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ABSTRACT

Solution of the initial-value problem for the Eady model is presented. In the presence of boundaries, normal
mode waves as well as non-modal waves exist. Energy extracted from the mean flow during the initial development
of a perturbation is found to excite the persistent normal modes. It is suggested that this process may be
important to cyclogenesis and in providing energy to neutral or near-neutral normal modes. In particular, the

Petterssen criterion for cyclogenesis is clarified.

1. Introduction

Understanding of the process by which the potential
energy of vertically sheared geostrophic mean flows is
tapped to provide energy to growing synoptic-scale
waves is based on the quasi-geostrophic instability the-
ory of Charney (1947) and Eady (1949). The equation
expressing conservation of pseudo-potential vorticity
in perturbation form results from this development
and, together with attendant boundary conditions, may
be regarded as an eigenvalue problem with the vertical
structure of the normal mode as the eigenfunction and
ihe phase speed ¢ as the eigenvalue. Complex values
of ¢ are found for exponentially growing and decaying
modes and the stability of the flow is implicitly as-
sociated with the existence of these modes. Ashas been
noted previously, however (Pedlosky, 1964), there are
a number of subtleties involved in this approach. In
the event that there exists a complete set of normal
modes for a given problem so that an arbitrary initial
condition can be represented by a combination of these,
the procedure is well-founded, but this state of affairs
rarely occurs in practice. More commonly, there are
a finite number of discrete normal modes that must
be augmented by a continuous spectrum to obtain a
complete set. In either case, the existence of one grow-
ing normal mode assures the instability of the flow in
that an arbitrarily small excitation of this mode will
eventually give rise to an unbounded disturbance. The
stability of the flow can be assured only by the existence
of a complete set of decaying modes.

For the case of plasma instabilities where the normal
mode is excited by thermal noise and 10 e-foldings
may be required to make it comparable with mean
guantities, the existence of an exponential mode is
probably necessary to produce an observable distur-
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bance. In the case of rapid and lee cyclogenesis typical
deepenings are ~2 e-foldings [Buzzi and Tibaldi,
(1978); see their Fig. 12] so that the existence of an
exponential mode may be important only late in the
evolution of an initial state. During the early stage of
growth, the continuous spectrum is equally involved
in the interaction with the mean flow [Farrell (1982),
hereafter F1].

This work is concerned with exploring the connec-
tion between the discrete normal modes and the con-
tinuous spectrum in the early development of distur-
bances in baroclinic flows which provides an expla-
nation for the rapid growth of surface depressions
arising from certain initial conditions, as, for example,
when the depression is overtaken by a shori-wave upper
trough (Petterssen, 1955).

To be explicit, if the variation in the mean flow is
confined to a vertical shear and ‘it is assumed that
Fourier decomposition is valid in the zonal direction,
then there is a distinction to be drawn between the
modal response in the form

Wx, z, 1) = YDF(De™,

where { is the perturbation geostrophic streamfunction,
X eastward distance, z height, k zonal wavenumber, ¢
time; and the’nonmodal response

Wx, 2, §) = Yz, ne™.
The modal amplitude variation may be exponential,
of the form )
K() = e"e**,
as in the Charmmey mode and Burger/Green modes of
the Charney problem, or algebraic
F(t) = tczeiau
as at the neutral point of the Charney problem (Burger
1966).
The non-modal time dependences are typically 2
complicated mixture of algebraic modulations in am-
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plitude of an oscillatory signal of variable frequency
and vertical wavelength. Examples include the Couette
solution of Orr (1907), the internal wave in linear shear
(Phillips, 1966), and Rossby waves in linear shear (Ya-
magata, 1976). In these cases, the energy of the per-
turbation grows as long as the orientation of the dis-
turbances is such as to give rise to Reynolds stresses
which negatively correlate with the shear; when the
Reynolds stress and shear become positively correlated
the perturbations decay asymptotically. As originally
pointed out by Crr (1907), this ultimate decay which
must be the result of any ¢ — oo asympiotic analysis
of these problems comes only after what may be a
very great increase in amplitude.

it is important to notice that these exact solutions
were obtained for problems which do not support nor-
mal modes. When such are present, energy extracted
from the mean during the initial growth may be pro-
jected on the modal disturbances whether these are
unstable or not (see F1). This qualitatively changes the
long-time behavior from decay to persistence if the
modes are neutral, as was noted in a Fourier/Laplace
asymptotic analysis of the Eady problem (Pedlosky,
1964).

