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SUMMARY 
The development of secondary disturbances on a two-dimensional front is described using a linear stability 

analysis. A two-stage process is envisaged in which, first, strong frontogenesis produces condensation at the 
front. This leads to  the generation of a lower tropospheric zone of high potential vorticity (PV) lying along the 
front. As frontogenesis weakens, the second stage is entered in which an essentially steady front is susceptible 
to  the growth of linear normal modes along the front owing to the existence of the PV anomaly or ,  equivalently, 
the frontal rainband. Thus for a typical band of width 160 km a frontal wave of some 800 km is produced with 
a growth rate of about 1 day-’. The dynamics of these modes is examined by considering both the realistic 
frontal flow as well as idealized strips of PV anomalies. The idealized case is potentially applicable to a variety 
of meteorological situations such as upper jet streaks. Useful insight is gained from an analysis of the energetics 
of the modes. This shows that for narrow frontal PV anomalies the waves’ main energy source is the basic 
kinetic energy and further they have a negative vertical heat flux. Recent observations suggest that frontal 
waves are indeed characterized by such a heat f u x .  As most frontal zones involve significant condensation, 
and therefore are likely to exhibit a lower tropospheric PV maximum, it is stressed that studies of frontal waves 
need to include this aspect of the frontal structure. 

1. ON FRONTAL WAVES 

Many of the cyclones typical of mid-latitude weather are observed to form and grow 
in regions of already existing air-mass contrasts. So many, in fact, that it led the team of 
scientists around Vilhelm Bjerknes in Bergen in 1920 to propose that all cyclones were 
generated in ‘frontal’ zones. Despite the different view of cyclogenesis developed after 
the Second World War, observations of all kinds, including satellite imagery, often show 
precisely this process. The long, smoothly curved cold front which is part of a mature, 
large-scale weather system appears to become distorted by a single or several smaller 
depressions. In a few cases, the deepening of one of these ripples is so large and sudden 
that it becomes a major storm. This explosive behaviour will be illustrated below. Such 
events are still poorly predicted, even when forecasters are helped by present day 
sophisticated data assimilation and forecasting systems. This may be partly the result of 
inadequate observations, but clearly a better understanding of the dynamics involved 
could provide useful rules. 

The surface maps reproduced in Figs. l(a) and (b) typify the situation studied in 
this paper. In the case of Fig. l(a) three waves are developing on a front more than 
2500 km long, quasi two-dimensional, connected to the rather deep low which had 
previously moved from Labrador to Iceland. This front is likely to have a marked 
signature in low-level vorticity. Also noticeable is the low-level southerly jet before the 
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Figure 1. (a) Analysis of mean sea level pressure over the North Atlantic, 1 Dec. 1982 at 12 h UTC produced 
by the Meteorological Office. Interval between isobars, 4 mb. (b) Analysis of mean sea level pressure for 18 h 
UTC on 20 Oct. 1989. Interval between isobars 8 mb. (c) Analysis of potential vorticity at 18 h UTC on 20 
Oct. 1989 at the 900 mb level. Contours every 0.25 PVU with values greater than 0.75 PVU in dotted shading. 

frontal zone, with surface winds reaching 25 m s C '  in places. Supporting this analysis, the 
satellite picture taken three hours later shows the change in the cloud pattern induced 
by a growing wave. Turning to upper-air fields from the ECMWF analysis (not shown), 
the waves are developing in a region of strong baroclinicity in the lower troposphere. 
They bear no signature at higher levels. This suggests that the waves are not deep at this 
stage. On the other hand, the thermal contrast extends throughout the troposphere, with 
a rather constant magnitude. 

Surprisingly enough, very few well documented case studies have been published in 
the post-war literature. However, the shallowness of the frontal waves at their early stage 
is suggested by Browning and Harrold (1969). 

Looking again at Fig. 1, we clearly see that the typical wavelength of frontal waves 
is of the order of 1000 km or less; a figure also quoted for observations made a century 
ago. 

In order to gain an idea of the time scale, we consider the time development of 
another frontal wave. In the latter stages, it became the disastrous 'Fastnet storm' of 
August 1979. Concentrating on the early stages, we estimate a deepening of one/two mb 
to five/six mb in twelve hours, an e-folding time of the order of less than half a 
day. Again, classical baroclinic instability models with uniform potential vorticity and 
baroclinicity predict e-folding times of the order of two days and wavelength of 3000 km, 
so that they do not provide a good explanation of the rapid development of frontal 
waves. The presence of several waves along the front was also noted in this case study. 
The subsequent growth within the wave of a zone of severe winds is not the subject of 
this paper: we are interested only in its original appearance. 

To summarize the observational evidence, then, frontal waves exist with horizontal 
wavelengths of 1000 km or less, and grow with time scales of less than one day. They 
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form in strong, rather deep, baroclinic zones, but seem to be shallow structures in their 
early stages. 

Looking for a theoretical description of such waves, we reconsider the early ideas 
on frontal cyclogenesis. Bjerknes (1919) and Bjerknes and Solberg (1922) proposed that 
cyclones were occurring along a quasi-permanent ‘frontal’ surface, viewed as a narrow 
boundary separating cold polar air from warm tropical air, with a well-defined slope 
known from the work of Margules (1906). Bjerknes was convinced they were growing 
by converting the available potential energy stored in the large temperature gradient into 
kinetic energy, following another idea of Margules (1905). 

Solberg (1928) was the first to attempt a mathematical justification of the underlying 
ideas. He considered a system of two barotropic layers of different density moving at 
different zonal speed, and looked for normal modes growing on the sloping interface 
between fluids. Of the two modes, one had a wavelength of 2000 km but was moving at 
25ms-’ ,  the other had a slower phase-speed and a wavelength of 1OOOkm. The con- 
tribution of the kinetic energy of the two parallel currents to both was significant. Further 
attempts to elaborate this simple frontal instability have been made by Kotschin (1932), 
Eliasen (1960), Orlanski (1968) and more recently by Sinton and Mechoso (1984). 

As their prediction tallied with upper-air observations, baroclinic instability models, 
such as Charney’s (1947) or Eady’s (1949) superseded the Norwegian idea of frontal 
instability. Instead, a zonal, jet-like current is shown to be unstable to waves with a 
wavelength comparable to upper-air observations. Hoskins and Bretherton (1972) 
explained how fronts form in such waves. Frontogenesis in fully three-dimensional 
baroclinic waves is further elucidated by Hoskins and West (1979), within the framework 
of semi-geostrophic theory. The key parameter in semi-geostrophic analysis is the 
potential vorticity of the fluid. In all these studies, it is assumed that tropospheric 
potential vorticity is uniform. But an explanation viewing frontal waves as dry baroclinic 
disturbances of a uniform flow does not provide a good model: the observed short scales 
are not predicted by this theory in reasonable conditions. 

The concept of potential vorticity leads us directly to a rather different line of 
thinking on frontal waves: namely, that they could be the indirect product of latent-heat 
release during the stage of frontogenesis. The idea was originally introduced, in a finite 
amplitude perspective, by Kleinschmidt (Eliassen and Kleinschmidt 1957): ‘the pure 
wave, taken as a thoroughly dry adiabatic process, cannot account for the formation of 
the cyclone. The latter requires the creation of an air mass of increased potential 
vorticity’. He then demonstrates that, indeed, the heating in the frontal ascent could 
create, below its maximum, a region of higher potential vorticity. 

Kleinschmidt also sketches out the invertibility principle (see Hoskins ef al. 1985): 
given the distribution of mass and potential vorticity in some region of a rotating fluid, 
temperature and wind distribution can be recovered, within the limits of some balance 
assumption. A positive anomaly of potential vorticity, or equivalently, a positive anomaly 
of potential temperature on a horizontal boundary, induces cyclonic motion, increases 
the static stability in the anomaly and decreases it some distance away. Scales depend 
on the geometry of the anomaly. Kleinschmidt imagined such an anomaly rolling itself 
up into a new cyclone along the front. 

A non-uniform potential vorticity distribution, however, can also lead to a dynamical 
instability, as realized by Charney and Stern (1962). They pointed out that even if 
potential temperature is uniform at boundaries, the fluid may remain unstable provided 
potential vorticity has a local extreme inside the fluid. Such is the case for the jet around 
the polar vortex in the middle atmosphere. This second source of instability is known as 
internal baroclinic instability. James and Hoskins (1985) simulated internal baroclinic 
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normal modes and showed that their evolution is similar to ‘boundary’ baroclinic modes’ 
life cycle, but for the absence of fronts. 

Probably the most systematic study of baroclinic instability combining non-uniform 
potential vorticity and potential temperature on the boundaries, has been published by 
Killworth (1980). His analysis is based on asymptotic expansions of the quasi-geostrophic 
equations. The length and time scales of the unstable mode are predicted whenever 
possible as well as the main source of energy feeding the disturbance. 

In these studies, the non-uniformity of potential vorticity results from an a priori 
choice of the basic current and static stability. A more general approach consists in taking 
a given distribution of potential vorticity and deducing the basic state: that is the essence 
of the invertibility principle. 

Thorpe and Emanuel (1985) included a treatment of condensation in the defor- 
mation-forced two-dimensional frontogenesis model, within the framework of semi- 
geostrophic theory. They found that latent heat release produced a ‘local, line symmetric 
extremum in potential vorticity’. They then proposed that frontal waves of the kind 
shown on Fig. 1 may be caused by the presence of this along-front anomaly, which allows, 
according to Charney and Stern, for an internal baroclinic instability to take place. The 
purpose of this paper is to assess the correctness of this hypothesis. Emanuel et al. (1987) 
and Joly and Thorpe (1989) confirmed the building of a potential vorticity anomaly of 
large amplitude in the horizontal shear model of frontogenesis. 

