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RADAR Sensing of Precipitation 
 
Precipitation radars typically operate between 2 and 8 GHz (wavelength:  15 to 4 cm).  There are 
also cloud radars like the one on CloudSat that operate around 94 GHz (wavelength: 3 mm). 
 
The general objective of precipitation radars is to measure the backscattered power and then 
relate it to the rain rate.  Doing so also requires determining the particle size distribution and the 
fall velocity. 
 
Backscatter crosssection 

Precipitation radars generally operate in the Rayleigh regime where the particle size is 
much smaller than the wavelength (a << λ).  In the Rayleigh regime, the (electromagnetic) 
backscatter efficiency, Qb, is given as 

 

! 

Qb =
" b

#a2
= 4x

4 m
2 $1

m
2

+ 2

2

= 4x
4 % $1

% + 2

2

= 4
2#a

&

' 

( 
) 

* 

+ 
, 

4

m
2 $1

m
2

+ 2

2

= 64# 4 a

&

' 

( 
) 
* 

+ 
, 

4

K
2 (1)      

where a is the particle radius, x is 2πa/λ, K=(m2-1)/(m2+2) and m is the complex index of 
refraction of the scattering particle.  The backscatter crosssection is therefore given as 
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where D is the particle diameter.  The total backscatter is the sum over all backscattering 
particles 
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"  with units of mm6/mm3 or in mm3. 

If there is a continuum of particles sizes then the reflectivity, Z, is expressed as an integral over 
the particle size distribution. 
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where N(D) is the particle size distribution. 
Another quantity of interest is the liquid water content expressed as a mass density like 

g/m3. 
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Radar equation 
 (Following EvZ…) Consider a pulsed radar that radiates a pulse of peak power, Pt, of 
duration, τ, through an antenna of area, A, and gain, G.  The radiated power density, Pi, at a 
distance r from the antenna is 
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Note that Pt is power whereas Pi is power per unit area (like W/m2). 
 The backscattered power, Ps, is the incident power per unit area times the scattering 
crossectional area.  The scattering crossectional area is the scattering crossection per unit 
volume, σ, times the volume that is scattering the particular radar pulse.  The volume that is 
scattering is equal to propagation distance during the pulse length, τ, times the radar beam area, 
S, at distance, r, which, if the radar has a square aperture, is (λ/d r)2 where λ is the radar 
wavelength and d is the length of one side of the square aperture or more generally (λr)2/A where 
A is the area of the radar antenna.  So the scattered power is therefore 
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The power received by the radar antenna is then 
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Note that the actual power received will be reduced by absorption and scattering along the path 
of length, r. 
 
Hydrometeor Fall Rates 

To measure rain, we must measure both the amount of condensed water in the atmosphere 
and its rate of descent through the atmosphere.  In theory, these small droplets fall at their 
terminal velocities because it takes little time for them to accelerate under the force of gravity 
until an equilibrium is established between the downward gravitational force and the upward 
directed aerodynamic drag.  Terminal velocity, Vt, is the velocity when these two forces sum to 
zero. 

The gravitational force is proportional to the drop mass, m, and therefore D3, while the 
frictional force is proportional to the cross-sectional area A of the drop, hence the 2nd power of 
D. The force balance is as follows: 
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where g is the gravitational acceleration, ρ is mass density, A is the crossectional area of the 
droplet, and Cd the drag coefficient.  The problem is the coefficient of drag is not a constant.  If 
Cd were constant, then the fall speed would be given as 
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such that it would increase as the square root of the particle diameter.  However, the variations in 
Cd with particle size due to eddies as the air flows around the particle and distortions in the 
particle shape create more complex behavior.  Actual behavior must be determined form 
measurements.  Foote and Dutoit (1969) developed the following relationship for raindrop 
fallspeed, Vt (in m/s) as a function of D (in mm), for 0.1 mm < D < 6 mm (2): 
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 Vt = [-0.193 + 4.96 D - 0.904 D2 + 0.0566 D3] exp(z/20) (11) 

 
The factor, exp(z/20), where z is height in km, accounts for the decrease in density (and hence 
drag) with height in the atmosphere.  (The factor of 20 seems a bit large given that density scale 
heights in the troposphere are more like 10 km).  Behavior is approximately linear up to drop 
diameters of 1 mm above which the increase in Vt with drop size begins to level off.  Note that 
drops larger than 3 mm have a good chance of breaking up into smaller drops. The break-up 
probability increases rapidly at diameters around 5 mm such that we don’t have to worry much 
about liquid droplets of much larger size.  Much of this material is from http://www-
das.uwyo.edu/~geerts/cwx/notes/chap09/hydrometeor.html by Bart Geerts at University of 
Wyoming.  The table and figure below show typical behavior 
 

Particle 
diameter 

(mm) 
Fallspeed 

(m/s) 
0.001 0.0003 
0.01 0.03 
0.1 0.27 
0.2 0.72 
0.3 1.2 
0.8 3.3 
0.9 3.7 
1.8 6.1 
2.2 6.9 
3.2 8.3 
5.8 9.2 

 
 
 
The rainfall rate scales as rainfall mass times the rainfall descent velocity. The Vt(D) behavior is 
closer to linear than D1/2 at small sizes.  The rainfall rate scaling is therefore something like 
D3+0.75.  So to measure rainfall with a radar, we want to measure something that depends on the 
particle size as ~D3.75.  This presents a basic remote sensing problem because the radar 
backscatter which is the most obvious thing to measure depends on D6.  In fact, the D6 

dependence makes the backscattered power very sensitive to the largest particles in the particles 
size distribution. 
 