In the following section the relation between modal
and non-modal solutions is examined to discover the
way in which normal modes arise from initial pertur-
bations of plane-wave form. This last implies no loss
of generality as an arbitrary perturbation may be ob-
tained from these by Fourier synthesis.

2. Formulation of the Eady problem

Perhaps the simplest example illustrating these ideas
is the model of Eady (1949), for which the shear and
static stability are taken to be constant, the planetary
vorticity gradient ignored, and the Boussinesq ap-
proximation made, resulting in ithe perturbation po-
tential vorticity equation (Pedlosky, 1979)

(g—; + i&f)@pﬁ — &) =0, (1)

where
¥ = W, D)eleD
& = VeH(k? + 1%\

The following nondimensionalizations have been
made:

- tAVek
o

k= kH/Ve

zZ=z/H

where ¢ = f2/N? is the square ratio of the Coriolis
parameter to the Brunt Vdisild frequency, H height
of upper boundary and A the vertical shear. The
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boundary conditions express the vanishing of the ver-
tical velocity at horizontal boundaries:

0 ... i~y
(5 + laz)tpf iay = 0. (2)

Tildes are dropped in the sequel.

3. The Eady edge wave

To begin we will relax the upper boundary condition
(replacing H by an arbitrary scale of, say, 10 km),
requiring only that the streamfunction remain bounded
as z — oo. The physical situation is that of a semi-
infinite sheared ocean on an f-plane.

The method of solution is as in Orr (1907), and the
notation follows Simmons and Hoskins (1979). Making
use of the fact that interior equation (1) has a particular
solution for the plane wave initial condition,

w(x’ ¥y, 2, 0) = ei(kx+ly+mz)

of .
(1+a?» . ~
sV, Zy ) = /5 i(fx+iy+(m al)z),
R Al Tany ey
where
m
a = e—
o

as well as the bounded homogeneous solution
‘Ph = ei(kx+ly)e—az.

The general solution
¥ =y, + AW

must satisfy (2) which requires

.

E+1A_ if(®),
2(1 2

fy= 20> )

1+ @—0%"
This is solved for A(f) subject to the initial condition
A(0) = 0 by
t
A() = —ie™™® f f(r)e"dr.
0

While the non-modal contribution ¢, approaches
zero asymptotically as ¢~ after obtaining a maximum
of (1 + a?) at ¢t = a, the modal part ¥, tends to a
nonzero limit independent of the shear

A(o0) = —ie™ J:o fr)e"dr,

which is large if a is large. This example shows the
way in which an initial non-modal perturbation pro-
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duces a persistent modal disturbance. It is not most
simply understood as a projection of an initial con-
dition on a normal mode, as there is no orthogonality
between the modes to make this concept useful heu-
ristically although it is formally correct (F1).

4. Eady initial value problem

Placing a lid at Z = H in the previous example
results in the familiar Eady problem which supports
both neutral and exponential normal modes as well
as a continuum of singular modes completing the
spectrum. Laplace transform asymptotics for this
problem (Pedlosky, 1964) show that the solution is
dominated by the exponentially growing mode where
there is one, but that the asymptotic amplitude where
the normal modes are neutral is inextricably linked
with the continuous spectrum. Our analysis begins by
taking account of the boundary by setting the vertical

- scale to H, obtaining from (1) and (2)

9. — ) =

( Y + laZ)(\I/zz ay) =0, €))
v -

Fyry iy =0, z=0, (4a)
L2 _

pyrys + i py iy =0, z=1. (4b)

. Again (3) has the particular solution for the plane

wave initial condition given in Section 3, but the ho-
mogeneous solution growing with Z must now be re-
tained. The total streamfunction is of the form

— (1 + aZ) i(m—al)z
Y= {—————[1 Fap— em=ahz 4 A(f) cosh(az)
+ B() sinh(az)}ei(k"+’y).

Requiring this to satisfy the boundary conditions
(4a), (4b) results in the simultaneous equations

B .
7 iA = if,
dA dB .
Tz + coth(a) @ + i(a — coth(a))4
' . jeia=0
+ i[a coth(a) — 1]1B = sinh(e) f).