Returning to the example given in Fig. l (b)  we see that in the analysis of potential 
vorticity, Fig. l(c), the waving frontal zone is characterized by a narrow strip of large 
values. (The average value at 900 mb in the atmosphere is about 0-25 PVU (potential 
vorticity unit).) The upper tropospheric analysis for this case (not shown) shows that the 
upper baroclinic zone on the tropopause is essentially two-dimensional parallel to the 
mean position of the surface front. Evidently the waves apparent at the surface and at 
900 mb are relatively shallow. In Fig. 2 another example is given of a frontal wave event 
on 15 October 1987. This is the early stages of the development of the Great Storm (see 
Berrisford and Hoskins 1988 for further details). In Fig. 2 the surface synoptic map is 
shown together with the potential vorticity distribution at 850 mb and a vertical cross- 
section through the front. It can be seen that the disturbed front co-exists with a narrow 
strip of high potential vorticity in the lower troposphere. The hypothesis i n  this paper is 
that the early development of such frontal waves is related to the existence of that strip. 
The subsequent explosive development of one of these disturbances most likely occurred 
owing to significant reinforcement from an upper-level disturbance. It is suggested that 
relatively weak frontal waves are commonplace but those that subsequently develop 
rapidly are more unusual and involve dynamics different from that outlined here. 

The proposed process responsible for frontal instability is best described in two 
stages. First, deformation in a growing baroclinic wave shapes a quasi two-dimensional 
front, while at the same time, condensation of water vapour causes the potential vorticity 
to increase locally, below the maximum of heating. Somehow, deformation inhibits the 
small-scale instability, forcing the high potential vorticity to extend all along the front. 
Then, as the cyclone reaches a mature stage, deformation weakens, and in the limit, the 
front becomes steady: frontal waves start their own development. 

Frontal waves originating from low-level potential vorticity anomalies are best 
analysed within the framework of semi-geostropic theory. The scaling assumption as well 
as the basic equations are recalled in section 2. A classical numerical technique is applied 
to these equations in order to extract normal modes: this is briefly described in the same 
section. Section 3 is dedicated to idealized internal baroclinic instability. It presents 
results on the stability of strips of anomalous potential vorticity. Section 4 shows the 
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Figure 2. The situation on  15 October 1987,OO h UTC: frontal waves of small amplitude are developing over 
the eastern Atlantic Ocean. One of these waves will amplify, and become the so-called Great Storm, but this 
paper is concerned only with the early stages such as shown here. (a) Sea level pressure showing the synoptic 
system, from the analysis of the Metorological Office. (b) Potential vorticity at 850mb re-analysed by the 
French global NWP E M E R A U D E  with all available data. Contour interval 0.1 PVU, areas with P larger than 
0.5 PVU shaded. (c) Vertical cross-section of potential vorticity from the same analysis. Same contour interval 
as (b), but shading highlights regions where P is larger than 0.9 PVU. Tick marks are set every 2 km vertically 
and 500 km horizontally. The bold solid line is the tropopause, above which contours of P a r e  quasi-horizontal. 

Notice the deep and narrow anomaly corresponding to the front and the low-level maximum. 

possibility of instabilities along fronts which have been modified by condensation, and 
discusses their structure. Section 5 contains some conclusions. 

2. PHYSICAL ASSUMPTIONS, MATHEMATICAL AND NUMERICAL FORMULATION 

Here a set of equations is derived to study the stability of flows defined by an 
initial two-dimensional distribution of potential vorticity and distributions of potential 
temperature on the upper and lower boundaries. 

The flow is assumed hydrostatic and inviscid. A further assumption is made on the 
basis of scales. As seen in the observed examples, the inverse time scale of the wave 
amplification is T-' = 2 x s-'. With a wavelength of 1500 km, and a warm conveyor 
belt along the front with a mean speed of 15 m s-l , there is an advective time scale slightly 
smaller than T- '  = 5 x lop5 SKI. Even for extreme events, the acceleration is smaller 
than the time scale of inertial forces, f (10-4s-1 at mid-latitudes). Therefore, it is 
assumed that the accelerations of individual air parcels even in the vicinity of a front are 
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dominated by the effects of rotation. In other words, a Rossby number, defined in a 
Lagrangian sense, is small: 

The consequences of this assumption were examined in detail by Hoskins (1975). The 
first of these are the equations of motion resulting from the geostrophic momentum 
approximation (Eliassen, 1948): 

Du,/Dt - fu,, = 0 Dv,/Dt  + f ud  = 0. ( 2 )  
Here, ( u s ,  zi,) are components of the geostrophic velocity (-f-'dCp/dy,f-'dCp/ax), Cp the 
geopotential, (ud, u,) stands for the ageostrophic horizontal wind, and f is the Coriolis 
parameter. D / D t  is the Lagrangian or material derivative. Recall that advection by the 
full wind is retained. To Eq. (2) a continuity equation is added, 

d u  do 1 drw -+-+--= 0 
ax dy r a 2  (3) 

together with a thermodynamic equation, 

Dt)/Dt = S (4) 
where z* = c,H,/R[l - ( p / p w ) R i c ~ ] ,  a modified pressure coordinate introduced by 
Hoskins and Bretherton (1972), r a density factor depending on z* only, w the (pressure) 
vertical velocity (rate of change of z * ) ,  0 potential temperature, S a diabatic source term 
and R is the gas constant for unit mass of air. Hoskins (1975) has shown that this set 
conserves energy (when S is zero), and, provided a modified vorticity is used, it conserves 
potential vorticity: 

1 
r 

P = - &-,.v0. 

cg is the sum of the curl of the geostrophic wind (consistent with the hydrostatic 
approximation) the earth rotation, and a Jacobian vector, which, according to Hoskins 
and Draghici (1977) remains a small term, consistent with (1). The dynamics contained 
in (2) and (3) are described in an equation for P: 

D P  1 
Dt r 
-- - - &-,.vs. 

The geostrophic momentum approximation has proved very useful to study large- 
scale baroclinic instability, frontogenesis, frontal structure in dry and moist air as well 
as sea breezes (Cullen et a1 1987), flow over mountains (Blumen and Gross 1987) and 
other meso-scale phenomena. However, it has limitations. In adiabatic flows, with 
uniform potential vorticity, the Richardson number, which can be scaled by I!--', becomes 
locally very small as frontogenesis proceeds (Hoskins 1982), and turbulent motion sets 
in (because of the onset of Kelvin-Helmholtz and Rayleigh small-scale instabilities). 
Results with values of vorticity substantially larger than l O f  should not be considered 
very realistic; eventually mixing and adjustment to gravity cannot be neglected. This 
constraint is more stringent than the smallness of the accelerations of air parcels. In 
diabatic flows, however, it may not be so, as outlined by Emanuel (1985), as then 
potential vorticity does not remain uniform. It decreases when both frontogenesis and 
condensation operate. In the limit, we may find regions in the fluid where it becomes 
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negative. From the work of Hoskins (1974) and Bennetts and Hoskins (1979) we know 
that this is equivalent to the onset of symmetric instability, which is not well described 
by filtered equations. Emanuel estimates that the geostrophic momentum approximation 
breaks down when P becomes about ten times smaller than its typical tropospheric value 
of 0-3 PVU where vorticity is large. Ageostrophic accelerations become significant beyond 
this point. These are definitely extreme values, which do not occur in the examples shown 
here, and are rarely met in general. This supports, the relevance of the geostrophic 
momentum approximatioi? in this case. 

Thus, throughout this p p e r ,  we consider flows which satisfy the smallness of the 
Rossby number as defined in (1). The resulting equations still retain the full trajectories 
of fluid parcels. The high degree of non-linearity implied can be reduced by introducing 
geostrophic coordinates (Hoskins and Bret herton 1972; Hoskins 1975). We define 

X = X + O , / ~  Y = y - u , / f  Z = Z ”  T = t .  (7) 
In transformed space, displacements are geostrophic ( D X / D t  = ug, D Y / D t  = C I J ,  and 
most of the mathematical simplicity of the quasi-geostrophic system is recovered. The 
Jacobian of the change of coordinate, J ,  is the vertical component of absolute vorticity 
( scaled by f. The geostrophic flow is completely determined by the knowledge of a 
potential @ = 4 + 1/2(ut + vi). This function @ is a stream-function of the geostrophic 
components (up,  ug,  6). 

We choose the X-axis as the cross-front direction. The domain is unbounded 
following the along-front axis Y ,  bounded by rigid horizontal surfaces at Z = 0 and 2 = 
H .  Another assumption is implicit in this model: the curvature of the front is neglected, 
again following Hoskins and Bretherton (1972). The radius of curvature has to be much 
larger than IVl/f, which is the case for typical long fronts linked to baroclinic waves. 

In order to describe a two-dimensional basic state, we assume that a strictly two- 
dimensional distribution of potential vorticity P ( X ,  Z) is given, together with a dis- 
tribution of 8 on the horizontal boundaries 2 = 0 and 2 = H .  

