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ABSTRACT

The theory of a number of different techniques for the computation of vertical motion in the atmosphere
is discussed. A comparison of two independent techniques shows that both usually yield vertical velocities

of the correct sign and order of magnitude.

1. Introduction

Widespread deterioration and improvement of
weather are usually caused by small vertical velocities
of the same sign prevailing over large areas. Adiabatic
cooling due to upward motion leads to the formation of
clouds and precipitation, and adiabatic warming due
to downward motion leads to their dissipation.

Superimposed on the widespread field of uniform
vertical motion are small-scale eddies with relatively
strong upward and downward currents, but the large-
scale vertical velocities in question are of the order of
only one or two centimeters per second. Due to their
smallness, they have not been measured directly as
yet, and their direct determination in the near future
is doubtful. It is possible, however, to compute vertical
velocities from observed upper-air data. Two inde-
pendent methods have been proposed for this purpose,
the adiabatic and the kinemalic methods. The first

.is based on the assumption that changes of state of
atmospheric air are adiabatic, and the second de-
pends on the principle of conservation of mass as ex-
pressed by the equation of continuity. For each of
these methods of computing vertical velocities, several
techniques have been used. These are outlined below.

2. The adiabatic method

Advective technique.—Using the rules of calculus
one may expand the individual temperature change
into

aT oT aT

—=— 4+ V.Vl 4+ w— (1)

dt at 9z
where T is temperature, ¢ time, V the horizontal
velocity vector, V the vector differential operator
applied in the horizontal direction, z the vertical

! An expansion of part of a progress report on a research project
conducted at New York University and sponsored by the Army
Air Forces Weather Service.

coordinate, and w the vertical velocity. Since
dT dT ds aT
@ dsd ds
equation (1) may be written
oT aT\

oT
—+VvVT+w(—-——— = 0. 2)
Jt dz dz

From the first law of thermodynamics, for adiabatic,
reversible changes of state of a perfect gas,

1
c AT = —dp
p

where p is pressure, p density, and ¢, the specific

‘heat at constant pressure. Multiplication of both sides

of this equation by w/dz gives
dT wdp
Wy — = — —.
- ds p dz
Now, w dp/dz is nearly equal to w 9p/d2,2 which is
given by —gpw, according to the hydrostatic equation,
where g is the acceleration of gravity. Thus,
aT g
—W—— =W = WYa
dz Cp
where v.4 is the dry adiabatic lapse rate. Hence,
equation (2) may be written
aT
— TV VT el =7 =0, 3)
where v is the existing lapse rate. If the air is saturated
and rising, ya.a should be interpreted as the saturation
adiabatic lapse rate.

2 Actually, wdp/dz = wdp/dz + V-p + dp/dt. The first term
on the right is of the order of 1 dyne cm™2 sec*. The sum of the
last two terms is about ten times smaller, and may usually be
omitted. According to observation, if dp/d¢ is unusually large,
w dp/dz also is unusually large, and to put w dp/dz = w dp/dz
is still permissible.
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With the exception of w, all terms in equation (3)
can be measured; therefore, equation (3) can be. used
to compute w. The local temperature change is com-
puted from a graph showing the observed local tem-
perature at a given level as a function of time. The
advective term, V-VT, is found on a constant-level
or constant-pressure chart by measuring the tempera-

ture gradient and multiplying it by the wind com- .

ponent parallel to the temperature gradient.

Single-station technigue.—The single-station tech-
nique, suggested by Panofsky (4), also utilizes equa-
tion (3). It differs from the advective technique in
-that the advective term is computed from a hodo-
graph of upper-air winds. Thus, all terms in equation
(3) can be measured at a single station. This advan-
tage is offset by two disadvantages: (a) Observed
winds have to be used; thus the computations are
limited to good weather, unless radio wind observa-
tions are available. (b) The theory of the determina-
tion of advection from a hodograph is based on the
assumption of geostrophic wind; in spite of this as-
sumption, however, vertical velocities computed by
the single-station technique have been found to be
well correlated with weather changes.