Subject to the initial condition 4(0) = B(0) = 0, the
solution is

A= le™L(t) — e™Ly(d)],

(5a)

g, — 02

B=—" [ﬂL.(t)—iﬂLz(z)], (5b)
02

0y —02L 0,
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where

Li(t) = g_1(f)[—io, coth(er) + a coth(e) — 1]

. ia;ei"'
sinh(«a)
Lo(?) = g-o(0)[—ia, coth(a) + a coth(e) — 1]

. iaze"”'
sinh(c)

+ g.2(0)

+ g+1(D)

gu = [ finerar

g-iln) = fo fryeordr

P

The eigenvalues associated with the normal modes

are
~__la+[(g_t hg)(c thg_g)]llz
T 2 RS TS

. 1/2
—lx o o a
gy = T - [('2- — tanh 5)(coth 5 - E)]

The normal modes are set up on the nondimensional
time scale of f(£) which is a = m/a. This is the time
scale of the non-modal waves. There is another time
scale which arises from the interference of the normal
modes and the resulting interaction with the mean
(Lindzen et al, 1982); the period of which is 7
= 2x(Im)o; — Ima,)~'. As a consequence of this in-
teraction, large-amplitude asymptotic neutral modes
result for values of « slightly greater than the unstable/
neutral transition wavenumber «., which satisfies

%ac = coth %ac.
This can be seen from (5) and the fact that the eigen-
values coalesce at this point. Taking the limit of (5)
at a, reveals that the asymptotic amplitude grows lin-
early with time as expected for coalescing poles in
Laplace transform theory, i.e.,

A(t; ap) ~ te 2 (f; o)
B(t; o)) =~ —te 2 L(t; o )2a!

The implication that “nearly resonant” growth
found in the vicinity of coalescing eigenvalues in initial
value problems is of importance in geophysical flows
is encouraged by the similar coalescence at the neutral
point in the Charney problem (Burger, 1966). As was
suggested in F1, the excitation of neutral and/or slightly
unstable modes by this mechanism may be equally as
important as exponential instability in accounting for
observed wave spectra.
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5. Relation to cyclogenesis

Rapid development of a surface depression is often
associated with its being “overtaken” by a higher level
trough (Petterssen, 1955; Petterssen and Smebye,
1971). It has been shown here that the dynamics of
establishing a persistent modal wave from such a non-
modal initial state involves the cooperative interaction
of the modal and non-modal waves with the mean
flow. A single neutral normal mode, which supports
no heat flux, cannot by itself extract energy from the
mean flow. On the other hand, the non-modal waves
alone do interact with the mean as may two or more
neutral modes simultaneously present. The remarkable
thing is that together the modal and non-modal waves
form a complete solution which results in an arbitrarily
large amount of energy extracted from the mean and
deposited in the neutral modes (for appropriate initial
conditions). This mechanism is not limited to neutral
modes of course and examples of rapid initial devel-
opment of unstable modes have been shown (F1). In
order to underline the role of the initial growth, a
problem is chosen here for which initially the large
components of the solution are neutral. This gives rise
1o a rapid primary deepening resulting from the initial
growth followed much later by the weak secondary
growth surge of the initially small exponentially un-
stable mode component. Choosing a problem with
highly unstable components would result in the familiar
two-stage deepening. In any case the deepening cannot
be regarded as a simple superposition of pressure ten-
dencies.

The synoptic situation conducive to rapid devel-
opment can be modeled by Fourier synthesizing a local
disturbance of the form

¢ = h(x)ei(k.x+mz—1r/2) SIIl(%) , (6)
where A(x) is a split cosine bell:
(41rx>
1 — cosi —
d d
d 3d
h = < 1’ - < < —
() A SX<7 (7N
{— cos[‘hr(x_-dm]
d
3d
| 5 Sy <xsd.

The domain is chosen to be of nondimensional ex-
tent D = 6m in the zonal direction and L = 1.5 in
width. The initial disturbance has wavenumber k
= 3.0 with associated wavelength A = 2a/3 and it is
confined in x to two wavelengths [d = 2\ in (7)). In
all, 128 wavenumbers are included in the Fourier rep-
resentations of (6).
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In the first example a vertical wavenumber m = «
is chosen, corresponding to an upper-level low one-
half wavelength upstream of its lower-level counterpart.
The synoptic situation for typical midlatitude param-
eters H=10km, e = 1004, A =3 ms ! km™, is
dimensionally D = 19000 km, L = 1500 km, A
= 2100 km.

