Calculate the rotational absorption spectra of the ¹³CO molecule

- 1. Determine the 13 CO moment of inertia
 - a. Find the ¹³CO bond length (assume it is the same length as the CO bond)
 b. Calculate the center of mass of the ¹³CO molecule

 - c. Calculate the moment of inertia of the ¹³CO molecule
- 2. Use the simple dumbbell rotational spectrum model to determine the first 26 rotational energy levels of ¹³CO

3. Use these to determine the 25 lowest rotational line spectra in both Hz and cm^{-1} . Based on the JPL molecular spectroscopy catalog (spec.jpl.nasa.gov), calculate how close these frequencies are to the actual rotational line frequencies in a fractional sense: $(f_{model}-f_{actual})/f_{actual}$.