Isobaric technigue.—The isobaric technique has been
described by Miller.3 It is similar to techniques sug-
gested by Klyucharev (3) and Petterssen.*

Let 6T/6t denote the temperature change per unit
time following a point which has the same horizontal
component of motion, V, as the air, but moves on a
constant pressure surface. From the expansion of
6T/ 8¢, it follows that

oT oT oT '
—=—4+V-vI 4+ w, — 4)
ot ot 9z.

where w,, is the vertical velocity of the moving point.
This is usually about one-tenth as large as the other
terms in this equation and may be neglected. On
adding equations (3) and (4), one gets

8T

— = = wlra = . 3)

The quantity 677/6¢ is measured by subtracting the
temperature at the beginning from that at the end of
a 12-hour trajectory on an_isobaric surface. The
value of 4.4 — v is obtained from charts showing
isopleths of observed lapse rates.

Graphical technigue.—The graphical technique was
suggested by Miller.’ Using the data on certain iso-

3 R. G. Fleagle, H. A. Panofsky, H. T. Mantis, and J. E. Miller,
“On vertical motion in the atmosphere,” Army Air Forces
Weather Service, Technical Report 105-3, Langley Field, Va. In
preparation, ~

4S. Petterssen, “An investigation of subsidence in the free
atr:xlospherg," U. S. Navy, Aerology Section, 1944.

oc. cit. ’
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baric charts (for example, the 900-, 800-, and 700-mb
charts), trajectories centered at a selected geograph-
ical point are constructed on each chart to represent
the 12-hour period between upper-air soundings. At
the initial and final end points of a set of trajectories,
“synthetic’” soundings are constructed representing
the variation of temperature with pressure, as do the
usual soundings. However, the temperatures are not
directly observed but are obtained from an analysis of
the isotherms on the isobaric charts, and the synthetic
soundings are not vertical soundings because of the
effect of vertical wind shear.

If there had been no vertical motion, the initial
and final soundings would be identical. Actually,
they will not be identical, and the assumption of
adiabatic vertical motion permits the estimate of
how much vertical motion at various levels was
necessary to transform the initial into the final
sounding. . -

The graphical technique has the advantage of
showing most clearly the effect of the vertical motion,
and it permits easy evaluation of vertical motion in
case of saturated air. It has the disadvantage that it
requires more labor than some of the other techniques.

Isentropic technique.—The isentropic technique was
developed by Fleagle.® It makes use of the fact that,
if processes are dry-adiabatic, the potential tempera-
ture is conserved and the isentropic surfaces follow
the three-dimensional motion. Two isentropic surfaces
for the same potential temperature are constructed,
12 hours apart, and air trajectories for the period
between the two charts are drawn. The height at the
beginning of the trajectory is read from the first
chart, and that at the end of the trajectory from the
second chart. The difference in height measures the
net vertical motion in the 12 hours.

The isentropic technique is fastest if isentropic data
are transmitted, but with the data transmitted at .
present it is somewhat cumbersome. A further dis-
advantage lies in the fact that the technique cannot
be modified easily to take care of saturated air.

Critique of adiabatic . technigues.—All adiabatic
techniques give inaccurate results when the stability
is small. All adiabatic techniques use wind and radio-
sonde data; with the exception of the single-station
technique the winds can be, if necessary, computed
from the pressure field, and thus these techniques can
be used in bad weather and at high levels. Since all
adiabatic techniques are based on. the assumption
of adiabatic changes, they should not be used to
compute vertical velocities in the lower layers of the
atmosphere, where non-adiabatic processes have a
pronounced effect.

6 Joc. cit.®
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3. The kinematic method

The equation of continuity can be written in the
form

Wl v ©)
- 9z p dt - ’
Now
1dp 1dpdz wdp
pdt-pdzdt pdz.
If density changes are adiabatic,
'wdp w dp w ap
p dz I‘p dz I‘p 9z

where T is the ratio of the specific heat at constant
pressure to that at constant volume.” Thus equation
(6) may be written

Jw w dp

+ ———
0z I'p 9z
This may be integrated from the surface (subscript s)
to an arbitrary level (subscript %). The left side of the
equation becomes an exact differential after multi-
plication by p'/T. Integration gives

/I h 1/r
wh=(&) ws_f (g) v-Vdz. (8)
Ph 8 Ph

The value of w, can be estimated from the slope of
the terrain and the wind near the ground. The integral
can be approximated by measuring the integrand at
different levels and adding the results.