The invertibility principle is embodied in the inversion equation: 

with 

as vertical boundary conditions. g is the gravitational acceleration. 
Equation (8) is written in a way suitable for its numerical solution even with steep 

changes in the function P ( X ,  Z ) .  The geostrophic flow & ( X ,  Z ) ,  e ( X ,  Z ) ,  ? (X ,  Z ) )  is 
deduced from a given distribution of potential vorticity P by solving (8) subject to the 
boundary conditions. This is conceptually quite different from the usual approach, where 
potential vorticity can be deduced from an a priori distribution of wind (say). Here, 
P ( X ,  2) is either specified (as in section .3) or is the result of a time-dependent integration 
of the moist semi-geostrophic equations simulating moist frontogenesis (as in section 4). 
As the basic state is assumed stationary or steady, there is no geostrophic large-scale 
forcing, and consequently no ageostrophic motion. 

All current two-dimensional distributions of boundary potential temperature or 
potential vorticity (jet-flow, deformation front, horizontal shear front) can be set up in 
a modified way allowing for periodic lateral boundary conditions. In some cases, it is 
important to choose a half-period large enough so that it doe5 not affect the result. 
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However, this is the only limitation implied by such a choice: consequently, periodic 
lateral boundaries were used throughout this study, with period L.  

An infinitely small three-dimensional perturbation is added to the basic flow rep- 
resenting a two-dimensional steady front, P ’ ( X ,  Y ,  Z ,  7‘) and S’(X,  Y ,  Z = 0 and 2 = 
H ,  T), and its possible growth is assessed. Linearizing the equations for potential vorticity 
(6) and potential temperature (4) with the vertical boundary conditions w = 0 at 2 = 0 
and Z = H ,  we find: 

a8 
8’ = -ui - ax on Z = 0 and Z = H. 

S ’  is the perturbation diabatic source term. Following Emanuel et al. (1987), the diabatic 
source term consistent with conservation of equivalent potential temperature is 

where P, is the moist potential vorticity and Tm/Td is the ratio of the saturated to the dry 
adiabatic lapse rate. For simplicity, the term involving P ,  is treated as a constant yP,,, 
where P(x, is a reference potential vorticity and y a number which, observations suggest, 
is very near zero in frontal ascents. The effective vertical velocity w* is defined as w/J. 

A choice is offered because (10) is not differentiable. Applying the linearization 
strictly, the sign of the basic vertical velocity determines S ’ :  only air parcels in a basic- 
state ascent experience condensation. The alternative is to test the sign of w”’ instead: 
latent heat would be released in air parcels moved by the perturbation ascent. Stability 
problems making use of this alternative introduce another step in the complexity of the 
method of solution, because of matching conditions where w*’ changes sign. They have 
been studied, for instance, analytically by Emanuel et al. (1987) or numerically by Joly 
and Thorpe (1989) in the case of moist baroclinic instability, and by a number of authors 
in the study of convection. Here, we will keep the equations separable in Y by setting 
S’ = 0. Including a non-zero S‘ may modify the results by causing an asymmetry between 
ascent and descent so that, for example, regions of ascent will have an effective potential- 
vorticity anomaly smaller than those of descent. It would therefore reduce their horizontal 
scale and enhance the growth. 

The perturbation vertical velocity is recovered diagnostically from the linearized w- 
equation (see Hoskins and Draghici 1977 for a derivation of the full equation): 

F h  is the linearized divergence of the Q vector. 
Then the Jacobian of the change to geostrophic coordinates J = c / f  is linearized into 
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and the linearized inversion equation allowing recovery of (u ;  , D;, O ’ ,  1’) is 

Note that this form results from the straightforward linearization of the full semi- 
geostrophic equations and includes a weight l/s in the Laplacian which is often set to 
unity for flows with small relative vorticity. Here it is retained in full. Boundary conditions 
are provided by the knowledge of 8 ’ .  Equations (9)-(12) are similar to those derived by 
Hoskins (1976). They look like their quasi-geostrophic counterpart except that they are 
expressed in a transformed space and that potential vorticity, now a full function of space, 
replaces the buoyancy frequency N 2 ( z * ) .  

Equations (9)-(12) form a complete set. Interior equations can be combined into a 
single one for @’, which is given for reference: 

From this equation, the arguments leading to the Charney and Stern (1962) theorem 
can be repeated. Necessary conditions for instability are that either ( d P / d X ) ;  changes 
sign within the domain and/or d z / d X  keeps the same sign on both vertical boundaries, 
or d8/dX has both signs on one of the boundaries. 

As the basic front is independent of the along-front coordinate Y and of time T ,  an 
unstable perturbation can be expressed in terms of normal modes of the form: 

= &x, Z )  ei“‘ euT (14) 
where 1 is the along-front wavenumber of the mode, and (I its complex growth rate. 
Unstable solutions correspond to a positive real part of 0. Equations (9)-(12) can be 
transformed (or alternatively, (13)). Furthermore, the choice of periodic lateral bound- 
aries implies that 

m = -  r 

It should be noted that, 4 being complex, &,,, is NOT the conjugate of $,,,. 
In general, the eigenvalue problem formed by the transformed equations can only 

be solved numerically. One way is via discretizing (13). While a suitable spectral expansion 
exists in the horizontal, it should be noted that this is not true in the vertical. The 
eigenvalue (I is involved in the boundary condition: this is one of the technical difficulties 
with (13). However, for a finite subset of a spectral basis, finite elements or finite 
differences, equations (13) can be cast in matrix form. The eigenvalues are recovered by 
a standard algorithm. Such a technique was developed for this study, but the size of the 
matrices required for analysing frontal structure with enough precision is prohibitive. It 
was used in order to discriminate roughly between different modes obtained with a 
second, much more accurate, method. 

This other method consists of treating the original set (9)-(12) as a time-dependent 
problem. An arbitrary initial condition is chosen, and the system is integrated in time 
until exponential growth is achieved. The solution is then the eigenvector corresponding 
to the dominant eigenvalue. The latter is recovered by comparing successive realizations 
of the eigenvector. This is the so-called ‘initial value approach’, originally introduced 
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into meteorology by Brown (1969). Details can be found in Joly and Thorpe (1989). It 
was checked that results are insensitive to changes in the initial conditions. 

The method was assessed by comparison with analytical results and performed well. 
This included a verification against the analysis of the stability of the horizontal shear 
front with uniform potential vorticity (Joly and Thorpe (to be published)). This problem 
is weakly non-separable, and thus is a good test of a spectral code. In the next section, 
some basic properties of internal baroclinic instability are analysed. 

3. THE STABILITY OF SIMPLE POTENTIAL VORTICITY DISTRIBUTIONS 

The Charney and Stern (1962) theorem suggests that, in the absence of gradients of 
potential temperature on horizontal boundaries, a basic state having (dP/dX)j j  of both 
signs within the fluid might still be unstable to three-dimensional perturbations. There 
must be an extremum of potential vorticity in the fluid interior. This section considers 
the simplest form of this situation, where the stability of an arbitrary anomaly of potential 
vorticity with a single sign is examined to gain dynamical insight. The presence of an 
isolated anomaly of potential vorticity can be assigned to many possible sources: radiative 
transfer, surface fluxes, condensation, evaporation, gradients in the distribution of 
currents, temperature, and salt in the ocean. For the sake of consistency with the 
remaining sections, typical atmospheric constants are used to provide dimensional orders 
of magnitude, but results are quite general. 

A simple anomaly arises from the following definition: 

It describes a local extremum of amplitude P[, at location X =  L ,  and 2 = H , ,  with 
characteristic scales L,  in the horizontal and H 2  in the vertical. In the following experi- 
ments, L ,  is the middle of a domain of width L ,  bounded by 'walls', or periodic, such 
that L2 < L/2. In this way, the lateral boundaries do not affect the solution in the region 
of the anomaly. At the horizontal boundaries Z = 0 and 2 = H ,  the potential temperature 
is uniform on these surfaces. 

The basic parameters are: a background potential vorticity Poo = 0.267 PVU, with 
vertical extent H = 10 km, a scale height H, = 8434 m (or 8" = 288 K ) , f =  s-', H I  = 
5 km, H 2  = 870 m and P i  = 1 PVU. 

A first example of such a distribution and of the resulting geostrophic flow is shown 
in physical space in Fig. 3, where L,  = 310 km and L = 2000 km. As discussed by Hoskins 
et al. (1985), the induced flow is cyclonic in the region of the potential vorticity anomaly, 
with maximum vorticity 1.9f. Reducing the horizontal scale L,  increases the response. 
For L2 = 50 km, vorticity becomes 3.2f, while the isentropes are barely disturbed. 

Negative anomalies can also be considered, although their amplitude must be limited: 
the invertibility principle is meaningful provided potential vorticity remains positive 
everywhere. As expected, a negative anomaly generates an anticyclonic circulation, with 
a reduced static stability at the anomaly, increased near the vertical boundaries (not 
shown here). The response, however, is not symmetric: a negative anomaly has more 
impact than a positive one having the same magnitude. Vorticity is increased by 0.2f 
with the positive anomaly of +0.25 PVU and reduced by more than 0.5f with a negative 
one. 

In the absence of the anomaly, the background potential vorticity and basic static 
stability are related by 

P ~ ,  = f /po  aZ/az. 
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Figure 3. Vertical cross-section of a positive potential vorticity anomaly and the induced basic flow. Tick 
marks horizontally every 200 km, 2 km vertically. (a) Potential vorticity P ,  contour interval 0.2 PVU. Outer 
line is 0.4 PVU. The scale L z  is 310 km. (b) Solid and dotted lines, along-strlp geostrophic wind 6,. contour 
interval 4 m s -I, negative values dotted. Dashed lines, potential temperature 8, contour interval 4 K.  (c )  Non- 

dimensional absolute vorticity J ,  contour interval 0.2, heavy line 1. 