The real part of ¢ is plotted in Fig. 1. The contour
interval is 1.0 and the initial condition is outlined by
the zero contour which is suppressed in the subsequent
figures. These are at 1 = 1.0 (Fig. 1b) ¢ = 2.0 (Fig. 1¢)
and ¢ = 4.0 (Fig. 1d), corresponding to dimensional
times of 9.3, 18.6 and 37.2 h, respectively. During the
37.2 h that the isolated surface disturbance was estab-
lished, the fastest growing exponential normal mode
e-folded only 0.27 times and played an insignificant
role in the development.

By comparison, a barotropic initial condition, m
= 0.0, results in negligible deepening; Fig. 2a shows
the initial disturbance outlined by the zero contour,
while Fig. 2b is taken at ¢ = 4.0, again with the zero
contours suppressed.

Some remarks on similarities between this model
and observations of cyclogenesis follow:

1) The Petterssen criterion which says that an upper
level trough overtaking a surface depression often re-
sults in rapid deepening is understood in terms of the
initial-value problem.

2) The disturbance is localized zonally and con-
centrated near the surface as are observed cyclones.

3) Early stages of deepening proceed much more
rapidly than normal mode e-folding rates as is com-
monly observed.

4) Development enters a second regime at ¢ > a
which roughly marks the transition from non-modal
growth to exponential growth. This two-stage deep-
ening has often been remarked on in studies of cyclo-
genesis (Palmen and Newton 1969; Hage 1961; Chung
et al. 1976, Buzzi and Tibaldi, 1978).

5) Disturbance structure becomes nearly barotropic
at ¢t ~ 1.0 being composed primarily of neutral baro-
tropic waves and assumes baroclinic phase tilts only
as the normal mode of fastest growth becomes dom-
inant. The time scale for this is a few e-foldings of the
most unstable wave.

6) The wavelength of the cyclogenesis is determined
by the dominant wave in the initial state and by the
preferred scale of initial growth and may be much
shorter than that of the fastest-growing normal mode
which must ultimately dominate the solution as
t — oo.

There are some unrealistic features inherent in the
Eady model which are reflected in this example. The
most obvious is the symmetry of the waves on the
upper and lower boundary. Experiments with the vari-
ation of the Coriolis parameter included show that the
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FiG. 1. Evolution of the initial condition streamfunction which
favors cyclogenesis. In (a) taken at ¢ = 0, the perturbation is outlined
by the zero contour. This- contour is suppressed in (b) taken at
t= 1.0, (c) at t = 2.0, and (d) at ¢+ = 4.0. Negative contours are
dashed and the interval between contours is 1.0.
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FIG. 2. As in Fig. |, except the initial condition is barotropic, a
configuration not favorable to cyclogenesis. In (a), the zero contour
outlines the ¢ = 0 state. Relatively little deepening is evident in (b),
taken at ¢ = 4.0. .

uppér wave becomes weaker and that the lower
boundary wave is the relevant part of the solution (F1).

6. Conclusions

The interaction of the modal and non-modal waves
with the mean flow in the initial value problem has
been examined for the Eady model of baroclinic in-
stability. Where neutral modes exist, these are excited
providing a source of energy to what would otherwise
be non-growing waves. For both exponentially unstable
and neutral waves, the approximate time for setting
up the modal solution is nondimensionally equal to
the ratio of the vertical to horizontal wavenumber. In
all cases the long-time asymptotic solution is domi-
nated by the normal mode, the finestructure of the
initial condition being lost (Pedlosky, 1964). While the
long-tirhe asymptotic for values of k for which unstable
modes exist is dominated by the exponential growth,
the setting up of the mode is dependent on the inter-
action among the continuous spectrum, the discrete
modes and the mean flow. For values of k at which
only neutral waves exist, the asymptotic amplitude of
the normal mode is determined by this interaction.

An application of these ideas to a model of the early
stages of cyclogenesis explains a specific observed fea-
ture; the relation between the upper-level trough and
the developing cyclone. More generally, the observed
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atmospheric streamfunction may be resolved into a
part of normal mode form and another which is non-
modal. The modal waves may grow or decay but retain
their structure while the non-modal waves continuously
change structure and amplitude. Together these allow

the great variety of observed motions despite the gen-

erally impoverished normal mode spectrum. One ex-
ample of this variety is the rapid extraction of energy
from the zonal flow and projection on a normal mode
during explosive cyclogenesis.
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