Wind-component technigue.—The divergence is com-
puted from the formula

=—-v-V. @)

V= Ou v ) ¢

v ox * dy R an e
in which % and v are components of the velocity in the
standard x direction (toward east) and ¥y direction
(toward north) respectively, R is the radius of the
earth, and ¢ is latitude. The term —(2/R) tan ¢ has
to be applied due to convergence of the meridians.
The gradients of # and v are measured from isopleths
of # and .

Wind streamline technigue.—In this technique, the
divergence is measured as suggested by V. Bjerknes
(2). The divergence is expressed in components in
“natural coordinates,” parallel and at right angles to
the streamilines. These form a polar coordinate system,
with its origin at the intersection of tangents to ad-
jacent streamlines. In these coordinates

where 7 is the distance from the origin and v is the

7 Cf. footnote 2.
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speed, reckoned positive if directed along the positive
7 direction.

The first term on the right is obtained by measure-
ment on charts showing streamlines and lines of con-
stant speed. The second term can be computed from
the same two sets of lines with the aid of overlays
developed for this purpose by V. Bjerknes.

Resultant-component and resultant-sireamline tech-
niques.—Consider the identity

h /T . 9 h 1/r
NOREE

E Ph X Jg ph

P k /T h i/r .

—f (f—) vdz—f (—g) ztangodz.

ay 8 Ph 8 Ph R

In accordance with the rules relating to the inter-
change of integration and differentiation, the identity
may be written?®

h /T ha 1/T
V'f (ﬁ de=f——[(—p—) u]dz

8 Ph 8 ox Ph

oh I’Fas

+uk——us( )

dx

g ur oh
f~[(—p~) v]dz-}-vh—

s 3}’ ph 6y

lfI‘a 1T o
( ) : f( ) —tangodz ©)
Pr

If the upper boundary of the layer considered is hori-
zontal, 9k/dx = dh/dy = 0. Also u,9s/dx 4 v,0s/3y
= w,, the forced vertical velocity at the ground. Thus,
if the terms are regrouped and the horizontal varia-
tion of (p/pn)!/T is neglected, equation (9) reduces to

\ 2 f (Ph) Vdz

f( ) Vde—ws(pa) (10)
2 P
On combination, equations (10) and (8) become
13 p /r .
w, = —V: f (——) Vda. (11)
3 ph N
Equation (11) may be rewritten in the form
i) /T h
'wh=_(‘—) V-f Vdz (12)
ph 8 .

where § is a mean pressure in the layer from the sur-
face to the level k. Theoretically, this mean should be
weighted by the wind velocity. In practice, however,

® See, for example, I. S. and E. S. Sokolnikoff, Higher mathe-
matics for engineers amd physicists, 2nd edmon pp. 167-9,
McGraw-Hill Book Co., 1941.

’
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very little error is made if P is taken as the pressure
half way between the surface and the level &.

The quantity \
f Vdz

can be computed from the horizontal component of
the vector connecting the starting point of a pilot-
balloon run with the balloon when it reaches the level
k. This component is given by

th .
R = f Vdi
ts

where the balloon is assumed to be released at f, and
to reach the level % at time £,. Now,

vh ) th dz
f Vdz = f V —dt,
8 ts dt

or, if the rate of ascent of the balloon, dz/dt, is assumed
approximately constant and equal to b, then

h th
f de=bf Vdt = bR.
8 ts

This quantity can easily be computed from the orig-
inal plot of the pilot-balloon observation. The di-
vergence of the vector can be obtained by either of
the two techniques described above for obtaining the
divergence of the wind.