It is useful to  rescale Po,l as 

for future reference. With an anomaly of magnitude 6 P ,  we have 

Let a be a parameter measuring the partition of the anomaly impact on vorticity and 
(slantwise) static stability: 

f' aqaz a=-- + .  
PI,P,O 4 

Our results suggest that a wide anomaly strongly influences static stability, so that a is 
large, whereas a narrow anomaly is expressed as a large change in vorticity, or a small 
value of a. 

Thermal wind balance is another strong constraint on the flow, allowing a to be 
related to the scales of the anomaly. After one differentiation with respect to X and 
another one with respect to 2, this constraint reads: 
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Now, 

so that 
-2 d 2  (a, ) - f 2  a 2 5  f’(”)’ 
az2 dX 5’dZ’ 5 3  az . 

In terms of scales, letting L be the horizontal scale (proportional to L,) and H the 
vertical scale (combination of H 2 ,  H and f L / N o ) ,  those two terms have the same 
magnitude, so that thermal wind balance imposes that 

and so 
f 2  f 2  L2  
No 5 H 2  

a - 7 . 7 . -  

in geostrophic space, or using Lp as the horizontal scale in physical space: 

and the response of the fluid to a potential vorticity anomaly is summarized by the 
magnitude of vorticity: 

This equation embodies the two physical constraints in the invertibility problem: the 
product of vorticity and slantwise static stability is the potential vorticity, and the flow is 
in thermal wind balance. It explains why, as the horizontal scale is reduced, vorticity 
increases at  the expense of static stability, and also why positive and negative anomalies 
do not have the same effect. These properties affect the nature of a possible instability. 
It is clear, for example, that in the presence of narrow anomalies, there is no significant 
potential energy as opposed to kinetic energy available for conversion into the growth 
of a three-dimensional perturbation. 

The stability problem (9)-(12) is solved for the same two basic states discussed 
earlier. Inspection of Fig. 4 immediately reveals that the geometry of the potential 
vorticity anomaly can strongly influence the scale of the fastest growing mode. The 
growth-rate curves have well-defined maxima having a finite growth rate at a finite non- 
zero along-strip wavenumber 1. But the scale spanned by varying the width of the anomaly 
is dramatically increased. When the anomaly has a half-width of 310 km, the most 
unstable mode has an along-strip wavelength of 3600 km with an e-folding time of 1-8 
days. If the half-width is reduced to 50 km, the e-folding time is reduced to 1.2 days, and 
the wavelength to 570 km. The phase speed of these modes is zero. 

It is of course not possible to undertake a survey of the whole range of free 
parameters defining the anomaly, its half-width L2,  half-depth H 2 ,  its amplitude Pb or 
its position on the vertical H,.  Choosing a reference point corresponding to the ‘narrow’ 
anomaly: 

L,  = 50 km, Pb = 1 PVU, H 2  = 870 m, H 1  = 5000 m (= H/2), 
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Figure 4. Real part of the growth rate of a norrnal-rnode perturbation to the flow sketched on Fig. 3 as a 
function of its along-strip wavenumber 1. Solid line: 'wide' anomaly (L2  = 310 km). Dash-dotted line: 'narrow' 

anomaly (L2 = 50 km). The corresponding imaginary part. or mode frequency, is zero. 

one parameter at a time is changed, and, against its variations, the maximum growth 
rate and the corresponding most unstable wavenumber is plotted. 

Changing the width L 2  strongly influences the wavenumber. In fact, there is a good 
linear relationship between L,  and 2n/l= L,. the wavelength. Multiplying L2 by ten 
gives an excellent approximation to the most unstable wavelength. The growth rate is, 
like 1, a decreasing function of the width. Here also the two are related linearly, but 
reducing L2 by a factor 2 increases the growth rate by a factor 1-3 (Fig. 5) .  

The growth rate is primarily influenced by the amplitude of the anomaly, with a 
curve not unlike in shape. However, much like the basic state itself, the response 
is not symmetric with respect to zero anomaly. Unstable modes are influenced by wind 
shear and by horizontal gradients of 8,  and, as just seen, the shear is stronger for a 
negative anomaly than for a positive one, thus the conversion might be expected to be 
more efficient and the growth quicker for a negative anomaly. The wavenumber of the 
most unstable mode increases linearly with the amplitude, with a different slope for 
negative and positive anomalies. This effect is, however, limited; the slope is weak (Fig. 

Turning to the depth of the potential vorticity anomaly, we see that as it becomes 
deeper the growth rate increases substantially, reaching 0-8 day-' for a half-depth of 
2.5 km. The most unstable wavenumber levels off more quickly than the growth rate, 
implying that the vertical extent of the domain dominates the scale selection before H ,  
limits the maximum growth rate (Fig. 7). 

To gain deeper insight, consideration of energetics is useful in linear theory. Frontal 
waves have two obvious energy sources: the large kinetic energy in the frontal jets, with 
large shear to enhance conversion, and the equally large temperature gradient, implying 
a large source of potential energy. Margules and Bjerknes thought that the atmospheric 

6). 

a 
5 

Figure 5. (a) Maximum growth rate u as a function of the half-width L2. Other parameters as for the 'narrow' 
anomaly (L2 = 50 km). (b) Wavenumber 1 of the most unstable normal mode corresponding to (a). 
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Figure 6. As in Fig. 5 but as a function of the anomaly amplitude P6 
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Figure 7. As in Fig. 5 but as a function of the half-depth H,. 

waves were mostly driven by the latter, but when Solberg attempted the study of the 
two-fluid problem, he found a larger contribution from the basic-state kinetic energy. 
Baroclinic instability theory justified the early intuition of the famous pioneers. A simple 
two-dimensional baroclinic wave converts potential energy from the mean flow to the 
wave, and then, along with the direct circulation, it is converted to the wave kinetic 
energy. Despite the various energy sources, the basic instability mechanism relies on the 
potential vorticity structure. 

A way of labelling the instabilities stems from the energy equations shown in the 
appendix. A mode for which the Reynolds stress term is zero, and the energy source is 
the mean potential energy, will be called a ‘baroclinic mode’. Conversely, a mode with 
zero horizontal heat-flux conversion, growing solely from the main kinetic energy will 
be named a ‘barotropic mode’. The internal conversion can have both signs: it is positive 
in ‘pure’ baroclinic waves, negative in symmetric instability. 

A good summary of most of the mode structure is provided by the mean-wave- 
energy correlations. Figure 8 shows the central domain, to be compared with Fig. 3. It 
shows the extent of the mode in the (x, z*) plane having the same scales as the basic- 
state features. In the region where the isentropes are significantly bent, away from the 
maximum anomaly, some potential energy is retrieved. From Eq. (A4), this implies that 
the phase relation between ui and 8’ is different from that in the mid-anomaly vertical 
plane. The other two non-negligible terms show that the internal conversion term is 
negative everywhere, completely unlike the external baroclinic waves, and the negative 
correlation between u; and u ;  in a region of positive horizontal shear dZ,/dx implies a 
gain for the perturbation. This term in fact constitutes the main energy supply of these 
waues. It implies a noticeable horizontal tilt of the pressure wave. 

As for pure barotropic instability (Kuo 1949), the horizontal Reynolds stress is 
dominant. The barotropic nature of internal baroclinic waves is clearly apparent on the 
full-mean-energy conversions, which are shown for both horizontal widths (Fig. 9). Note 
also the characteristic reversed internal conversion, implying indirect vertical circulation 
in the perturbation, similar to what is observed in the linear normal modes of symmetric 
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Figure 8. Energy conversions averaged over one wavelength in the along-strip direction Y in the flow induced 
by the most unstable normal mode of Fig. 3 for the 'wide' anomaly ( I  = 1.75 10-6m-'). Pictures are shown in 
a vertical cross-section ( x ,  z )  plane, in the physical space defined by the basic state. Only part of the domain 
is shown. Here one unit is 10 ' J k g ' s - ' .  See Fig. 9 caption for definitions ofhe symbols. Contour intervals 
are (a) 0.6 unit for the conversion from basic available potential energy A P ,  (b) 0.1 u j t  for the internal 

conversion and (c) 5 units for the conversion from basic kinetic energy K.  

*o. \1 \1 3.0 

Figure 9. Energy box diagram, showing the rates of conversion as well as their signs, normalized by the 
internal conversion based on the correlation (~'8'). A P  stands for a reservoir of available potential energy, K 
for kinetic energy-The overbar denotes a basic-state property, the prime a ppturbation quantity. The 
conversion from A P  to  AP' is based on  (a,#.u;,@'), the conversion from K to K' is dominated by 
( d , u , . u ~ u ~ ) .  (a) The most unstable mode on the wide anomaly, otherwise shown on  Fig. 8. (b) The most 

unstable mode growing on the  narrow anomaly ( I  = 11 X m-'). 



540 A. JOLY and A. J. THORPE 

instability (Emanuel, 1979). However, all these terms are small, as are the relative 
amplitudes of the perturbations of 8' and w', strongly suggesting the relevance of a 
barotropic approximation to these problems. For both widths, the contribution of the 
vertical Reynolds stress, excluded from quasi-geostrophic energetics is negligible. For 1 
unit of internal conversion, it is -0.02 and -0.05 unit respectively for L2  = 310 km and 
L,  = 50 km. 

