Potential Vorticity (PV)

- PV can be approximated by $PV = -g(\zeta_{\theta} + f) \frac{\partial \theta}{\partial p}$
- A typical value of PV:
 - $(\zeta_{\theta} + f) \approx 10^{-4} s^{-1}$ • $\frac{\partial \theta}{\partial p} \approx \frac{-10K}{100 \ hPa}$
 - Hence, $PV = 1 \times 10^{-6} Km^2 s^{-1} kg^{-1}$
 - 1 PV unit (PVU) = $1 \times 10^{-6} Km^2 s^{-1} kg^{-1}$
 - Midlatitude troposphere: -0.2 to 0.3 PVU
 - Midlatitude stratosphere: 1.5 to 10.0 PVU
- PV is conserved $\left(\frac{dPV}{dt} = \mathbf{0}\right)$ for frictionless, adiabatic flow
- Height/wind can be inferred from PV; PV changes by advection only (adiabatic case); if PV changes, height/wind changes

Zonal Mean PV (dashed; PVU) and θ (solid; K)

Fig. 1.137 in Bluestein (1993)

Structure of PV Anomaly and Cyclogenesis by "action-at-a-distance"

Fig. 15 in Hoskins et al. (1985)

Fig. 7-12 in Kocin and Uccellini (2004)

PV and Weather Forecasting and Interpretation

Strong PV gradients:

- J-E-T-S Jets Jets Jets!! (and jet streaks)
- Vorticity gradients
- Steep tropopause and tropopause folds
- Large stability gradients

Weak PV gradients:

- Boring!
- Small vorticity and wind variations
- Flat tropopause
- Small stability gradients

Why use PV maps?

- Pros and cons of conventional maps (e.g., 500 hPa chart):
 - Pros:
 - Features look familiar
 - Relationship between wind and vorticity
 - Use QG theory to infer vertical motion
 - Cons:
 - Hard to infer evolution and intensification
 - Impact of diabatic processes often hidden
 - Need maps at multiple pressure levels
- Pros and cons of PV maps (e.g., DT chart):
 - Pros:
 - PV is conserved (can see impact of latent heating when PV not conserved!)
 - PV knowledge gives you heights/winds at many levels
 - PV leads to clear dynamical interpretations
 - Jet streams are located at the dynamic tropopause!
 - Cons:
 - Unfamiliar
 - More complex calculations