The resultant techniques are probably much more
accurate than the wind techniques, for in the first
two kinematic techniques the wind velocity, which is
obtained by differentiation of the pilot-balloon run
with respect to height, is integrated again with respect
to height. In the resultant techniques both of these
needless and érror-producing steps are omitted.
Also, the forced surface vertical velocity does not
have to be computed in the resultant techniques.

Critique of kinematic. techniques.—All kinematic
techniques yield instantaneous vertical velocities.
All kinematic techniques use winds only; observed
winds have to be used, since the divergence of the
gradient and geostrophic winds usually is too small in
absolute value, which means that the kinematic tech-
niques are limited to areas of good weather until a
dense network of radio wind stations is established.
Wind coverage sufficient to measure divergence usually
does not reach above 10,000 feet at the present time.
Thus, the kinematic techniques can rarely be used
above 3 km.. '

4. Comparison of kinematic and adiabatic methods

The kinematic and the adiabatic methods for the
computation of vertical velocities are virtually inde-
pendent. Although both depend on the wind, they are
affected by an error in the wind in different ways.

VoLuME 3

In the adiabatic method the wind itself is used to
compute the path of an air particle, and in the kine-
matic method the space derivatives of the wind are
used. In general, a quantity is not correlated with
its derivative, and therefore the error of a quantity is
not correlated with the error of its derivative. Hence
a comparison of vertical velocities computed by the
two methods at the same points should determine, to
some extent, whether either method individually is
capable of yielding correct- vertical velocities. The
isentropic and resultant-component techniques were
chosen for the comparison of the two methods.

One of the difficulties encountered in this compari-
son stems from the fact that the isentropic technique
yields a field of vertical velocities on a sloping surface,
whereas the resultant-component technique yields a

- field on a horizontal surface. In order to minimize the

number of isentropic surfaces to be analyzed for
comparison with a single horizontal surface, it was
assumed that a vertical velocity computed at a given
point on an isentropic surface applied also within
500 m above or below that surface.

The vertical velocities computed by the isentropic
technique were based on the height change of air
parcels along 12-hour trajectories. Thus they repre-
sent values averaged in time as well as in space.

Since the adiabatic method is not applicable at low
levels, and sufficient data are not available for the use
of the kinematic method much above 3 km, the com-
parison of the two methods is limited to elevations
between about 2 and 3 km. In this comparison most
points were located at an elevation of 2070 m, with a
few points at 3050 m. '

Due to the necessity of using observed winds in the
kinematic method, the area of comparison is restricted
to regions of good weather. Hence, it is to be expected
that downward vertical velocities will be preponder-
ant in the comparison.

It was found that the computation of divergence
from change of resultants in 100 or 200 km yielded
erratic values, probably because local turbulence and
errors in the wind observations produced local varia-
tions of the same magnitude as the large-scale di-
vergence to be measured. Therefore, gradients were
measured over 500 km and averaged within a square
500 km on the side. Observed wind resultants at
1000 or 2200 GMT were used, and the vertical ve-
locities at the two levels were computed from equation
(12) as described above. Thus, the vertical velocities
computed by the resultant-component technique were
instantaneous values averaged over a 500-km square.

Figure 1 shows the comparison of the vertical
velocities computed by the two techniques. For the
periods 1000 GMT 1 December to 2200 GMT 3
December 1944, and 1000 GMT 31 October to 2200
GMT 3 November 1944, vertical velocities were com-
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Fic. 1. Comparison of vertical velocities computed by
the adiabatic and kinematic methods.

puted at the two levels mentioned above, wherever
sufficient data were available. Vertical velocities com-
puted in layers-of lapse rates 8 C km™! or greater are
indicated by open circles in Figure 1, since in these
layers the vertical velocities computed by the adiabatic
method are very likely to be inaccurate.

The figure shows that both methods generally yield
vertical velocities of the same sign and order of magni-
tude. This may be regarded as an indication that each
method will generally furnish vertical velocities of the
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right sign and order of magnitude, but that it may fail
to do so in particular cases.?
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® Additional proof that the adiabatic method usually yields
vertical velocities of the right sign is found in the comparison of
vertical velocities with weather changes, published elsewhere
(footnote 3).