Thus the horizontal scale of an unstable perturbation can be much reduced compared 
to classical baroclinic instability theory. Modes with wave-lengths smaller than 1000 km 
are possible, provided the anomaly is not wider than 200 km, has a large amplitude and 
is reasonably deep. The growth rate can reach e-folding times of about a day under the 
same circumstances. The structure of the resulting unstable perturbations is dominated 
by their horizontal tilt (X-ward with decreasing Y if the anomaly is positive) allowing 
them to grow from the kinetic energy of the basic flow. Another typical aspect is the 
negative correlation between w' and 8' along the maximum of the anomaly. For relatively 
narrow anomalies (which do not affect the isentropes), it implies in the mean a negative 
heat-flux. However, as the anomaly widens (the basic static stability is changed sig- 
nificantly), conversion from the available potential energy is possible, and may reverse 
the mean internal conversion rate. 

Thorpe and Emanuel (1985) have shown that latent-heat release in fronts con- 
siderably reduces the width of the ascent, and thus of the potential vorticity anomaly it 
generates between the maximum of heating and the surface. Through this property, it 
appears possible to destabilize fronts on the scale of 1000 km or less, generating frontal 
waves. The simplest model of this instability is just as described as long as the dynamics 
are not significantly affected by the presence of large gradients of potential temperature 
on the boundaries; a point to be pursued in the next section, dedicated to steady fronts. 

4. STEADY FRONTS WITH CONDENSATION GENERATED POTENTIAL VORTICITY 
ANOMALIES 

Suppose that the source of potential energy for the growing baroclinic wave in which 
the front forms is exhausted, so that deformation and shear cease to act on the flow. A 
steady front remains with no ageostrophic motion, but with geostrophic flow along the 
front consistent with a low-level potential vorticity maximum as the tracer of latent 
heating during the active stage. Such is the situation studied in this section. Evidence for 
such lower tropospheric potential vorticity anomalies and their origin in latent heating 
has been presented by Hoskins and Berrisford (1988) and Ferris (1989). The FRONTS 
87 data set also indicates the presence of such structures. 

( a )  Potential uorticity anomalies from time-dependent solutions of the moist semi- 
geostrophic equations 

Several fronts modified by latent-heat release were studied by making use of the 
following procedure. The initial state is the most unstable dry Eady mode with the 
following constants: 

Poo = 0.3 PVU, H = 8 km, H ,  = 8 km 

or 

8" = 273.3 K, L = 3247 km or k = 2nfL = 1.94 m-'. 

The source of energy leading to the growth of the basic wave and to frontogenesis is 
provided by a constant value of baroclinicity B,e = - 1 K/100 km. When some limiting 
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value of maximum vorticity-about 9f-is reached, we assume that this gradient vanishes: 
the solution obtained becomes the steady basic state for the stability analysis. The reader 
is referred to Emanuel et al. (1987) for a discussion of the realism of the structure of 
these fronts. Each particular front is identified by three parameters: the initial amplitude 
of the Eady mode, the moist slantwise static stability parameter 11, which, according to 
(10) determines the diabatic source S ,  and the duration of the time integration. According 
to the results of section 3, the width, L;  , and depth, H,* , of the anomaly are amongst 
the most determinant factors for the stability calculation. They were monitored empiri- 
cally for the final state. Values of L,* and H,* were estimated for values of 11 ranging 
from 0.1 to 0.01 by decreasing steps of 0.01, and for each 11 four amplitudes of the initial 
potential temperature wave were tested, from 68 = 0-5 K to 68 = 2 K in steps of 0-5 K. 
About 40 fronts thus generated were examined in some detail. Some idea of the variability 
of the results is conveyed by the two fronts described by Figs. 10 and 11. 

I I 

I \ '1 .d' I 
I 

I \ I 
\ ' I /  I 

Figure 10. Vertical cross-section of a steady horizontal shear-produced front. It is a solution of the moist semi- 
geostrophic time-dependent equations. Moist slantwise stability parameter q = 0.07. This front is hereafter 
referred to as front 1. Cross-front wavelength 3247 km. Ticks horizontally every 500 km, 2 km vertically. 
Contour intervals: (a) Potential vorticity P ,  0.2 PVU; reference 0.3 PVU. The dash-dotted contour is 0.2 PVU. 
The dashed contour, 0.4PVU. (b) Along-front wind iE, 4 ms-' .  Negative contours dashed. Potential tem- 
perature 0, 4 K.  (c) Non-dimensional absolute vorticity J ,  0.5f, reference f. Heavy dashed lines are contours 

of absolute momentum M =fX. Contour interval 70 m s-' .  

Figure 11. As in Fig. 10, except that the moist slantwise stability parameter q was 0-02 during frontogenesis. 
This is front 2. Differences from contouring in Fig. 10 are (a) Potential vorticity reference is 0.4 PVU, (b) 

contour interval for 0 is 6 K. 
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The overall structures of these fronts are rather similar. Yet, as will be shown next, 
their response to a three-dimensional small perturbation is substantially different. The 
potential vorticity anomaly, with an amplitude always larger than 1 PVU is maximum at 
the surface. This is due to the assumption of air saturated in water vapour. Condensation 
begins as soon as the air ascends. There is a distinct asymmetry in the distributions. Also 
note how widespread the negative anomaly aloft is, with a very small amplitude. Despite 
this, the conservation of the total potential vorticity is exact in this model. There is also 
an obvious correlation between the potential vorticity anomaly and the vorticity itself. 

The small differences between the two frontal structures are as follows. The potential 
temperature field of the first front (Fig. 10, hereafter named ‘front 1’) compared to the 
other one (Fig. 11 which will be referred to as ‘front 2’) has isentropes less affected by 
frontogenesis. The change in potential temperature is small compared to the dry model 
having the same magnitude of vorticity. The frontal gradients in the cold air are 1.8 K/ 
100 km in front 1 and 0.8 K/100 km in front 2. Another difference of importance is that 
the width of the anomaly is reduced. 

The properties of these fronts are summarized in Table 1. Despite the difference in 
the initial amplitude, with a corresponding difference in duration before frontal collapse, 
it is the decrease in the moist slantwise static stability q which is responsible for the rapid 
increase in vorticity. Also, potential temperature is given less time to change. Both the 
reduction of L ;  from about 120 km to 80 km, and the increase of HZ from 1000 m to 
1400 m is now quantified. At the same time, the potential vorticity has about the same 
amplitude in the two fronts. The maximum anomaly of 8, however, is nearly halved. 
Note that, together with the stronger warm-side low-level jet, the positive anomaly of 
potential temperature (with extremes also at the surface) is larger than the negative 
anomaly behind. This other loss of symmetry compared to the dry solution is not without 
consequences for the stability problem. The minimum Richardson numbers are 2.6 and 
4.2 respectively. The frontal troughs are about 15 and 8 m b  lower than the reference 
surface pressure (1000 mb). 

(b )  Growth rate curves 
Bearing in mind the main properties of these fronts, we now examine the results of 

the stability calculation. On both fronts, two modes could be easily identified. 
In Joly and Thorpe (to be published) it is shown analytically that for uniform 

potential vorticity, the Eady initial condition is unstable to a iong-wave mode (3000 km 
wavelength) only, irrespective of the strength of the frontal zone. 

With front 1, the horizontal scale of frontal waves is reached. The second mode 
dominates the solution, with an e-folding time of one day, a phase-speed along the front 
of 10 m s-l at a wavelength of 1700 km (Fig. 12). The speed is typical of the basic flow 
toward the north in the vicinity of the potential-vorticity anomaly. The most unstable 
mode of front 2 also has a similar e-folding time, a phase speed of 9ms-’ ,  and a 
wavelength of less than 800 km (Fig. 13). The anomaly scales in Table 1 suggest these 
results are exactly in line with the previous calculations. However, we can now relate 
the scales to the properties of the growing baroclinic wave in which the front formed. A 
very low slantwise moist stability, for example, which increases the precipitation rate 
over a narrow frontal ascent zone, leads to the smallest-scale waves. This is a result of 
some importance in forecasting frontal waves. 

Whilst a detailed dynamical understanding of these modes relies on the study of 
their structure, a discrimination between boundary baroclinic instability and interior 
instability is useful. It leads to an assessment of the interaction between the two 
mechanisms. 
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Figure 12. Growth rate u and along-front phase speed c , ~  as functions of the along-front wavenumber I for 
normal-mode perturbations growing along front 1 (Fig. 10) (hold solid line). Other superimposed curves 
correspond to: front 1 with boundary anomalies of potential temperature 8 removed (bold dash-dotted line); 
front I with interior anomaly of potential vorticity removed (bold dotted line); the uniform potential vorticity 
horizontal shear front having the same mean anomaly of potential temperature 0 of 5.9 K as front 1 (light 

dashed line). 
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Figure 13. As in Fig. 12 but for front 2 (Fig. 11). 

If the potential temperature is artificially set to constant values on horizontal 
boundaries in front 1, the basic state retains the signature of moist processes in the 
interior potential vorticity. The situation resembles those of section 3, except with a 
more complicated anomaly. The cyclonic circulation induced is asymmetric, with along- 
front wind in the positive branch of more than 12 m s-', against -5 m sC1 in the opposite 
side. Vorticity still reaches 3f. The phase tilts of the original wave have nearly disappeared. 
The e-folding time here is also increased. to 1.4 days (instead of 1). The most unstable 
wavenumber, on the other hand, is notably increased, from 3.5 X 10Chm-'  to 
5.5 x 10Chm-' ,  reducing the wavelength to 1OOOkm. The instability of the simplified 
basic state is quite weak where, in the full problem. it is most intense (Fig. 12). 