Rain drop Size distributions 

There have been many attempts to find a size distribution that is both realistic and 
mathematically tractable.   

 
Mono-distribution 

If all the particles are the same size,  

 Z = N D6 and M = πρ/6 N D3  (12) 

and Z ~ M2 or M ~ Z0.5. (Unrealistic but a conceptually useful starting point.) 
 
Exponential distribution 
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An exponential distribution has been used because of its simplicity and its qualitative 
consistency with large particles occurring less frequently than smaller particles. 
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Plugging this distribution into the equations for Z and M we get 
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so Z ~ M1.75 or M ~ Z4/7.  The problem is real distributions show fewer large drops as well as 
small drops than the exponential distribution. 
 
Gamma distribution 

A more complicated but more flexible and realistic distribution is the gamma distribution. 

 n(D)= N0 Dµ exp(-ΛD) (0< D < Dmax) (16) 

N0 has units of m-(µ+3).  Three examples of the gamma distribution are shown below from Ulbrich, 
(1983) J. Clim & Applied Met..  Note that the exponential distribution is a special case of the 
Gamma distribution with µ = 0. 
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The nth moment of a Gamma distribution is 

 <Dn>  = N0 Λ
-(µ+n+1) Γ(µ+n+1) (17) 

where Γ is the gamma function, which is the factorial function generalized for non-integer 
numbers.  Therefore 
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Note that for a given water amount, M, N0 can be determined given µ and Λ.   
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So one can’t really write Z ~ Mα for the gamma distribution but Z/M = 720/(πρ Λ3).  The 
bottom line is Z tends to scale as the particle size to a power about +3 higher than the mean mass, 
M, and ~ +2 higher than the rain rate dependence on particle size.  This makes the measured 
backscatter more sensitive to the larger particles than one would like for determining rain rate.  
This makes an understanding of the particles size distribution very important for interpreting the 
radar reflectivity. 

 Z = B Rb (22) 
where R is the rain rate and 1.6 < b < 2 and B is a constant 

B ~ 200 for rain  and    B ~ 2000 for snow 
for R in mm/hr. 

The values for b and B actually vary with the type of rain.  The ambiguity is because Z 
scales as D6 whereas R scales as D3.5 – D4.  This ambiguity is fundamental to backscatter 
measurements because backscatter does not depend on the particle size in the same way that rain 
rate does.  Therefore, to determine a unique relation between Z and R, one must know the 
particle size distribution which in fact one almost nevers knows.   

An improvement in this situation can be achieved using polarized radar measurements.  
(However I don’t think this works well for orbiting radars because of their downward looking 
geometry). 
 
Polarization radar 
 

The shape of atmospheric water particles is not actually a sphere except perhaps for vary 
small liquid droplets.  This can be used to help determine particle size and type.  But more 
information is needed to do so.  In this regard, using polarized radar signals can be quite helpful. 
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Liquid droplets flatten as they fall.  To maximize reflection, single polarization radars are 
therefore linear horizontal polarized.  The reflectivity is written as ZHH where the first H 
subscript refers to transmitting horizontally polarized light and the second H refers to receiving 
horizontally polarized light.  When the droplets are flattened, the reflectivity for the vertical 
polarization, ZVV, is smaller than ZHH .  This difference in reflectivity can be used to constrain the 
particle size distribution because larger droplets flatten more than smaller droplets.   

 
 

Typical amounts of flattening are shown in the following figure. 
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The raindrops become more flattened as they become larger.  I believe De is the diameter of the 
spherical droplet of equivalent volume. 
 
The differential reflectivity, ZDR, is the ratio of the reflectivity at the 2 wavelengths, defined in 
the case used in the following table as 
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Effect is due to flattening of the larger droplets as they fall 
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3 parameters are needed to describe the gamma particle size distribution.  A video disdrometer 
can measure the size distribution.  Such measurements at least at high rain rates indicate that µ 
and Λ are quite correlated as shown in the Figure below.  Under these conditions there are only 2 
unknowns, N0 and either µ or Λ and measurements of ZDR and ZHH provide enough information 
to solve for the gamma distribution free parameters.   
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Differential Phase: 

Note that there is also differential phase information to be used from polarized radar signals.  
The HH signal travels more slowly than the ZZ signal and yields a useful differential phase 
delay. 
 
One must distinguish between ice and liquid water particles or water coated ice particles which 
will substantially change the dielectric properties of the particles and therefore the scattering and 
absorbing backscatter crossections. 
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