functions, 
specifically 4 sines, 4 cosines and one DC or constant term.  The reconstruction is shown below 
in Figure 2.  The errors in the reconstruction are shown in Figure 3. 
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Figure 2. Temperature vs. altitude. The solid line is original temperature.  The dotted line is 
reconstruction based on measurements without error.  The dashed line is a reconstruction based 
on measurements that contain errors with a standard deviation of 0.5 K. 

 
Figure 3. Temperature reconstruction ERRORS vs. altitude. The solid line represents the errors 
in the temperature reconstruction based on measurements containing errors with standard 
deviation of 0.5 K.  The dotted line represents the errors in reconstruction based on 
measurements without error.  
 
The standard deviation of the errors in the temperature reconstruction done using measurements 
without any errors is 4.2K whereas the errors in the temperature reconstruction based on 
measurements with errors of 0.5K is 5.4K. 
 
Improving the vertical resolution 
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We’d like to improve the vertical resolution.  The obvious way to accomplish this is to add 
additional measurements of radiances at more frequencies.  So let’s double the number of 
radiance measurements.  This example addresses a question raised by Prof. Zeng in a 
Atmospheric Science lecture I gave in 2008. I stated that the nadir viewing, microwave 
weighting functions were vertically too coarse to see the planetary boundary layer very well.  He 
suggested that one can add more measurements at more frequencies to gain vertical resolution.  
My response was that the problem is noise amplification.  We shall see… 

So we increase the number of radiance measurements and as the number of basis functions to 
19 and do the temperature retrieval again… 
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Retrieved temperature structure with 19 measurements and basis functions to represent twice as 

many levels in the atmosphere 



ATMO/OPTI 656b  Spring 2009 

 6 ERK 03/29/2009 

 
Error in retrieved temperature structure with 19 measurements and vertical levels in the 
atmosphere for no noise added to the measurements (dotted line) and 0.5 K noise added to the 
measurements.   

 
We see a couple of things in these temperature error plots.   
(1) the standard deviation of the error in the temperature reconstruction derived from error-

free measurements has improved to 0.67K from 4.2K in the previous case with half as 
many measurements and basis functions.   

(2) However, we also see a strong problem where the temperature reconstruction has become 
much more sensitive to the noise in the measurements (which is still 0.5 K standard 
deviation) that has resulted in an error standard deviation of 45K!  This level of error 
indicates the temperature reconstruction at this resolution is not useful. 

 
Where is this noise amplification coming from?  It is coming from the Cji

-1 matrix which is the 
inverse of the Cij matrix: 
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where Aj is the set of basis functions for representing the temperature profile and K is the set of 
weighting functions, one for each radiance measurement.  The two figures below show the rows 
of the Cji

-1 matrix.  Each column multiplies the radiances to obtain the jth w coefficient to 
multiply the jth basis function for representing T(z).  
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Figure showing the Cji

-1 for 9 radiances and 9 basis functions. Solid line shows the 9 components 
from the  row 0 of Cji

-1 to estimate the coefficient of basis function 0.  Dotted line shows row 1. 
Dashed line shows row 2.  (Done in IDL using “linestyle”) 

 
Figure showing the Cji

-1 for 19 radiances and 19 basis functions over the same vertical interval 
as the previous figure. Solid line shows the 9 components from the  row 0 of Cji

-1 to estimate the 
coefficient of basis function 0.  Dotted line shows row 1. Dashed line shows row 2.  (Done in IDL 
using “linestyle”) 
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Notice that the Cji
-1 terms span from about -20 to +20 in the case of 9 radiances whereas 

the span has grown to -400 to +400 when the number of radiances and vertical levels in the 
reconstruction were increased by approximately a factor of 2 to 19.  The dramatic increase in the 
Cji

-1 entries is responsible for the dramatic growth in the errors between the two cases.  The 
amplification grows greatly when the resolution becomes finer than the width of the weighting 
function because at that point you are deconvolving the weighting function which involves 
differencing consecutive weighting functions to create finer vertical structure. 
 

So trying to extract higher vertical resolution from these nadir viewing measurements can 
be done but only at a cost of dramatically higher amplification of measurement noise.  The 
reason is that the relatively coarse vertical resolution of the individual weighting functions 
simply don’t provide the information needed to derive much finer resolution, UNLESS, the 
measurements come with very high signal to noise ratio (SNR).  Note the SNR of such 
measurements is limited by the temperature of the thermal source which determines how much 
energy the source is radiating, the equivalent noise temperature of the instrument and the 
integration time of the measurement.  Integration times for observations from polar orbiting 
satellites tend to be short because they are moving at ~7 km/sec.   
 
So this is why I answered Prof. Zeng comment saying you can’t just add more radiance 
measurements to increase the vertical resolution because it will dramatically amplify the 
measurement noise. Note that a geosynchronous satellite would have the advantage of potentially 
being able to integrate longer depending on the horizontal resolution and update time and might 
therefore achieve somewhat better vertical resolution through increased integration time and 
SNR. 
 
The reconstruction is exactly fitting the noise which is bad unless the noise is very small. 
 
The key point is there is insufficient information in the nadir viewing radiance observations to 
determine a unique atmospheric profile unless it is quite smoothed vertically.   
 
So we have to develop another approach:  On to Bayesian retrievals… 
 
 
 