Consider now the contribution of boundary baroclinic instability, by replacing the 
anomaly by a uniform potential vorticity. Replacing also the actual distribution of 3 by 
that of the 'horizontal shear front' having the same mean amplitude leads to the thin 
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TABLE 1. A SUMMARY OF THE MAIN PROPERTIES OF THE FRONTS PRODUCED BY 
SOLUTION OF A TIME INTEGRATION OF THE MOIST SEMI-GEOSTROPHIC EQUATIONS 

Front 1 Front 2 

Initial 68(t = 0) K 

Time-integration duration (hours) 
conditions rl 

Potential-vorticity BP,,, PVU 
anomaly 6P,,” PVU 
generated by L;  krn 
condensation H ;  rn 
Maximum vorticity in units off 
Surface potential- 6%,, K 
temperature anomaly 6%,. K 

1.5 
0.07 

30.6 
1.5 

-0.14 
116 

1011 

9.1 
6.9 

-4.9 

0.5 
0.02 

40.2 
1.2 

-0.15 
76 

1409 

7.1 
4.2 

-2.8 

The initial conditions are the amplitude of the dry Eady mode in terms of surface potential temperature 
68(f = 0), and the constant moist static stability parameter 11. The potential-vorticity scales L: and H :  are to 
be compared with the Gaussian scales of section 3. The other parameters are self explanatory. 

dashed curves of Fig. 12. By the ‘horizontal shear front’ we mean the geostrophic flow 
associated with a dry Eady mode; such fronts develop through the horizontal shear 
mechanism. It is the same curve as the analytical solution of Joly and Thorpe (1990a), 
but with a reduced amplitude, and consequently a reduced growth rate. However, the 
warm air is slightly warmer with the actual distribution of s, and the cold side less cold. 
The heavy dashed curve of Fig. 12 shows that this is sufficient to remove the short wave 
cut-off of the dry case, and destabilize the larger wavenumbers. An asymmetric surface 
distribution of potential temperature is sufficient to reduce (slightly) the most unstable 
wavelength along the front. This property, which leaves a rather simple problem because 
the interior equation keeps its Laplace form, was recently exploited by Schar and Davies 
(1990). They proposed this asymmetry as the primary mechanism for generating frontal 
waves. However, as can be seen here, the growth rate is quite small (an e-folding time 
of two days), and also, the change in linear wavelength selection is also marginal 
compared to the full problem. 

The point made here is that both boundary and interior baroclinic instability 
mechanisms are important to create the frontal wave mode, and are strongly interacting 
with one another. These mechanisms are unified using the ideas of potential vorticity 
distributions which include boundary thermal gradients. 

(c) Mean energetics of the modes 
Further properties of the growth rate curves will be discussed later. The remainder 

of this subsection is dedicated to the detailed identification of the modes. The most 
direct way is by means of the energetics. 

The mean cycles are considered first. Figure 14 shows the energy cycle of the first 
mode of each front. They are all typical of classical baroclinic waves, with energy 
going from the basic-state available potential source to perturbation kinetic. As the 
wavenumber increases, the relative contribution of the basic-state kinetic energy also 
increases, and even becomes dominant. We can identify the first mode, occurring on the 
large scale, as a modified classical baroclinic instability or Eady-type mode. 

Figure 15 pictures the cycles corresponding to the smaller wavelength modes. They 
are the most unstable. In front 1, the internal conversion, although positive, appears to 
be an order of magnitude smaller than the two main conversions. Indeed, the internal 
term is of the same order as the usually negligible vertical Reynolds stress component 
(-w’uLdE,,dZ), which is -1.3 times the internal conversion. The contribution from the 
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Figure 14. Mean energy cycle of the first mode (most unstable smallest wavenumber 1) growing along (a) 
front 1, (b) front 2. Conventions as in section 3, Fig. 9. Note the unit is different in each figure. 
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Figure 15. As in Fig. 14, but for the second mode (most unstable largest wavenumber I ) ,  for both fronts. 
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horizontal Reynolds stress (-uL uLdE, /dX)  is 23 times the internal conversion, twice as 
large as the available energy conversion. The barotropic conversion dominates the 
dynamics of this mode, where, on the whole, little or no kinetic energy is gained from 
the basic state baroclinicity. This is even more true with front 2 ,  whose most unstable 
mode has the same energy cycle as the simple anomalies of section 3. Kinetic energy 
grows from the barotropic conversion, and the vertical heat flux is negative. In this case, 
the mode even returns available potential energy to the basic state. 

Note that, in front 1, the sign of the internal conversion (w’8‘g/B0) is also negative 
for the second mode from f slightly larger than 4 X m-l. In that section of the curve, 
we also find the characteristic energy cycle of internal baroclinic modes (Fig. 16). 

0 . 9  6 \? 4 . 4  

1 = 4.5  10-6rn-1 

Compare with Fig. 15(b). 
Figure 16. As in Fig. 15(a). the second mode of front 2 at a larger wavenumber I (with a smaller growth rate). 

(d) Structure of the modes 
Cross-sections along the front in geostrophic space will be shown near the location 

of the maximum potential vorticity. They follow the absolute momentum surface f X  
crossing the anomaly. In physical space, they are slanted, generally toward the cold air. 
The cross-section along front 1 reveals that, despite its shorter scale, this frontal wave 
has strong classical baroclinic features. It is also a deep mode, and u ; ,  8’ and w’ have 
the same tilts with height as an Eady wave, except in a thin layer near the surface. Note 
that the negative correlation between uL and u ;  extends over three quarters of the total 
depth. This structure is somewhat surprising, especially the deepness of the fields on that 
reduced horizontal scale. It shows how efficient the interaction between the two basic 
mechanisms of instability can be to produce relatively large-scale features (Fig. 17). 
Figure 18 shows horizontal sections in physical space (defined by the basic state alone) 
of mass and temperature at the surface, and the mid-level vertical velocity. A bi-modal 
overall aspect is present, as in the ‘dry’ large scale mode. The extreme values are very 
near the front itself, unlike the ‘dry’ mode. Vertical velocity aloft is largest coldward of 
the surface front. This was true of the ‘dry’ mode. Thus, in the case of front 1, the normal 
mode also looks like a ‘boundary-baroclinic’ mode, with reduced horizontal scales, both 
along and across the front. However, its typical depth is still H :  the maximum amplitude 
of CP’ at Z = H is two-thirds of the amplitude at the surface. 

The structure of the instability in front 2 is somewhat different. Along the front, the 
mode now fills three-eights of the total depth only. The wind components have their 
largest amplitude at the surface. Largest amplitudes for 8’ and w’, however, occur at 
2 = 1 krn. The correlations between each pair of fields are similar to those of the ‘pure 
internal’ mode. There is a change, in that these fields are also tilted vertically (Fig. 19). 
Viewed on horizontal sections, the amplitude is now maximum along the front (no double 
structure) in both CP’ and 8‘. The horizontal tilt is as expected from a perturbation which 
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Figure 17. Vertical cross-section of the flow associated with the most unstable normal mode of front 1 ,  with 
1 = 3.5 m~ I ,  in the along-front direction Y .  The picture is drawn in geostrophic space ( X  = 1688 km). The 
mode structure alone is shown. Tick marks are set every 500 km horizontally, 2 km vertically. Negative contours 
are dashed and the zero line is thickened. (a) Geostrophic wind u ;  in the plane. (b) Geostrophic wind u ;  across 
the plane. (c) Potential temperature perturbation 8 ' .  (d) Vertical velocity w ' .  Amplitudes are arbitrary. A 
suggestion of the relative magnitudes is given by the following contour intervals: (a) 0.6 m s-', (b) 0.9 m s-', 

(c) 0.3 K ,  (d) 0.07cm s-' .  

is growing mostly from the existing kinetic energy at the front. The vertical velocity at 
the height of two kilometres still has a double structure, but with a definite maximum 
on the warm side of the front (the side of the anomaly). The negative correlation between 
8' and w' is obvious even at this level. The potential vorticity perturbation is nearly out 
of phase by n/2 with the pressure perturbation, so that u ~ P '  is maximized, and negative 
(the flux of potential vorticity is toward the cold air). The pattern of P' and @ '  is such 
as to disrupt the bandedness of high potential vorticity very efficiently. Above the surface, 
the pattern of P' is consistent with the double structure of w'. The position of the 
perturbation potential vorticity close to the mean potential vorticity maximum indicates 
that frontal waves will be characterized by noticeable positive potential vorticity anom- 
alies with weaker, or zero, negative anomalies. Concentrated at the front, the anomaly 
of potential vorticity constrains the flow to be nearly parallel to it (Fig. 20). 
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Figure 18. Horizontal cross-section of the flow associated with the most unstable mode of front 1 ( I  = 
3.5 10-6m-’). Picture drawn in physical space as defined by the basic state, although the latter is not 
superimposed. Tick marks are set every 500 km. Negative contours are dashed. (a) Thin contours, geostrophic 
potential perturbation a’ at the surface. Thick lines, vertical velocity w ’  at mid-level (Z  = 4108 m). (b) Potential 
temperature perturbation 0’ at the surface. Amplitudes are arbitrary. An idea of the relative magnitudes of 

perturbations is given by the following contour intervals: (a) a’ ,  60 J kg-’; w’, 0.14 cm S C ’ .  (b) O ’ ,  0.4 K. 

For this mode, a section across the front, near a centre of low pressure at the surface 
is also shown on Fig. 21. The basic potential vorticity together with isentropes are recalled 
as only the frontal zone is pictured. This kind of frontal wave appears as a ‘warm core’ 
type of cyclone. However, these sections indicate that the ‘heating’ is really caused by 
parcels displaced vertically downward. 

To summarize all these properties, we now consider the energy conversions averaged 
over one wavelength along the front. They provide the best representation of the scales 
of the waves in the across-front plane, with an idea of the amplitude function. The sign 
can be directly related to phase shifts and sometimes to phase tilts in the along-front 
plane. 

From the selected cross-sections, front 1 did not appear too different from the 
organization of a large-scale ‘dry’ baroclinic wave. Differences now appear more neatly 
in this representation (Fig. 22). While the depth is still large, the maximum amplitude 
clearly is at the surface front. We observe a shallow mode with a deep but weak vertical 
extension. Maximum amplitude follows the frontal slope. In the vicinity of the front, a 
new characteristic appears. Instead of very narrow bands of slightly negative correlations 
in the AP to AP‘ and AP’ to K‘ fields, we observe wider zones of significantly negative 
values. The internal conversion ( d o ’  g/Bo) has even its maximum amplitude negative in 
the lower front. We already noted this feature in the pure internal baroclinic mode. 

Finally, front 2 is similar in terms of energy conversions but more confined near the 
lower boundary. 

(e )  Discussion of the negative vertical heat flux 

Despite the reduction in baroclinicity from front 1 to front 2, the maximum growth 
rate is always of the same magnitude, having an e-folding time of one day. This forces 
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Figure 19. As in Fig. 17, but for the most unstable mode of front 2 ( I  = 8.10-6 m, X = 1916 km). Ticks are 
set every 200 km horizontally. 1 km vertically. Suggested contour intervals: (a) 0.8 m s-I, (b) 0.8 m s- l ,  (c) 

0.1 K ,  (d) 0.08 cm SKI. 
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I 
Figure 20. Horizontal cross-section of the flow associated with the most unstable mode of front 2 ( I =  
8.10-6m-’). Pictures drawn in physical space as defined by the basic state, although the latter is not super- 
imposed. Tick marks are set every 200 km. Only 1/4 of the total width in x is shown, the frontal zone itself. 
Negative contours are dashed. Zero contour omitted. (a) Geostrophic potential perturbation at the surface 
Q’, (b) Potential vorticity perturbation P’ at the surface. (c) Potential temperature perturbation 0’ at Z = 
2051 m. (d) Vertical velocity w ’  at the same level. Amplitudes are arbitrary. Suggested contour intervals are: 

(a) 1 J k g ’ ,  (b) 0.05 PVU, (c) 0.01 K, (d) 0,007 cm s-I. 

the energetics of the mode, as the scales are reduced, to rely more on the mechanism of 
barotropic instability. Thus, in frontal waves (waves on the scale 1500 km and less), the 
contribution from the basic state kinetic energy constitutes the main source of energy. 
It gives to the structure a horizontal tilt with respect to the front. 

Also there is a shift between the perturbation fields of 13‘ and w’ leading to a stronger 
negative correlation between the two in the frontal zone itself, to a negative vertical heat 
flux at the front, and ultimately, to a negative mean internal conversion. This feature is 
present in ‘pure internal modes’, and we now attempt to explain why the frontal waves 
have this structure. 

All our results show that, in the kinetic energy equation, the vertical component of 
Reynolds stress is negligible. Therefore, it is omitted from this analysis. The simplified 
energy equations can be written as: 
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Figure 21. Vertical cross-section of the flow associated with the most unstable normal mode of front 2, in the 
cross-front x direction. Pictures drawn in physical space as defined by the basic state alone. Only 1/5 of the 
total wvidth is shown, the frontal zone. Tick marks are_set every 200 km horizontally, 2 km vertically. (a) 
Recalling the basic state from Fig. 1 I .  Potential vorticity P,2olid lines and dash-dotted line (0.2 PVU). Bolder 
contour0.3 PVU, interval, 0.2 PVU. Potential temperature 0, dashed lines, contour interval 3 K .  Other pictures 
are sections across a low in the surface potential @ '  (see Fig. 20). Negative contours dashed, zero bolder. (b) 
Perturbation potential vorticity P' .  (c) Geostrophic wind across the plane 0 ; .  (d) Geostrophic wind in the 
plane u ; .  (e) Perturbation potential temperature 0' .  ( f )  Vertical velocity w'. Contours are arbitrary. A 
suggestion of relative magnitudes is given by the following intervals. (b) 0.2 PVU, (c) 0.7 m s-', (d) 0.3 rn s-l, 

(e) 0.08 K,  (f) 0.12crn s - ' ,  zero added (first thin contours: 0.06cms-I). 

with 

where ( . . .&=-l 1 L ,  . . .  dY 

L Y  0 

(see the Appendix for derivation). Useful functions of X and Z describing the basic state 
are 



552 A. JOLY and A. J. THORPE 

Figure 22. Energy conversions over one wavelength in Y in the flow induced by the most unstable normal 
mode of front 1 ( I  = 3.5 x m-I), in a vertical cross-section in the cross-front plane ( x ,  z*) .  Pictures are 
drawn in physical space as defined by the basic state. Only 1/5 of the total width is shown, corresponding to 
the frontal zone. Ticks horizontally every 200 km, 2 km vertically. Negative contours are dashed, zero contour 
bolder. (a) Potential energy conversion. (b) Internal conversion. (c) Kinetic energy conversion. Amplitudes 
are arbitrary. Suggested relative magnitude: (a) 0.4 unit, (b) 0.2 unit, (c) 3 units (Note!). Typical unit 

J kg-l s-'. 

and 

aZ/ax g a3/ax 
ae/az- eo N~ - - (3; (17) -- 

The latter is the slope of the basic state isentropes in geostrophic space. 
By definition, the energy of an unstable perturbation increases, and to relate this 

information to the mode structure, we have to express the correlations. The basic element 
of the solution is the geostrophic potential, which can be written in two ways, 

@' = A(X, Z )  cos(ZY + A(X, Z ) )  = (@,(X,  Z )  + i$i(X, 2)) eilY (18) 
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from which u : ,  v ;  and 8' can easily be derived. For example, 

ah 
az cos(fY + A )  - A - sin(lY + A) 

or 

8' = 0 cos(1Y + A. + p) 

A aA/aZ 8, - _  - 
dA/dZ  8,' t g p  = 

Taking the Y-transformed equation for 8' leads to the determination of G. (For definition 
of see Eq. 14): 

This expression can then be combined with 8' to establish the general expression for any 
balanced two-dimensional steady state of the mean-wave vertical heat flux: 

It can easily be shown that the last bracketed term is in fact simply related to the phase 
function A ( X ,  2). Indeed, 

( P , L - ( P , > = A 2 -  a+ a+ d A  
az az az 

The same kind of calculation can also be done for the other fluxes. Finally, it is found 
that: 

These expressions directly relate energetics properties to the shape of the potential 
perturbation a', which is also similar in u i .  A number of rather general conclusions can 
be made from these properties. 

Substituting into the equation for potential energy the fluxes given by (20), or simply 
making use of the definition of (AP')  and of the normal mode form, the rate of change 
of available potential energy is 
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For an unstable mode, the integrand is positive definite. Comparing expressions of the 
possible sources, (dZ/dX),(u;!8’),  and ( W ’ O ’ ) ~ ,  it is seen that the energy extracted from 
baroclinicity (first source) is entirely converted to kinetic energy by internal conversion, 
the latter being also written as 

This leads directly to consideration of the internal conversion of vertical heat flux of the 
modes. As clearly shown by the various expressions used, the internal conversion is made 
up of two terms. The first one is negative definite in an unstable mode and notice that 
according to (21), it is the opposite of the rate of change of perturbation potential energy. 
The second is proportional to the baroclinicity. Thus, in all regions where baroclinicity 
is negligible, internal conversion is negative. If this region is also where the mode 
amplitude is largest, it is significantly negative. 

A typical example of such a zone is an extremum in potential vorticity. Where 
potential vorticity is extreme, isentropes are quasi-horizontal. In isolated anomalies, the 
instability is precisely trapped in the same region, hence the sign of the internal conversion 
in those modes. It also explains the systematic observation, in those modes, of the region 
of negative internal conversion in moist fronts, at the location of the anomaly. When the 
scales selected confine the mode to that particular zone, it explains why the mean 
energy cycle exhibits the reversed internal conversion. In regions where the barotropic 
conversion (u; uAdE,/dx> is the actual source of energy, this negative term represents 
the necessary contribution to the budget of internal energy associated with quasi- 
barotropic instability in a stratified fluid. It maintains the vertical stability despite the 
horizontal redistribution of air parcels. 

We consider the local negative heat flux as one of the more unexpected conclusions of 
this work, inevitably accompanying the identification of frontal instability with horizontal 
shear instability. Indeed, it can be seen as an observational test of the validity of the 
theory developed here. Detailed energy budgets of developing frontal waves are scarce 
in the literature, as mentioned in the introduction. Yet, it has been done by Matsumoto 
et al. (1970). These authors studied waves growing along the Baiu or Mei-Yu front, 
between China and Japan. Here, both the large evaporation and heavy precipitation 
make likely the existence of large values of potential vorticity along this front. The 
development of waves is seen frequently. The authors mention the shallowness of the 
young waves and they also estimate the energy conversions inside a finite domain. The 
budgets revealed that some of the waves under scrutiny have a mean internal conversion 
which is negative. The authors support this result by mentioning evidence of an ‘indirect 
circulation’ in the waves. A similar study involving more cases was recently reported 
(Zhao 1988). A number of the waves also have a mean negative heat flux. Accordingly, 
the waves derived energy from the momentum correlations, a property constituting 
another, more classical, observational test. These independent experimental results 
directly support the present analysis. 

( f )  Sensitivity to resolution and to the formulation 
Two points need further attention. The first is numerical resolution. Are these 

relatively narrow potential vorticity anomalies well enough resolved? Fronts 1 and 2 were 
re-computed and the stability analysis done again with 66 horizontal Fourier modes. This 
can be done at a reasonable cost. The prediction of phase speed is identical. It is nearly 
so for growth rate and wavenumber with front 1, where the agreement is excellent. The 
energy cycle of the most unstable mode reveals also the excellent convergence toward 
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the most unstable mode (not shown). All conversions are enhanced in the new resolution, 
but only slightly (5% in the barotropic term). 

Front 2, with its extremely narrow anomaly, shows more sensitivity. The growth 
rate is decreased by 18%, and the most unstable wavenumber by 13%. Moreover, the 
energy cycle of the most unstable mode (not shown) is also very similar to the one with 
33 modes. The barotropic input is reduced to 1.9 times the (negative) internal conversion 
instead of 2.2. Other figures and signs are the same as in Fig. 15. 

With 33 horizontal modes again, the analysis of the stability of both fronts was done 
again with the length scaling along Y ,  l/?, set to unity in Eq. (12). The sensitivity to this 
particular point is larger than the sensitivity to resolution. As expected from dimensional 
arguments, the most unstable wavenumber is now reduced to respectively 3 X m-' 
and 5 x m-' (instead of 4.5 X 10-' m- '  and 8 x lo-' m-'). But the growth rate is 
also decreased, down to an e-folding time of two days for front 2. When the basic- 
state vorticity is large this term in the semi-geostrophic approximation appears rather 
important. 

5. CONCLUSIONS 

Steady fronts whose structure comprises a potential vorticity anomaly generated 
earlier by latent-heat release have been considered. Several configurations were studied 
including anomalies resulting from different magnitudes of moist potential vorticity . 
Anomalies with cross-frontal width smaller than 200 km produced a distinct mode with 
wavelengths smaller than 1500 km. The frontal boundary gradient of 8 was responsible 
for a large-scale mode (5000 km). It was shown, however, that an asymmetric distribution 
of potential temperature on the surface with uniform potential vorticity was enough to 
destabilize marginally smaller wavelengths. But realistic frontal waves appear to require 
a full representation of the potential vorticity anomaly. The maximum growth rate 
achieved has an e-folding time of about one day. 

It should be borne in mind that, in order to keep the calculation two-dimensional, 
further condensation was not considered in the perturbation flow; the growth rates are 
thus underestimated. For a discussion of the stability problem in an evolving front 
including latent-heat release in the perturbation see Joly and Thorpe (to be published). 

The scale of the most unstable mode depends mostly on the cross-frontal width of 
the anomaly: a narrow anomaly (150 km wide) causes frontal waves with awavelength 
in the range 700-900 km. This kind of result is of practical concern. This small width 
might explain why numerical weather prediction systems have difficulty in forecasting 
frontal waves. A narrow anomaly results from the most intense frontal convection and 
precipitation, with very low moist potential vorticity, occurring over a long time. This 
idea should be tested in a detailed analysis of a frontal case study. The scales involved 
make it clear that more than conventional data should be included. Data sets such as 
FRONTS 87 are being studied for such cases. 

The structure of the normal modes and the physical nature of the instability have 
been investigated. An advantage of filtered models lies in the possibility of relating the 
shape of the modes to energy conversions. The large-scale waves deepening in uniform 
potential vorticity flows are baroclinic in nature. Energy is converted from the frontal 
gradient of potential temperature. There is, however, a small contribution from the 
kinetic energy of the front. Frontal waves on the scale 1000-1500km can interact 
with such baroclinic structure. Although the barotropic instability mechanism becomes 
dominant in the energy cycle, the normal modes have a vertical scale near H ,  the depth 
of the troposphere. Perturbation kinetic energy is supplied also from potential energy. 
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Smaller scale waves are driven by barotropic instability. They start as shallow structures 
trapped near the surface, with a depth of 3 or 4 km. All waves are characterised by a 
locally negative vertical heat flux at the front. Observations confirm the existence of 
frontal waves with negative internal conversion, as predicted here. 

Frontal waves have recently received a renewed interest. A simplified version of the 
present theory, neglecting the interior anomaly of potential vorticity, is proposed by 
Schar and Davies (1990). Moore and Peltier (1987) describe frontal waves in a uniform 
potential vorticity flow using fundamentally ageostropic modes. Their linear analysis 
produces structures which are shallower than ours, with significantly smaller growth rates 
(e-folding time: two days). Thorncroft (1988) showed that explosively deepening cyclones 
were the result of the interaction of the upper-tropospheric cut-off and the large surface 
gradients of potential temperature at a cold front during the last stages of a normal-mode 
baroclinic wave life-cycle on the sphere. Thus, a finite amplitude non-linear mechanism 
is advanced, instead of linear amplification of normal modes. However, it seems clear 
that some of the observed frontal waves may be the result of such a process, but by no 
means all of them, such as in our initial example. Here we suggest that quasi-two- 
dimensional fronts which have active moist processes are likely to exhibit the spontaneous 
development of frontal waves. The mechanism is as outlined in this paper. On occasion 
one of these waves amplifies rapidly and this development may rely on the finite amplitude 
feedback described in the work of Thorncroft (1988). The modification of the potential- 
vorticity distribution in the troposphere by latent-heat release may play a significant role 
in that feedback as well as in the original instability mechanism. 

Finally, the relation to Kleinschmidt’s original work (Eliassen and Kleinschmidt 
1957) seems clearer if it is realised that he studied growing but finite-amplitude waves. 
The horizontal extension of the ‘producing mass of higher potential vorticity’ along the 
front is not considered by Kleinschmidt. There is in fact no contradiction between his 
intuition and our results. The distribution of potential vorticity associated with the mode 
links a positive perturbation to the low (see Fig. 21). On the other hand, the actual 
triggering of frontal waves is not examined by Kleinschmidt. 
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APPENDIX 

Energy equation in the linear semi-geostrophic model 
Linearizing the geostrophic momentum equations (2)-(4) gives, in the special case 

of a steady or stationary frontal flow: 

- - 

a8 rP 
dT ' d Y  '1  'dX f J  
-+u - ( 3 " + u ' - + w f ; = O  

where the following notations from Hoskins and Draghici (1977) were used: 

w au,  w dug 
u,* = u,  - -- f az f az' u ;  = u,  + -- 

Defining the perturbation kinetic energy as 

K ;  = 1/2(uL2 + u; ' ) ,  

we can write its rate of change as 

The total kinetic energy in a wavelength of the mode perturbation is: 

( K L )  = 1'' /' jM K ; r  dxdydz*. (A2) 
0 0 1) 

The wavelengths are not affected by the change of coordinate. The volume element, 
however, becomes 

d x  d y  dz* = 11s d X d Y  d Z .  
Thus, 

From (Al),  we linearize uZ and u,* 

Substituting in the last two integrals, we find another conversion term from the basic 
state kinetic energy: 
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and the remaining integral is 

C = JoL JoL’ (-fuAuf +fu;!u’)rdxdydz* 

which we express in physical space. Replacing u;  and u ;  by their definition, and 
integrating by parts, we find 

aru‘ arv’ 
C = 11 [@‘u’] ,“Y rdxdz* + 11 [@’u ’ ] :  rdxdz* - 111 @‘(&- + 7) dxdydz* 

The integrated terms vanish in all the configurations of boundary conditions discussed 
in section 2, and the continuity equation implies that 

Another integration by parts, making use of the boundary conditions on w f  at Z = 0, H ,  
and the hydrostatic equation gives 

The kinetic energy equation may finally be written as: 

The first integral corresponds to the horizontal and vertical Reynolds stress terms, and 
expresses the conversion from the mean kinetic energy ?? to the wave kinetic energy 
KL. Multiplying throughout the thermodynamic equation by (g/Oo)(f/r)(?/F)O ’ and 
integrating in a similar fashion gives 

where the wave total potential enegy is defined as 

From Eq. (A4), we see that the last integral in (A3) and (A4), involving the correlation 
between w’ and O ’ ,  represents the internal conversion between the wave potential energy 
(AP’ )  and the wave kinetic energy ( K ’ )  showing the important energetical interpretation 
of the direct circulation. The other integral in (A4), a weighted mean horizontal heat- 
flux, is responsible for the conversion of mean available potential energy AP into wave 
available potential energy A P ’ .  It is the main energy supply in simple baroclinic waves. 

These equations are slightly approximate because in the transformation of the 
conversion C ,  we have loosely exchanged the order of integrations, whereas strictly 
speaking, the vertical integration and horizontal ones are functions of one another, in 
that the limits Y = 0 and Y = L,  depend on z* if y = 0 and y = L, do not. 

The energy equations in semi-geostrophic linear theory look very similar to the 
quasi-geostrophic energy equations. In the kinetic energy equations, the vertical momen- 
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turn flux is one addition. We have found it to be negligible in most cases. In the wave 
potential energy definition and equation, the weighting factor is proportional to t / F ,  
instead of to the static stability. Notice that all the integrals involved could be defined in 
physical space. We will evaluate them in geostrophic space, but interpret the result in 
physical space. 
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